mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
226 lines
7.6 KiB
226 lines
7.6 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/core/affine.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
class CV_Affine3D_EstTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_Affine3D_EstTest(); |
|
~CV_Affine3D_EstTest(); |
|
protected: |
|
void run(int); |
|
|
|
bool test4Points(); |
|
bool testNPoints(); |
|
}; |
|
|
|
CV_Affine3D_EstTest::CV_Affine3D_EstTest() |
|
{ |
|
} |
|
CV_Affine3D_EstTest::~CV_Affine3D_EstTest() {} |
|
|
|
|
|
float rngIn(float from, float to) { return from + (to-from) * (float)theRNG(); } |
|
|
|
|
|
struct WrapAff |
|
{ |
|
const double *F; |
|
WrapAff(const Mat& aff) : F(aff.ptr<double>()) {} |
|
Point3f operator()(const Point3f& p) |
|
{ |
|
return Point3f( (float)(p.x * F[0] + p.y * F[1] + p.z * F[2] + F[3]), |
|
(float)(p.x * F[4] + p.y * F[5] + p.z * F[6] + F[7]), |
|
(float)(p.x * F[8] + p.y * F[9] + p.z * F[10] + F[11]) ); |
|
} |
|
}; |
|
|
|
bool CV_Affine3D_EstTest::test4Points() |
|
{ |
|
Mat aff(3, 4, CV_64F); |
|
cv::randu(aff, Scalar(1), Scalar(3)); |
|
|
|
// setting points that are no in the same line |
|
|
|
Mat fpts(1, 4, CV_32FC3); |
|
Mat tpts(1, 4, CV_32FC3); |
|
|
|
fpts.ptr<Point3f>()[0] = Point3f( rngIn(1,2), rngIn(1,2), rngIn(5, 6) ); |
|
fpts.ptr<Point3f>()[1] = Point3f( rngIn(3,4), rngIn(3,4), rngIn(5, 6) ); |
|
fpts.ptr<Point3f>()[2] = Point3f( rngIn(1,2), rngIn(3,4), rngIn(5, 6) ); |
|
fpts.ptr<Point3f>()[3] = Point3f( rngIn(3,4), rngIn(1,2), rngIn(5, 6) ); |
|
|
|
std::transform(fpts.ptr<Point3f>(), fpts.ptr<Point3f>() + 4, tpts.ptr<Point3f>(), WrapAff(aff)); |
|
|
|
Mat aff_est; |
|
vector<uchar> outliers; |
|
estimateAffine3D(fpts, tpts, aff_est, outliers); |
|
|
|
const double thres = 1e-3; |
|
if (cvtest::norm(aff_est, aff, NORM_INF) > thres) |
|
{ |
|
//cout << cvtest::norm(aff_est, aff, NORM_INF) << endl; |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
struct Noise |
|
{ |
|
float l; |
|
Noise(float level) : l(level) {} |
|
Point3f operator()(const Point3f& p) |
|
{ |
|
RNG& rng = theRNG(); |
|
return Point3f( p.x + l * (float)rng, p.y + l * (float)rng, p.z + l * (float)rng); |
|
} |
|
}; |
|
|
|
bool CV_Affine3D_EstTest::testNPoints() |
|
{ |
|
Mat aff(3, 4, CV_64F); |
|
cv::randu(aff, Scalar(-2), Scalar(2)); |
|
|
|
// setting points that are no in the same line |
|
|
|
const int n = 100; |
|
const int m = 3*n/5; |
|
const Point3f shift_outl = Point3f(15, 15, 15); |
|
const float noise_level = 20.f; |
|
|
|
Mat fpts(1, n, CV_32FC3); |
|
Mat tpts(1, n, CV_32FC3); |
|
|
|
randu(fpts, Scalar::all(0), Scalar::all(100)); |
|
std::transform(fpts.ptr<Point3f>(), fpts.ptr<Point3f>() + n, tpts.ptr<Point3f>(), WrapAff(aff)); |
|
|
|
/* adding noise*/ |
|
std::transform(tpts.ptr<Point3f>() + m, tpts.ptr<Point3f>() + n, tpts.ptr<Point3f>() + m, |
|
[=] (const Point3f& pt) -> Point3f { return Noise(noise_level)(pt + shift_outl); }); |
|
|
|
Mat aff_est; |
|
vector<uchar> outl; |
|
int res = estimateAffine3D(fpts, tpts, aff_est, outl); |
|
|
|
if (!res) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return false; |
|
} |
|
|
|
const double thres = 1e-4; |
|
if (cvtest::norm(aff_est, aff, NORM_INF) > thres) |
|
{ |
|
cout << "aff est: " << aff_est << endl; |
|
cout << "aff ref: " << aff << endl; |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return false; |
|
} |
|
|
|
bool outl_good = count(outl.begin(), outl.end(), 1) == m && |
|
m == accumulate(outl.begin(), outl.begin() + m, 0); |
|
|
|
if (!outl_good) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
|
|
void CV_Affine3D_EstTest::run( int /* start_from */) |
|
{ |
|
cvtest::DefaultRngAuto dra; |
|
|
|
if (!test4Points()) |
|
return; |
|
|
|
if (!testNPoints()) |
|
return; |
|
|
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
TEST(Calib3d_EstimateAffine3D, accuracy) { CV_Affine3D_EstTest test; test.safe_run(); } |
|
|
|
TEST(Calib3d_EstimateAffine3D, regression_16007) |
|
{ |
|
std::vector<cv::Point3f> m1, m2; |
|
m1.push_back(Point3f(1.0f, 0.0f, 0.0f)); m2.push_back(Point3f(1.0f, 1.0f, 0.0f)); |
|
m1.push_back(Point3f(1.0f, 0.0f, 1.0f)); m2.push_back(Point3f(1.0f, 1.0f, 1.0f)); |
|
m1.push_back(Point3f(0.5f, 0.0f, 0.5f)); m2.push_back(Point3f(0.5f, 1.0f, 0.5f)); |
|
m1.push_back(Point3f(2.5f, 0.0f, 2.5f)); m2.push_back(Point3f(2.5f, 1.0f, 2.5f)); |
|
m1.push_back(Point3f(2.0f, 0.0f, 1.0f)); m2.push_back(Point3f(2.0f, 1.0f, 1.0f)); |
|
|
|
cv::Mat m3D, inl; |
|
int res = cv::estimateAffine3D(m1, m2, m3D, inl); |
|
EXPECT_EQ(1, res); |
|
} |
|
|
|
TEST(Calib3d_EstimateAffine3D, umeyama_3_pt) |
|
{ |
|
std::vector<cv::Vec3d> points = {{{0.80549149, 0.8225781, 0.79949521}, |
|
{0.28906756, 0.57158557, 0.9864789}, |
|
{0.58266182, 0.65474983, 0.25078834}}}; |
|
cv::Mat R = (cv::Mat_<double>(3,3) << 0.9689135, -0.0232753, 0.2463025, |
|
0.0236362, 0.9997195, 0.0014915, |
|
-0.2462682, 0.0043765, 0.9691918); |
|
cv::Vec3d t(1., 2., 3.); |
|
cv::Affine3d transform(R, t); |
|
std::vector<cv::Vec3d> transformed_points(points.size()); |
|
std::transform(points.begin(), points.end(), transformed_points.begin(), [transform](const cv::Vec3d v){return transform * v;}); |
|
double scale; |
|
cv::Mat trafo_est = estimateAffine3D(points, transformed_points, &scale); |
|
Mat R_est(trafo_est(Rect(0, 0, 3, 3))); |
|
EXPECT_LE(cvtest::norm(R_est, R, NORM_INF), 1e-6); |
|
Vec3d t_est = trafo_est.col(3); |
|
EXPECT_LE(cvtest::norm(t_est, t, NORM_INF), 1e-6); |
|
EXPECT_NEAR(scale, 1.0, 1e-6); |
|
} |
|
|
|
}} // namespace
|
|
|