mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
256 lines
9.7 KiB
256 lines
9.7 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv { |
|
namespace detail { |
|
|
|
Ptr<ExposureCompensator> ExposureCompensator::createDefault(int type) |
|
{ |
|
if (type == NO) |
|
return makePtr<NoExposureCompensator>(); |
|
if (type == GAIN) |
|
return makePtr<GainCompensator>(); |
|
if (type == GAIN_BLOCKS) |
|
return makePtr<BlocksGainCompensator>(); |
|
CV_Error(Error::StsBadArg, "unsupported exposure compensation method"); |
|
return Ptr<ExposureCompensator>(); |
|
} |
|
|
|
|
|
void ExposureCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images, |
|
const std::vector<UMat> &masks) |
|
{ |
|
std::vector<std::pair<UMat,uchar> > level_masks; |
|
for (size_t i = 0; i < masks.size(); ++i) |
|
level_masks.push_back(std::make_pair(masks[i], 255)); |
|
feed(corners, images, level_masks); |
|
} |
|
|
|
|
|
void GainCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images, |
|
const std::vector<std::pair<UMat,uchar> > &masks) |
|
{ |
|
LOGLN("Exposure compensation..."); |
|
#if ENABLE_LOG |
|
int64 t = getTickCount(); |
|
#endif |
|
|
|
CV_Assert(corners.size() == images.size() && images.size() == masks.size()); |
|
|
|
const int num_images = static_cast<int>(images.size()); |
|
Mat_<int> N(num_images, num_images); N.setTo(0); |
|
Mat_<double> I(num_images, num_images); I.setTo(0); |
|
|
|
//Rect dst_roi = resultRoi(corners, images); |
|
Mat subimg1, subimg2; |
|
Mat_<uchar> submask1, submask2, intersect; |
|
|
|
for (int i = 0; i < num_images; ++i) |
|
{ |
|
for (int j = i; j < num_images; ++j) |
|
{ |
|
Rect roi; |
|
if (overlapRoi(corners[i], corners[j], images[i].size(), images[j].size(), roi)) |
|
{ |
|
subimg1 = images[i](Rect(roi.tl() - corners[i], roi.br() - corners[i])).getMat(ACCESS_READ); |
|
subimg2 = images[j](Rect(roi.tl() - corners[j], roi.br() - corners[j])).getMat(ACCESS_READ); |
|
|
|
submask1 = masks[i].first(Rect(roi.tl() - corners[i], roi.br() - corners[i])).getMat(ACCESS_READ); |
|
submask2 = masks[j].first(Rect(roi.tl() - corners[j], roi.br() - corners[j])).getMat(ACCESS_READ); |
|
intersect = (submask1 == masks[i].second) & (submask2 == masks[j].second); |
|
|
|
N(i, j) = N(j, i) = std::max(1, countNonZero(intersect)); |
|
|
|
double Isum1 = 0, Isum2 = 0; |
|
for (int y = 0; y < roi.height; ++y) |
|
{ |
|
const Point3_<uchar>* r1 = subimg1.ptr<Point3_<uchar> >(y); |
|
const Point3_<uchar>* r2 = subimg2.ptr<Point3_<uchar> >(y); |
|
for (int x = 0; x < roi.width; ++x) |
|
{ |
|
if (intersect(y, x)) |
|
{ |
|
Isum1 += std::sqrt(static_cast<double>(sqr(r1[x].x) + sqr(r1[x].y) + sqr(r1[x].z))); |
|
Isum2 += std::sqrt(static_cast<double>(sqr(r2[x].x) + sqr(r2[x].y) + sqr(r2[x].z))); |
|
} |
|
} |
|
} |
|
I(i, j) = Isum1 / N(i, j); |
|
I(j, i) = Isum2 / N(i, j); |
|
} |
|
} |
|
} |
|
|
|
double alpha = 0.01; |
|
double beta = 100; |
|
|
|
Mat_<double> A(num_images, num_images); A.setTo(0); |
|
Mat_<double> b(num_images, 1); b.setTo(0); |
|
for (int i = 0; i < num_images; ++i) |
|
{ |
|
for (int j = 0; j < num_images; ++j) |
|
{ |
|
b(i, 0) += beta * N(i, j); |
|
A(i, i) += beta * N(i, j); |
|
if (j == i) continue; |
|
A(i, i) += 2 * alpha * I(i, j) * I(i, j) * N(i, j); |
|
A(i, j) -= 2 * alpha * I(i, j) * I(j, i) * N(i, j); |
|
} |
|
} |
|
|
|
solve(A, b, gains_); |
|
|
|
LOGLN("Exposure compensation, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
} |
|
|
|
|
|
void GainCompensator::apply(int index, Point /*corner*/, InputOutputArray image, InputArray /*mask*/) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
multiply(image, gains_(index, 0), image); |
|
} |
|
|
|
|
|
std::vector<double> GainCompensator::gains() const |
|
{ |
|
std::vector<double> gains_vec(gains_.rows); |
|
for (int i = 0; i < gains_.rows; ++i) |
|
gains_vec[i] = gains_(i, 0); |
|
return gains_vec; |
|
} |
|
|
|
|
|
void BlocksGainCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images, |
|
const std::vector<std::pair<UMat,uchar> > &masks) |
|
{ |
|
CV_Assert(corners.size() == images.size() && images.size() == masks.size()); |
|
|
|
const int num_images = static_cast<int>(images.size()); |
|
|
|
std::vector<Size> bl_per_imgs(num_images); |
|
std::vector<Point> block_corners; |
|
std::vector<UMat> block_images; |
|
std::vector<std::pair<UMat,uchar> > block_masks; |
|
|
|
// Construct blocks for gain compensator |
|
for (int img_idx = 0; img_idx < num_images; ++img_idx) |
|
{ |
|
Size bl_per_img((images[img_idx].cols + bl_width_ - 1) / bl_width_, |
|
(images[img_idx].rows + bl_height_ - 1) / bl_height_); |
|
int bl_width = (images[img_idx].cols + bl_per_img.width - 1) / bl_per_img.width; |
|
int bl_height = (images[img_idx].rows + bl_per_img.height - 1) / bl_per_img.height; |
|
bl_per_imgs[img_idx] = bl_per_img; |
|
for (int by = 0; by < bl_per_img.height; ++by) |
|
{ |
|
for (int bx = 0; bx < bl_per_img.width; ++bx) |
|
{ |
|
Point bl_tl(bx * bl_width, by * bl_height); |
|
Point bl_br(std::min(bl_tl.x + bl_width, images[img_idx].cols), |
|
std::min(bl_tl.y + bl_height, images[img_idx].rows)); |
|
|
|
block_corners.push_back(corners[img_idx] + bl_tl); |
|
block_images.push_back(images[img_idx](Rect(bl_tl, bl_br))); |
|
block_masks.push_back(std::make_pair(masks[img_idx].first(Rect(bl_tl, bl_br)), |
|
masks[img_idx].second)); |
|
} |
|
} |
|
} |
|
|
|
GainCompensator compensator; |
|
compensator.feed(block_corners, block_images, block_masks); |
|
std::vector<double> gains = compensator.gains(); |
|
gain_maps_.resize(num_images); |
|
|
|
Mat_<float> ker(1, 3); |
|
ker(0,0) = 0.25; ker(0,1) = 0.5; ker(0,2) = 0.25; |
|
|
|
int bl_idx = 0; |
|
for (int img_idx = 0; img_idx < num_images; ++img_idx) |
|
{ |
|
Size bl_per_img = bl_per_imgs[img_idx]; |
|
gain_maps_[img_idx].create(bl_per_img, CV_32F); |
|
|
|
{ |
|
Mat_<float> gain_map = gain_maps_[img_idx].getMat(ACCESS_WRITE); |
|
for (int by = 0; by < bl_per_img.height; ++by) |
|
for (int bx = 0; bx < bl_per_img.width; ++bx, ++bl_idx) |
|
gain_map(by, bx) = static_cast<float>(gains[bl_idx]); |
|
} |
|
|
|
sepFilter2D(gain_maps_[img_idx], gain_maps_[img_idx], CV_32F, ker, ker); |
|
sepFilter2D(gain_maps_[img_idx], gain_maps_[img_idx], CV_32F, ker, ker); |
|
} |
|
} |
|
|
|
|
|
void BlocksGainCompensator::apply(int index, Point /*corner*/, InputOutputArray _image, InputArray /*mask*/) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_Assert(_image.type() == CV_8UC3); |
|
|
|
UMat u_gain_map; |
|
if (gain_maps_[index].size() == _image.size()) |
|
u_gain_map = gain_maps_[index]; |
|
else |
|
resize(gain_maps_[index], u_gain_map, _image.size(), 0, 0, INTER_LINEAR); |
|
|
|
Mat_<float> gain_map = u_gain_map.getMat(ACCESS_READ); |
|
Mat image = _image.getMat(); |
|
for (int y = 0; y < image.rows; ++y) |
|
{ |
|
const float* gain_row = gain_map.ptr<float>(y); |
|
Point3_<uchar>* row = image.ptr<Point3_<uchar> >(y); |
|
for (int x = 0; x < image.cols; ++x) |
|
{ |
|
row[x].x = saturate_cast<uchar>(row[x].x * gain_row[x]); |
|
row[x].y = saturate_cast<uchar>(row[x].y * gain_row[x]); |
|
row[x].z = saturate_cast<uchar>(row[x].z * gain_row[x]); |
|
} |
|
} |
|
} |
|
|
|
} // namespace detail |
|
} // namespace cv
|
|
|