mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
265 lines
9.1 KiB
265 lines
9.1 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include <test_precomp.hpp> |
|
#include <time.h> |
|
|
|
#ifdef HAVE_CUDA |
|
using cv::gpu::GpuMat; |
|
|
|
// show detection results on input image with cv::imshow |
|
#define SHOW_DETECTIONS |
|
|
|
#if defined SHOW_DETECTIONS |
|
# define SHOW(res) \ |
|
cv::imshow(#res, result);\ |
|
cv::waitKey(0); |
|
#else |
|
# define SHOW(res) |
|
#endif |
|
|
|
#define GPU_TEST_P(fixture, name, params) \ |
|
class fixture##_##name : public fixture { \ |
|
public: \ |
|
fixture##_##name() {} \ |
|
protected: \ |
|
virtual void body(); \ |
|
}; \ |
|
TEST_P(fixture##_##name, name /*none*/){ body();} \ |
|
INSTANTIATE_TEST_CASE_P(/*none*/, fixture##_##name, params); \ |
|
void fixture##_##name::body() |
|
|
|
|
|
typedef std::tr1::tuple<std::string, std::string, int> roi_fixture_t; |
|
|
|
struct SoftCascadeTest : public ::testing::TestWithParam<roi_fixture_t> |
|
{ |
|
typedef cv::gpu::SoftCascade::Detection detection_t; |
|
static cv::Rect getFromTable(int idx) |
|
{ |
|
static const cv::Rect rois[] = |
|
{ |
|
cv::Rect( 65, 20, 35, 80), |
|
cv::Rect( 95, 35, 45, 40), |
|
cv::Rect( 45, 35, 45, 40), |
|
cv::Rect( 25, 27, 50, 45), |
|
cv::Rect(100, 50, 45, 40), |
|
|
|
cv::Rect( 60, 30, 45, 40), |
|
cv::Rect( 40, 55, 50, 40), |
|
cv::Rect( 48, 37, 72, 80), |
|
cv::Rect( 48, 32, 85, 58), |
|
cv::Rect( 48, 0, 32, 27) |
|
}; |
|
|
|
return rois[idx]; |
|
} |
|
|
|
static std::string itoa(long i) |
|
{ |
|
static char s[65]; |
|
sprintf(s, "%ld", i); |
|
return std::string(s); |
|
} |
|
|
|
static std::string getImageName(int level) |
|
{ |
|
time_t rawtime; |
|
struct tm * timeinfo; |
|
char buffer [80]; |
|
|
|
time ( &rawtime ); |
|
timeinfo = localtime ( &rawtime ); |
|
|
|
strftime (buffer,80,"%Y-%m-%d--%H-%M-%S",timeinfo); |
|
return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png"; |
|
} |
|
|
|
static void print(std::ostream &out, const detection_t& d) |
|
{ |
|
out << "\x1b[32m[ detection]\x1b[0m (" |
|
<< std::setw(4) << d.x |
|
<< " " |
|
<< std::setw(4) << d.y |
|
<< ") (" |
|
<< std::setw(4) << d.w |
|
<< " " |
|
<< std::setw(4) << d.h |
|
<< ") " |
|
<< std::setw(12) << d.confidence |
|
<< std::endl; |
|
} |
|
|
|
static void printTotal(std::ostream &out, int detbytes) |
|
{ |
|
out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(detection_t)) << std::endl; |
|
} |
|
|
|
static void writeResult(const cv::Mat& result, const int level) |
|
{ |
|
std::string path = cv::tempfile(getImageName(level).c_str()); |
|
cv::imwrite(path, result); |
|
std::cout << "\x1b[32m" << "[ ]" << std::endl << "[ stored in]"<< "\x1b[0m" << path << std::endl; |
|
} |
|
}; |
|
|
|
GPU_TEST_P(SoftCascadeTest, detectInROI, |
|
testing::Combine( |
|
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
|
testing::Range(0, 5))) |
|
{ |
|
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(1)); |
|
ASSERT_FALSE(coloredCpu.empty()); |
|
|
|
cv::gpu::SoftCascade cascade; |
|
ASSERT_TRUE(cascade.load(cvtest::TS::ptr()->get_data_path() + GET_PARAM(0))); |
|
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 16384, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois; |
|
rois.setTo(0); |
|
|
|
int nroi = GET_PARAM(2); |
|
cv::Mat result(coloredCpu); |
|
cv::RNG rng; |
|
for (int i = 0; i < nroi; ++i) |
|
{ |
|
cv::Rect r = getFromTable(rng(10)); |
|
GpuMat sub(rois, r); |
|
sub.setTo(1); |
|
r.x *= 4; r.y *= 4; r.width *= 4; r.height *= 4; |
|
cv::rectangle(result, r, cv::Scalar(0, 0, 255, 255), 1); |
|
} |
|
|
|
cv::gpu::transpose(rois, trois); |
|
|
|
cascade.detectMultiScale(colored, trois, objectBoxes); |
|
|
|
/// |
|
cv::Mat dt(objectBoxes); |
|
typedef cv::gpu::SoftCascade::Detection detection_t; |
|
|
|
detection_t* dts = (detection_t*)dt.data; |
|
|
|
printTotal(std::cout, dt.cols); |
|
for (int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i) |
|
{ |
|
detection_t d = dts[i]; |
|
print(std::cout, d); |
|
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1); |
|
} |
|
|
|
SHOW(result); |
|
} |
|
|
|
GPU_TEST_P(SoftCascadeTest, detectInLevel, |
|
testing::Combine( |
|
testing::Values(std::string("../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
|
testing::Range(0, 47) |
|
)) |
|
{ |
|
std::string xml = cvtest::TS::ptr()->get_data_path() + GET_PARAM(0); |
|
cv::gpu::SoftCascade cascade; |
|
ASSERT_TRUE(cascade.load(xml)); |
|
|
|
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(1)); |
|
ASSERT_FALSE(coloredCpu.empty()); |
|
|
|
typedef cv::gpu::SoftCascade::Detection detection_t; |
|
GpuMat colored(coloredCpu), objectBoxes(1, 100 * sizeof(detection_t), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); |
|
rois.setTo(1); |
|
|
|
cv::gpu::GpuMat trois; |
|
cv::gpu::transpose(rois, trois); |
|
|
|
int level = GET_PARAM(2); |
|
cascade.detectMultiScale(colored, trois, objectBoxes, 1, level); |
|
|
|
cv::Mat dt(objectBoxes); |
|
|
|
detection_t* dts = (detection_t*)dt.data; |
|
cv::Mat result(coloredCpu); |
|
|
|
printTotal(std::cout, dt.cols); |
|
for (int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i) |
|
{ |
|
detection_t d = dts[i]; |
|
print(std::cout, d); |
|
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1); |
|
} |
|
|
|
writeResult(result, level); |
|
SHOW(result); |
|
} |
|
|
|
TEST(SoftCascadeTest, readCascade) |
|
{ |
|
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml"; |
|
cv::gpu::SoftCascade cascade; |
|
ASSERT_TRUE(cascade.load(xml)); |
|
} |
|
|
|
TEST(SoftCascadeTest, detect) |
|
{ |
|
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml"; |
|
cv::gpu::SoftCascade cascade; |
|
ASSERT_TRUE(cascade.load(xml)); |
|
|
|
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() |
|
+ "../cv/cascadeandhog/bahnhof/image_00000000_0.png"); |
|
ASSERT_FALSE(coloredCpu.empty()); |
|
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 100000, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); |
|
rois.setTo(0); |
|
GpuMat sub(rois, cv::Rect(rois.cols / 4, rois.rows / 4,rois.cols / 2, rois.rows / 2)); |
|
sub.setTo(cv::Scalar::all(1)); |
|
|
|
cv::gpu::GpuMat trois; |
|
cv::gpu::transpose(rois, trois); |
|
|
|
cascade.detectMultiScale(colored, trois, objectBoxes); |
|
|
|
typedef cv::gpu::SoftCascade::Detection Detection; |
|
cv::Mat detections(objectBoxes); |
|
ASSERT_EQ(detections.cols / sizeof(Detection) ,3670U); |
|
} |
|
#endif |