mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
424 lines
12 KiB
424 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::gpu; |
|
using namespace cvtest; |
|
using namespace testing; |
|
using namespace testing::internal; |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// random generators |
|
|
|
int randomInt(int minVal, int maxVal) |
|
{ |
|
RNG& rng = TS::ptr()->get_rng(); |
|
return rng.uniform(minVal, maxVal); |
|
} |
|
|
|
double randomDouble(double minVal, double maxVal) |
|
{ |
|
RNG& rng = TS::ptr()->get_rng(); |
|
return rng.uniform(minVal, maxVal); |
|
} |
|
|
|
Size randomSize(int minVal, int maxVal) |
|
{ |
|
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); |
|
} |
|
|
|
Scalar randomScalar(double minVal, double maxVal) |
|
{ |
|
return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal)); |
|
} |
|
|
|
Mat randomMat(Size size, int type, double minVal, double maxVal) |
|
{ |
|
return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// GpuMat create |
|
|
|
cv::gpu::GpuMat createMat(cv::Size size, int type, bool useRoi) |
|
{ |
|
Size size0 = size; |
|
|
|
if (useRoi) |
|
{ |
|
size0.width += randomInt(5, 15); |
|
size0.height += randomInt(5, 15); |
|
} |
|
|
|
GpuMat d_m(size0, type); |
|
|
|
if (size0 != size) |
|
d_m = d_m(Rect((size0.width - size.width) / 2, (size0.height - size.height) / 2, size.width, size.height)); |
|
|
|
return d_m; |
|
} |
|
|
|
GpuMat loadMat(const Mat& m, bool useRoi) |
|
{ |
|
GpuMat d_m = createMat(m.size(), m.type(), useRoi); |
|
d_m.upload(m); |
|
return d_m; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Image load |
|
|
|
Mat readImage(const std::string& fileName, int flags) |
|
{ |
|
return imread(TS::ptr()->get_data_path() + fileName, flags); |
|
} |
|
|
|
Mat readImageType(const std::string& fname, int type) |
|
{ |
|
Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR); |
|
if (CV_MAT_CN(type) == 4) |
|
{ |
|
Mat temp; |
|
cvtColor(src, temp, cv::COLOR_BGR2BGRA); |
|
swap(src, temp); |
|
} |
|
src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0); |
|
return src; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Image dumping |
|
|
|
void dumpImage(const std::string& fileName, const cv::Mat& image) |
|
{ |
|
cv::imwrite(TS::ptr()->get_data_path() + fileName, image); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Gpu devices |
|
|
|
bool supportFeature(const DeviceInfo& info, FeatureSet feature) |
|
{ |
|
return TargetArchs::builtWith(feature) && info.supports(feature); |
|
} |
|
|
|
DeviceManager& DeviceManager::instance() |
|
{ |
|
static DeviceManager obj; |
|
return obj; |
|
} |
|
|
|
void DeviceManager::load(int i) |
|
{ |
|
devices_.clear(); |
|
devices_.reserve(1); |
|
|
|
ostringstream msg; |
|
|
|
if (i < 0 || i >= getCudaEnabledDeviceCount()) |
|
{ |
|
msg << "Incorrect device number - " << i; |
|
throw runtime_error(msg.str()); |
|
} |
|
|
|
DeviceInfo info(i); |
|
|
|
if (!info.isCompatible()) |
|
{ |
|
msg << "Device " << i << " [" << info.name() << "] is NOT compatible with current GPU module build"; |
|
throw runtime_error(msg.str()); |
|
} |
|
|
|
devices_.push_back(info); |
|
} |
|
|
|
void DeviceManager::loadAll() |
|
{ |
|
int deviceCount = getCudaEnabledDeviceCount(); |
|
|
|
devices_.clear(); |
|
devices_.reserve(deviceCount); |
|
|
|
for (int i = 0; i < deviceCount; ++i) |
|
{ |
|
DeviceInfo info(i); |
|
if (info.isCompatible()) |
|
{ |
|
devices_.push_back(info); |
|
} |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Additional assertion |
|
|
|
Mat getMat(InputArray arr) |
|
{ |
|
if (arr.kind() == _InputArray::GPU_MAT) |
|
{ |
|
Mat m; |
|
arr.getGpuMat().download(m); |
|
return m; |
|
} |
|
|
|
return arr.getMat(); |
|
} |
|
|
|
double checkNorm(InputArray m1, InputArray m2) |
|
{ |
|
return norm(getMat(m1), getMat(m2), NORM_INF); |
|
} |
|
|
|
void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask) |
|
{ |
|
if (src.depth() != CV_8S) |
|
{ |
|
minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask); |
|
return; |
|
} |
|
|
|
// OpenCV's minMaxLoc doesn't support CV_8S type |
|
double minVal = numeric_limits<double>::max(); |
|
Point minLoc(-1, -1); |
|
|
|
double maxVal = -numeric_limits<double>::max(); |
|
Point maxLoc(-1, -1); |
|
|
|
for (int y = 0; y < src.rows; ++y) |
|
{ |
|
const schar* src_row = src.ptr<signed char>(y); |
|
const uchar* mask_row = mask.empty() ? 0 : mask.ptr<unsigned char>(y); |
|
|
|
for (int x = 0; x < src.cols; ++x) |
|
{ |
|
if (!mask_row || mask_row[x]) |
|
{ |
|
schar val = src_row[x]; |
|
|
|
if (val < minVal) |
|
{ |
|
minVal = val; |
|
minLoc = cv::Point(x, y); |
|
} |
|
|
|
if (val > maxVal) |
|
{ |
|
maxVal = val; |
|
maxLoc = cv::Point(x, y); |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (minVal_) *minVal_ = minVal; |
|
if (maxVal_) *maxVal_ = maxVal; |
|
|
|
if (minLoc_) *minLoc_ = minLoc; |
|
if (maxLoc_) *maxLoc_ = maxLoc; |
|
} |
|
|
|
namespace |
|
{ |
|
template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p) |
|
{ |
|
const int cn = m.channels(); |
|
|
|
ostringstream ostr; |
|
ostr << "("; |
|
|
|
p.x /= cn; |
|
|
|
ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn)); |
|
for (int c = 1; c < m.channels(); ++c) |
|
{ |
|
ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c)); |
|
} |
|
ostr << ")"; |
|
|
|
return ostr.str(); |
|
} |
|
|
|
std::string printMatVal(const Mat& m, Point p) |
|
{ |
|
typedef std::string (*func_t)(const Mat& m, Point p); |
|
|
|
static const func_t funcs[] = |
|
{ |
|
printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>, |
|
printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double> |
|
}; |
|
|
|
return funcs[m.depth()](m, p); |
|
} |
|
} |
|
|
|
testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1_, cv::InputArray m2_, double eps) |
|
{ |
|
Mat m1 = getMat(m1_); |
|
Mat m2 = getMat(m2_); |
|
|
|
if (m1.size() != m2.size()) |
|
{ |
|
return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different sizes : \"" |
|
<< expr1 << "\" [" << PrintToString(m1.size()) << "] vs \"" |
|
<< expr2 << "\" [" << PrintToString(m2.size()) << "]"; |
|
} |
|
|
|
if (m1.type() != m2.type()) |
|
{ |
|
return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different types : \"" |
|
<< expr1 << "\" [" << PrintToString(MatType(m1.type())) << "] vs \"" |
|
<< expr2 << "\" [" << PrintToString(MatType(m2.type())) << "]"; |
|
} |
|
|
|
Mat diff; |
|
absdiff(m1.reshape(1), m2.reshape(1), diff); |
|
|
|
double maxVal = 0.0; |
|
Point maxLoc; |
|
minMaxLocGold(diff, 0, &maxVal, 0, &maxLoc); |
|
|
|
if (maxVal > eps) |
|
{ |
|
return AssertionFailure() << "The max difference between matrices \"" << expr1 << "\" and \"" << expr2 |
|
<< "\" is " << maxVal << " at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ")" |
|
<< ", which exceeds \"" << eps_expr << "\", where \"" |
|
<< expr1 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m1, maxLoc) << ", \"" |
|
<< expr2 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m2, maxLoc) << ", \"" |
|
<< eps_expr << "\" evaluates to " << eps; |
|
} |
|
|
|
return AssertionSuccess(); |
|
} |
|
|
|
double checkSimilarity(InputArray m1, InputArray m2) |
|
{ |
|
Mat diff; |
|
matchTemplate(getMat(m1), getMat(m2), diff, CV_TM_CCORR_NORMED); |
|
return std::abs(diff.at<float>(0, 0) - 1.f); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////// |
|
// Helper structs for value-parameterized tests |
|
|
|
vector<MatDepth> depths(int depth_start, int depth_end) |
|
{ |
|
vector<MatDepth> v; |
|
|
|
v.reserve((depth_end - depth_start + 1)); |
|
|
|
for (int depth = depth_start; depth <= depth_end; ++depth) |
|
v.push_back(depth); |
|
|
|
return v; |
|
} |
|
|
|
vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end) |
|
{ |
|
vector<MatType> v; |
|
|
|
v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1)); |
|
|
|
for (int depth = depth_start; depth <= depth_end; ++depth) |
|
{ |
|
for (int cn = cn_start; cn <= cn_end; ++cn) |
|
{ |
|
v.push_back(CV_MAKETYPE(depth, cn)); |
|
} |
|
} |
|
|
|
return v; |
|
} |
|
|
|
const vector<MatType>& all_types() |
|
{ |
|
static vector<MatType> v = types(CV_8U, CV_64F, 1, 4); |
|
|
|
return v; |
|
} |
|
|
|
void cv::gpu::PrintTo(const DeviceInfo& info, ostream* os) |
|
{ |
|
(*os) << info.name(); |
|
} |
|
|
|
void PrintTo(const UseRoi& useRoi, std::ostream* os) |
|
{ |
|
if (useRoi) |
|
(*os) << "sub matrix"; |
|
else |
|
(*os) << "whole matrix"; |
|
} |
|
|
|
void PrintTo(const Inverse& inverse, std::ostream* os) |
|
{ |
|
if (inverse) |
|
(*os) << "inverse"; |
|
else |
|
(*os) << "direct"; |
|
} |
|
|
|
void showDiff(InputArray gold_, InputArray actual_, double eps) |
|
{ |
|
Mat gold = getMat(gold_); |
|
Mat actual = getMat(actual_); |
|
|
|
Mat diff; |
|
absdiff(gold, actual, diff); |
|
threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY); |
|
|
|
namedWindow("gold", WINDOW_NORMAL); |
|
namedWindow("actual", WINDOW_NORMAL); |
|
namedWindow("diff", WINDOW_NORMAL); |
|
|
|
imshow("gold", gold); |
|
imshow("actual", actual); |
|
imshow("diff", diff); |
|
|
|
waitKey(); |
|
} |
|
|
|
#endif // HAVE_CUDA
|
|
|