mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
591 lines
18 KiB
591 lines
18 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "precomp.hpp" |
|
|
|
|
|
CV_IMPL CvRect |
|
cvMaxRect( const CvRect* rect1, const CvRect* rect2 ) |
|
{ |
|
if( rect1 && rect2 ) |
|
{ |
|
CvRect max_rect; |
|
int a, b; |
|
|
|
max_rect.x = a = rect1->x; |
|
b = rect2->x; |
|
if( max_rect.x > b ) |
|
max_rect.x = b; |
|
|
|
max_rect.width = a += rect1->width; |
|
b += rect2->width; |
|
|
|
if( max_rect.width < b ) |
|
max_rect.width = b; |
|
max_rect.width -= max_rect.x; |
|
|
|
max_rect.y = a = rect1->y; |
|
b = rect2->y; |
|
if( max_rect.y > b ) |
|
max_rect.y = b; |
|
|
|
max_rect.height = a += rect1->height; |
|
b += rect2->height; |
|
|
|
if( max_rect.height < b ) |
|
max_rect.height = b; |
|
max_rect.height -= max_rect.y; |
|
return max_rect; |
|
} |
|
else if( rect1 ) |
|
return *rect1; |
|
else if( rect2 ) |
|
return *rect2; |
|
else |
|
return cvRect(0,0,0,0); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] ) |
|
{ |
|
if( !pt ) |
|
CV_Error( CV_StsNullPtr, "NULL vertex array pointer" ); |
|
cv::RotatedRect(box).points((cv::Point2f*)pt); |
|
} |
|
|
|
|
|
double cv::pointPolygonTest( InputArray _contour, Point2f pt, bool measureDist ) |
|
{ |
|
double result = 0; |
|
Mat contour = _contour.getMat(); |
|
int i, total = contour.checkVector(2), counter = 0; |
|
int depth = contour.depth(); |
|
CV_Assert( total >= 0 && (depth == CV_32S || depth == CV_32F)); |
|
|
|
bool is_float = depth == CV_32F; |
|
double min_dist_num = FLT_MAX, min_dist_denom = 1; |
|
Point ip(cvRound(pt.x), cvRound(pt.y)); |
|
|
|
if( total == 0 ) |
|
return measureDist ? -DBL_MAX : -1; |
|
|
|
const Point* cnt = (const Point*)contour.data; |
|
const Point2f* cntf = (const Point2f*)cnt; |
|
|
|
if( !is_float && !measureDist && ip.x == pt.x && ip.y == pt.y ) |
|
{ |
|
// the fastest "purely integer" branch |
|
Point v0, v = cnt[total-1]; |
|
|
|
for( i = 0; i < total; i++ ) |
|
{ |
|
int dist; |
|
v0 = v; |
|
v = cnt[i]; |
|
|
|
if( (v0.y <= ip.y && v.y <= ip.y) || |
|
(v0.y > ip.y && v.y > ip.y) || |
|
(v0.x < ip.x && v.x < ip.x) ) |
|
{ |
|
if( ip.y == v.y && (ip.x == v.x || (ip.y == v0.y && |
|
((v0.x <= ip.x && ip.x <= v.x) || (v.x <= ip.x && ip.x <= v0.x)))) ) |
|
return 0; |
|
continue; |
|
} |
|
|
|
dist = (ip.y - v0.y)*(v.x - v0.x) - (ip.x - v0.x)*(v.y - v0.y); |
|
if( dist == 0 ) |
|
return 0; |
|
if( v.y < v0.y ) |
|
dist = -dist; |
|
counter += dist > 0; |
|
} |
|
|
|
result = counter % 2 == 0 ? -1 : 1; |
|
} |
|
else |
|
{ |
|
Point2f v0, v; |
|
Point iv; |
|
|
|
if( is_float ) |
|
{ |
|
v = cntf[total-1]; |
|
} |
|
else |
|
{ |
|
v = cnt[total-1]; |
|
} |
|
|
|
if( !measureDist ) |
|
{ |
|
for( i = 0; i < total; i++ ) |
|
{ |
|
double dist; |
|
v0 = v; |
|
if( is_float ) |
|
v = cntf[i]; |
|
else |
|
v = cnt[i]; |
|
|
|
if( (v0.y <= pt.y && v.y <= pt.y) || |
|
(v0.y > pt.y && v.y > pt.y) || |
|
(v0.x < pt.x && v.x < pt.x) ) |
|
{ |
|
if( pt.y == v.y && (pt.x == v.x || (pt.y == v0.y && |
|
((v0.x <= pt.x && pt.x <= v.x) || (v.x <= pt.x && pt.x <= v0.x)))) ) |
|
return 0; |
|
continue; |
|
} |
|
|
|
dist = (double)(pt.y - v0.y)*(v.x - v0.x) - (double)(pt.x - v0.x)*(v.y - v0.y); |
|
if( dist == 0 ) |
|
return 0; |
|
if( v.y < v0.y ) |
|
dist = -dist; |
|
counter += dist > 0; |
|
} |
|
|
|
result = counter % 2 == 0 ? -1 : 1; |
|
} |
|
else |
|
{ |
|
for( i = 0; i < total; i++ ) |
|
{ |
|
double dx, dy, dx1, dy1, dx2, dy2, dist_num, dist_denom = 1; |
|
|
|
v0 = v; |
|
if( is_float ) |
|
v = cntf[i]; |
|
else |
|
v = cnt[i]; |
|
|
|
dx = v.x - v0.x; dy = v.y - v0.y; |
|
dx1 = pt.x - v0.x; dy1 = pt.y - v0.y; |
|
dx2 = pt.x - v.x; dy2 = pt.y - v.y; |
|
|
|
if( dx1*dx + dy1*dy <= 0 ) |
|
dist_num = dx1*dx1 + dy1*dy1; |
|
else if( dx2*dx + dy2*dy >= 0 ) |
|
dist_num = dx2*dx2 + dy2*dy2; |
|
else |
|
{ |
|
dist_num = (dy1*dx - dx1*dy); |
|
dist_num *= dist_num; |
|
dist_denom = dx*dx + dy*dy; |
|
} |
|
|
|
if( dist_num*min_dist_denom < min_dist_num*dist_denom ) |
|
{ |
|
min_dist_num = dist_num; |
|
min_dist_denom = dist_denom; |
|
if( min_dist_num == 0 ) |
|
break; |
|
} |
|
|
|
if( (v0.y <= pt.y && v.y <= pt.y) || |
|
(v0.y > pt.y && v.y > pt.y) || |
|
(v0.x < pt.x && v.x < pt.x) ) |
|
continue; |
|
|
|
dist_num = dy1*dx - dx1*dy; |
|
if( dy < 0 ) |
|
dist_num = -dist_num; |
|
counter += dist_num > 0; |
|
} |
|
|
|
result = std::sqrt(min_dist_num/min_dist_denom); |
|
if( counter % 2 == 0 ) |
|
result = -result; |
|
} |
|
} |
|
|
|
return result; |
|
} |
|
|
|
|
|
CV_IMPL double |
|
cvPointPolygonTest( const CvArr* _contour, CvPoint2D32f pt, int measure_dist ) |
|
{ |
|
cv::AutoBuffer<double> abuf; |
|
cv::Mat contour = cv::cvarrToMat(_contour, false, false, 0, &abuf); |
|
return cv::pointPolygonTest(contour, pt, measure_dist != 0); |
|
} |
|
|
|
/* |
|
This code is described in "Computational Geometry in C" (Second Edition), |
|
Chapter 7. It is not written to be comprehensible without the |
|
explanation in that book. |
|
|
|
Written by Joseph O'Rourke. |
|
Last modified: December 1997 |
|
Questions to orourke@cs.smith.edu. |
|
-------------------------------------------------------------------- |
|
This code is Copyright 1997 by Joseph O'Rourke. It may be freely |
|
redistributed in its entirety provided that this copyright notice is |
|
not removed. |
|
-------------------------------------------------------------------- |
|
*/ |
|
|
|
namespace cv |
|
{ |
|
typedef enum { Pin, Qin, Unknown } tInFlag; |
|
|
|
static int areaSign( Point2f a, Point2f b, Point2f c ) |
|
{ |
|
static const double eps = 1e-5; |
|
double area2 = (b.x - a.x) * (double)(c.y - a.y) - (c.x - a.x ) * (double)(b.y - a.y); |
|
return area2 > eps ? 1 : area2 < -eps ? -1 : 0; |
|
} |
|
|
|
//--------------------------------------------------------------------- |
|
// Returns true iff point c lies on the closed segement ab. |
|
// Assumes it is already known that abc are collinear. |
|
//--------------------------------------------------------------------- |
|
static bool between( Point2f a, Point2f b, Point2f c ) |
|
{ |
|
Point2f ba, ca; |
|
|
|
// If ab not vertical, check betweenness on x; else on y. |
|
if ( a.x != b.x ) |
|
return ((a.x <= c.x) && (c.x <= b.x)) || |
|
((a.x >= c.x) && (c.x >= b.x)); |
|
else |
|
return ((a.y <= c.y) && (c.y <= b.y)) || |
|
((a.y >= c.y) && (c.y >= b.y)); |
|
} |
|
|
|
static char parallelInt( Point2f a, Point2f b, Point2f c, Point2f d, Point2f& p, Point2f& q ) |
|
{ |
|
char code = 'e'; |
|
if( areaSign(a, b, c) != 0 ) |
|
code = '0'; |
|
else if( between(a, b, c) && between(a, b, d)) |
|
p = c, q = d; |
|
else if( between(c, d, a) && between(c, d, b)) |
|
p = a, q = b; |
|
else if( between(a, b, c) && between(c, d, b)) |
|
p = c, q = b; |
|
else if( between(a, b, c) && between(c, d, a)) |
|
p = c, q = a; |
|
else if( between(a, b, d) && between(c, d, b)) |
|
p = d, q = b; |
|
else if( between(a, b, d) && between(c, d, a)) |
|
p = d, q = a; |
|
else |
|
code = '0'; |
|
return code; |
|
} |
|
|
|
//--------------------------------------------------------------------- |
|
// segSegInt: Finds the point of intersection p between two closed |
|
// segments ab and cd. Returns p and a char with the following meaning: |
|
// 'e': The segments collinearly overlap, sharing a point. |
|
// 'v': An endpoint (vertex) of one segment is on the other segment, |
|
// but 'e' doesn't hold. |
|
// '1': The segments intersect properly (i.e., they share a point and |
|
// neither 'v' nor 'e' holds). |
|
// '0': The segments do not intersect (i.e., they share no points). |
|
// Note that two collinear segments that share just one point, an endpoint |
|
// of each, returns 'e' rather than 'v' as one might expect. |
|
//--------------------------------------------------------------------- |
|
static char segSegInt( Point2f a, Point2f b, Point2f c, Point2f d, Point2f& p, Point2f& q ) |
|
{ |
|
double s, t; // The two parameters of the parametric eqns. |
|
double num, denom; // Numerator and denoninator of equations. |
|
char code = '?'; // Return char characterizing intersection. |
|
|
|
denom = a.x * (double)( d.y - c.y ) + |
|
b.x * (double)( c.y - d.y ) + |
|
d.x * (double)( b.y - a.y ) + |
|
c.x * (double)( a.y - b.y ); |
|
|
|
// If denom is zero, then segments are parallel: handle separately. |
|
if (denom == 0.0) |
|
return parallelInt(a, b, c, d, p, q); |
|
|
|
num = a.x * (double)( d.y - c.y ) + |
|
c.x * (double)( a.y - d.y ) + |
|
d.x * (double)( c.y - a.y ); |
|
if ( (num == 0.0) || (num == denom) ) code = 'v'; |
|
s = num / denom; |
|
|
|
num = -( a.x * (double)( c.y - b.y ) + |
|
b.x * (double)( a.y - c.y ) + |
|
c.x * (double)( b.y - a.y ) ); |
|
if ( (num == 0.0) || (num == denom) ) code = 'v'; |
|
t = num / denom; |
|
|
|
if ( (0.0 < s) && (s < 1.0) && |
|
(0.0 < t) && (t < 1.0) ) |
|
code = '1'; |
|
else if ( (0.0 > s) || (s > 1.0) || |
|
(0.0 > t) || (t > 1.0) ) |
|
code = '0'; |
|
|
|
p.x = (float)(a.x + s*(b.x - a.x)); |
|
p.y = (float)(a.y + s*(b.y - a.y)); |
|
|
|
return code; |
|
} |
|
|
|
static tInFlag inOut( Point2f p, tInFlag inflag, int aHB, int bHA, Point2f*& result ) |
|
{ |
|
if( p != result[-1] ) |
|
*result++ = p; |
|
// Update inflag. |
|
return aHB > 0 ? Pin : bHA > 0 ? Qin : inflag; |
|
} |
|
|
|
//--------------------------------------------------------------------- |
|
// Advances and prints out an inside vertex if appropriate. |
|
//--------------------------------------------------------------------- |
|
static int advance( int a, int *aa, int n, bool inside, Point2f v, Point2f*& result ) |
|
{ |
|
if( inside && v != result[-1] ) |
|
*result++ = v; |
|
(*aa)++; |
|
return (a+1) % n; |
|
} |
|
|
|
static void addSharedSeg( Point2f p, Point2f q, Point2f*& result ) |
|
{ |
|
if( p != result[-1] ) |
|
*result++ = p; |
|
if( q != result[-1] ) |
|
*result++ = q; |
|
} |
|
|
|
|
|
static int intersectConvexConvex_( const Point2f* P, int n, const Point2f* Q, int m, |
|
Point2f* result, float* _area ) |
|
{ |
|
Point2f* result0 = result; |
|
// P has n vertices, Q has m vertices. |
|
int a=0, b=0; // indices on P and Q (resp.) |
|
Point2f Origin(0,0); |
|
tInFlag inflag=Unknown; // {Pin, Qin, Unknown}: which inside |
|
int aa=0, ba=0; // # advances on a & b indices (after 1st inter.) |
|
bool FirstPoint=true;// Is this the first point? (used to initialize). |
|
Point2f p0; // The first point. |
|
*result++ = Point2f(FLT_MAX, FLT_MAX); |
|
|
|
do |
|
{ |
|
// Computations of key variables. |
|
int a1 = (a + n - 1) % n; // a-1, b-1 (resp.) |
|
int b1 = (b + m - 1) % m; |
|
|
|
Point2f A = P[a] - P[a1], B = Q[b] - Q[b1]; // directed edges on P and Q (resp.) |
|
|
|
int cross = areaSign( Origin, A, B ); // sign of z-component of A x B |
|
int aHB = areaSign( Q[b1], Q[b], P[a] ); // a in H(b). |
|
int bHA = areaSign( P[a1], P[a], Q[b] ); // b in H(A); |
|
|
|
// If A & B intersect, update inflag. |
|
Point2f p, q; |
|
int code = segSegInt( P[a1], P[a], Q[b1], Q[b], p, q ); |
|
if( code == '1' || code == 'v' ) |
|
{ |
|
if( inflag == Unknown && FirstPoint ) |
|
{ |
|
aa = ba = 0; |
|
FirstPoint = false; |
|
p0 = p; |
|
*result++ = p; |
|
} |
|
inflag = inOut( p, inflag, aHB, bHA, result ); |
|
} |
|
|
|
//-----Advance rules----- |
|
|
|
// Special case: A & B overlap and oppositely oriented. |
|
if( code == 'e' && A.ddot(B) < 0 ) |
|
{ |
|
addSharedSeg( p, q, result ); |
|
return (int)(result - result0); |
|
} |
|
|
|
// Special case: A & B parallel and separated. |
|
if( cross == 0 && aHB < 0 && bHA < 0 ) |
|
return (int)(result - result0); |
|
|
|
// Special case: A & B collinear. |
|
else if ( cross == 0 && aHB == 0 && bHA == 0 ) { |
|
// Advance but do not output point. |
|
if ( inflag == Pin ) |
|
b = advance( b, &ba, m, inflag == Qin, Q[b], result ); |
|
else |
|
a = advance( a, &aa, n, inflag == Pin, P[a], result ); |
|
} |
|
|
|
// Generic cases. |
|
else if( cross >= 0 ) |
|
{ |
|
if( bHA > 0) |
|
a = advance( a, &aa, n, inflag == Pin, P[a], result ); |
|
else |
|
b = advance( b, &ba, m, inflag == Qin, Q[b], result ); |
|
} |
|
else |
|
{ |
|
if( aHB > 0) |
|
b = advance( b, &ba, m, inflag == Qin, Q[b], result ); |
|
else |
|
a = advance( a, &aa, n, inflag == Pin, P[a], result ); |
|
} |
|
// Quit when both adv. indices have cycled, or one has cycled twice. |
|
} |
|
while ( ((aa < n) || (ba < m)) && (aa < 2*n) && (ba < 2*m) ); |
|
|
|
// Deal with special cases: not implemented. |
|
if( inflag == Unknown ) |
|
{ |
|
// The boundaries of P and Q do not cross. |
|
// ... |
|
} |
|
|
|
int i, nr = (int)(result - result0); |
|
double area = 0; |
|
Point2f prev = result0[nr-1]; |
|
for( i = 1; i < nr; i++ ) |
|
{ |
|
result0[i-1] = result0[i]; |
|
area += (double)prev.x*result0[i].y - (double)prev.y*result0[i].x; |
|
prev = result0[i]; |
|
} |
|
|
|
*_area = (float)(area*0.5); |
|
|
|
if( result0[nr-2] == result0[0] && nr > 1 ) |
|
nr--; |
|
return nr-1; |
|
} |
|
|
|
} |
|
|
|
float cv::intersectConvexConvex( InputArray _p1, InputArray _p2, OutputArray _p12, bool handleNested ) |
|
{ |
|
Mat p1 = _p1.getMat(), p2 = _p2.getMat(); |
|
CV_Assert( p1.depth() == CV_32S || p1.depth() == CV_32F ); |
|
CV_Assert( p2.depth() == CV_32S || p2.depth() == CV_32F ); |
|
|
|
int n = p1.checkVector(2, p1.depth(), true); |
|
int m = p2.checkVector(2, p2.depth(), true); |
|
|
|
CV_Assert( n >= 0 && m >= 0 ); |
|
|
|
if( n < 2 || m < 2 ) |
|
{ |
|
_p12.release(); |
|
return 0.f; |
|
} |
|
|
|
AutoBuffer<Point2f> _result(n*2 + m*2 + 1); |
|
Point2f *fp1 = _result, *fp2 = fp1 + n; |
|
Point2f* result = fp2 + m; |
|
int orientation = 0; |
|
|
|
for( int k = 1; k <= 2; k++ ) |
|
{ |
|
Mat& p = k == 1 ? p1 : p2; |
|
int len = k == 1 ? n : m; |
|
Point2f* dst = k == 1 ? fp1 : fp2; |
|
|
|
Mat temp(p.size(), CV_MAKETYPE(CV_32F, p.channels()), dst); |
|
p.convertTo(temp, CV_32F); |
|
CV_Assert( temp.ptr<Point2f>() == dst ); |
|
Point2f diff0 = dst[0] - dst[len-1]; |
|
for( int i = 1; i < len; i++ ) |
|
{ |
|
double s = diff0.cross(dst[i] - dst[i-1]); |
|
if( s != 0 ) |
|
{ |
|
if( s < 0 ) |
|
{ |
|
orientation++; |
|
flip( temp, temp, temp.rows > 1 ? 0 : 1 ); |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
|
|
float area = 0.f; |
|
int nr = intersectConvexConvex_(fp1, n, fp2, m, result, &area); |
|
if( nr == 0 ) |
|
{ |
|
if( !handleNested ) |
|
{ |
|
_p12.release(); |
|
return 0.f; |
|
} |
|
|
|
if( pointPolygonTest(_InputArray(fp1, n), fp2[0], false) >= 0 ) |
|
{ |
|
result = fp2; |
|
nr = m; |
|
} |
|
else if( pointPolygonTest(_InputArray(fp2, n), fp1[0], false) >= 0 ) |
|
{ |
|
result = fp1; |
|
nr = n; |
|
} |
|
else |
|
{ |
|
_p12.release(); |
|
return 0.f; |
|
} |
|
area = (float)contourArea(_InputArray(result, nr), false); |
|
} |
|
|
|
if( _p12.needed() ) |
|
{ |
|
Mat temp(nr, 1, CV_32FC2, result); |
|
// if both input contours were reflected, |
|
// let's orient the result as the input vectors |
|
if( orientation == 2 ) |
|
flip(temp, temp, 0); |
|
|
|
temp.copyTo(_p12); |
|
} |
|
return (float)fabs(area); |
|
}
|
|
|