Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

534 lines
16 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "kdtree.hpp"
namespace cv
{
namespace ml
{
// This is reimplementation of kd-trees from cvkdtree*.* by Xavier Delacour, cleaned-up and
// adopted to work with the new OpenCV data structures.
// The algorithm is taken from:
// J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search
// in highdimensional spaces. In Proc. IEEE Conf. Comp. Vision Patt. Recog.,
// pages 1000--1006, 1997. http://citeseer.ist.psu.edu/beis97shape.html
const int MAX_TREE_DEPTH = 32;
KDTree::KDTree()
{
maxDepth = -1;
normType = NORM_L2;
}
KDTree::KDTree(InputArray _points, bool _copyData)
{
maxDepth = -1;
normType = NORM_L2;
build(_points, _copyData);
}
KDTree::KDTree(InputArray _points, InputArray _labels, bool _copyData)
{
maxDepth = -1;
normType = NORM_L2;
build(_points, _labels, _copyData);
}
struct SubTree
{
SubTree() : first(0), last(0), nodeIdx(0), depth(0) {}
SubTree(int _first, int _last, int _nodeIdx, int _depth)
: first(_first), last(_last), nodeIdx(_nodeIdx), depth(_depth) {}
int first;
int last;
int nodeIdx;
int depth;
};
static float
medianPartition( size_t* ofs, int a, int b, const float* vals )
{
int k, a0 = a, b0 = b;
int middle = (a + b)/2;
while( b > a )
{
int i0 = a, i1 = (a+b)/2, i2 = b;
float v0 = vals[ofs[i0]], v1 = vals[ofs[i1]], v2 = vals[ofs[i2]];
int ip = v0 < v1 ? (v1 < v2 ? i1 : v0 < v2 ? i2 : i0) :
v0 < v2 ? i0 : (v1 < v2 ? i2 : i1);
float pivot = vals[ofs[ip]];
std::swap(ofs[ip], ofs[i2]);
for( i1 = i0, i0--; i1 <= i2; i1++ )
if( vals[ofs[i1]] <= pivot )
{
i0++;
std::swap(ofs[i0], ofs[i1]);
}
if( i0 == middle )
break;
if( i0 > middle )
b = i0 - (b == i0);
else
a = i0;
}
float pivot = vals[ofs[middle]];
int less = 0, more = 0;
for( k = a0; k < middle; k++ )
{
CV_Assert(vals[ofs[k]] <= pivot);
less += vals[ofs[k]] < pivot;
}
for( k = b0; k > middle; k-- )
{
CV_Assert(vals[ofs[k]] >= pivot);
more += vals[ofs[k]] > pivot;
}
CV_Assert(std::abs(more - less) <= 1);
return vals[ofs[middle]];
}
static void
computeSums( const Mat& points, const size_t* ofs, int a, int b, double* sums )
{
int i, j, dims = points.cols;
const float* data = points.ptr<float>(0);
for( j = 0; j < dims; j++ )
sums[j*2] = sums[j*2+1] = 0;
for( i = a; i <= b; i++ )
{
const float* row = data + ofs[i];
for( j = 0; j < dims; j++ )
{
double t = row[j], s = sums[j*2] + t, s2 = sums[j*2+1] + t*t;
sums[j*2] = s; sums[j*2+1] = s2;
}
}
}
void KDTree::build(InputArray _points, bool _copyData)
{
build(_points, noArray(), _copyData);
}
void KDTree::build(InputArray __points, InputArray __labels, bool _copyData)
{
Mat _points = __points.getMat(), _labels = __labels.getMat();
CV_Assert(_points.type() == CV_32F && !_points.empty());
std::vector<KDTree::Node>().swap(nodes);
if( !_copyData )
points = _points;
else
{
points.release();
points.create(_points.size(), _points.type());
}
int i, j, n = _points.rows, ptdims = _points.cols, top = 0;
const float* data = _points.ptr<float>(0);
float* dstdata = points.ptr<float>(0);
size_t step = _points.step1();
size_t dstep = points.step1();
int ptpos = 0;
labels.resize(n);
const int* _labels_data = 0;
if( !_labels.empty() )
{
int nlabels = _labels.checkVector(1, CV_32S, true);
CV_Assert(nlabels == n);
_labels_data = _labels.ptr<int>();
}
Mat sumstack(MAX_TREE_DEPTH*2, ptdims*2, CV_64F);
SubTree stack[MAX_TREE_DEPTH*2];
std::vector<size_t> _ptofs(n);
size_t* ptofs = &_ptofs[0];
for( i = 0; i < n; i++ )
ptofs[i] = i*step;
nodes.push_back(Node());
computeSums(points, ptofs, 0, n-1, sumstack.ptr<double>(top));
stack[top++] = SubTree(0, n-1, 0, 0);
int _maxDepth = 0;
while( --top >= 0 )
{
int first = stack[top].first, last = stack[top].last;
int depth = stack[top].depth, nidx = stack[top].nodeIdx;
int count = last - first + 1, dim = -1;
const double* sums = sumstack.ptr<double>(top);
double invCount = 1./count, maxVar = -1.;
if( count == 1 )
{
int idx0 = (int)(ptofs[first]/step);
int idx = _copyData ? ptpos++ : idx0;
nodes[nidx].idx = ~idx;
if( _copyData )
{
const float* src = data + ptofs[first];
float* dst = dstdata + idx*dstep;
for( j = 0; j < ptdims; j++ )
dst[j] = src[j];
}
labels[idx] = _labels_data ? _labels_data[idx0] : idx0;
_maxDepth = std::max(_maxDepth, depth);
continue;
}
// find the dimensionality with the biggest variance
for( j = 0; j < ptdims; j++ )
{
double m = sums[j*2]*invCount;
double varj = sums[j*2+1]*invCount - m*m;
if( maxVar < varj )
{
maxVar = varj;
dim = j;
}
}
int left = (int)nodes.size(), right = left + 1;
nodes.push_back(Node());
nodes.push_back(Node());
nodes[nidx].idx = dim;
nodes[nidx].left = left;
nodes[nidx].right = right;
nodes[nidx].boundary = medianPartition(ptofs, first, last, data + dim);
int middle = (first + last)/2;
double *lsums = (double*)sums, *rsums = lsums + ptdims*2;
computeSums(points, ptofs, middle+1, last, rsums);
for( j = 0; j < ptdims*2; j++ )
lsums[j] = sums[j] - rsums[j];
stack[top++] = SubTree(first, middle, left, depth+1);
stack[top++] = SubTree(middle+1, last, right, depth+1);
}
maxDepth = _maxDepth;
}
struct PQueueElem
{
PQueueElem() : dist(0), idx(0) {}
PQueueElem(float _dist, int _idx) : dist(_dist), idx(_idx) {}
float dist;
int idx;
};
int KDTree::findNearest(InputArray _vec, int K, int emax,
OutputArray _neighborsIdx, OutputArray _neighbors,
OutputArray _dist, OutputArray _labels) const
{
Mat vecmat = _vec.getMat();
CV_Assert( vecmat.isContinuous() && vecmat.type() == CV_32F && vecmat.total() == (size_t)points.cols );
const float* vec = vecmat.ptr<float>();
K = std::min(K, points.rows);
int ptdims = points.cols;
CV_Assert(K > 0 && (normType == NORM_L2 || normType == NORM_L1));
AutoBuffer<uchar> _buf((K+1)*(sizeof(float) + sizeof(int)));
int* idx = (int*)(uchar*)_buf;
float* dist = (float*)(idx + K + 1);
int i, j, ncount = 0, e = 0;
int qsize = 0, maxqsize = 1 << 10;
AutoBuffer<uchar> _pqueue(maxqsize*sizeof(PQueueElem));
PQueueElem* pqueue = (PQueueElem*)(uchar*)_pqueue;
emax = std::max(emax, 1);
for( e = 0; e < emax; )
{
float d, alt_d = 0.f;
int nidx;
if( e == 0 )
nidx = 0;
else
{
// take the next node from the priority queue
if( qsize == 0 )
break;
nidx = pqueue[0].idx;
alt_d = pqueue[0].dist;
if( --qsize > 0 )
{
std::swap(pqueue[0], pqueue[qsize]);
d = pqueue[0].dist;
for( i = 0;;)
{
int left = i*2 + 1, right = i*2 + 2;
if( left >= qsize )
break;
if( right < qsize && pqueue[right].dist < pqueue[left].dist )
left = right;
if( pqueue[left].dist >= d )
break;
std::swap(pqueue[i], pqueue[left]);
i = left;
}
}
if( ncount == K && alt_d > dist[ncount-1] )
continue;
}
for(;;)
{
if( nidx < 0 )
break;
const Node& n = nodes[nidx];
if( n.idx < 0 )
{
i = ~n.idx;
const float* row = points.ptr<float>(i);
if( normType == NORM_L2 )
for( j = 0, d = 0.f; j < ptdims; j++ )
{
float t = vec[j] - row[j];
d += t*t;
}
else
for( j = 0, d = 0.f; j < ptdims; j++ )
d += std::abs(vec[j] - row[j]);
dist[ncount] = d;
idx[ncount] = i;
for( i = ncount-1; i >= 0; i-- )
{
if( dist[i] <= d )
break;
std::swap(dist[i], dist[i+1]);
std::swap(idx[i], idx[i+1]);
}
ncount += ncount < K;
e++;
break;
}
int alt;
if( vec[n.idx] <= n.boundary )
{
nidx = n.left;
alt = n.right;
}
else
{
nidx = n.right;
alt = n.left;
}
d = vec[n.idx] - n.boundary;
if( normType == NORM_L2 )
d = d*d + alt_d;
else
d = std::abs(d) + alt_d;
// subtree prunning
if( ncount == K && d > dist[ncount-1] )
continue;
// add alternative subtree to the priority queue
pqueue[qsize] = PQueueElem(d, alt);
for( i = qsize; i > 0; )
{
int parent = (i-1)/2;
if( parent < 0 || pqueue[parent].dist <= d )
break;
std::swap(pqueue[i], pqueue[parent]);
i = parent;
}
qsize += qsize+1 < maxqsize;
}
}
K = std::min(K, ncount);
if( _neighborsIdx.needed() )
{
_neighborsIdx.create(K, 1, CV_32S, -1, true);
Mat nidx = _neighborsIdx.getMat();
Mat(nidx.size(), CV_32S, &idx[0]).copyTo(nidx);
}
if( _dist.needed() )
sqrt(Mat(K, 1, CV_32F, dist), _dist);
if( _neighbors.needed() || _labels.needed() )
getPoints(Mat(K, 1, CV_32S, idx), _neighbors, _labels);
return K;
}
void KDTree::findOrthoRange(InputArray _lowerBound,
InputArray _upperBound,
OutputArray _neighborsIdx,
OutputArray _neighbors,
OutputArray _labels ) const
{
int ptdims = points.cols;
Mat lowerBound = _lowerBound.getMat(), upperBound = _upperBound.getMat();
CV_Assert( lowerBound.size == upperBound.size &&
lowerBound.isContinuous() &&
upperBound.isContinuous() &&
lowerBound.type() == upperBound.type() &&
lowerBound.type() == CV_32F &&
lowerBound.total() == (size_t)ptdims );
const float* L = lowerBound.ptr<float>();
const float* R = upperBound.ptr<float>();
std::vector<int> idx;
AutoBuffer<int> _stack(MAX_TREE_DEPTH*2 + 1);
int* stack = _stack;
int top = 0;
stack[top++] = 0;
while( --top >= 0 )
{
int nidx = stack[top];
if( nidx < 0 )
break;
const Node& n = nodes[nidx];
if( n.idx < 0 )
{
int j, i = ~n.idx;
const float* row = points.ptr<float>(i);
for( j = 0; j < ptdims; j++ )
if( row[j] < L[j] || row[j] >= R[j] )
break;
if( j == ptdims )
idx.push_back(i);
continue;
}
if( L[n.idx] <= n.boundary )
stack[top++] = n.left;
if( R[n.idx] > n.boundary )
stack[top++] = n.right;
}
if( _neighborsIdx.needed() )
{
_neighborsIdx.create((int)idx.size(), 1, CV_32S, -1, true);
Mat nidx = _neighborsIdx.getMat();
Mat(nidx.size(), CV_32S, &idx[0]).copyTo(nidx);
}
getPoints( idx, _neighbors, _labels );
}
void KDTree::getPoints(InputArray _idx, OutputArray _pts, OutputArray _labels) const
{
Mat idxmat = _idx.getMat(), pts, labelsmat;
CV_Assert( idxmat.isContinuous() && idxmat.type() == CV_32S &&
(idxmat.cols == 1 || idxmat.rows == 1) );
const int* idx = idxmat.ptr<int>();
int* dstlabels = 0;
int ptdims = points.cols;
int i, nidx = (int)idxmat.total();
if( nidx == 0 )
{
_pts.release();
_labels.release();
return;
}
if( _pts.needed() )
{
_pts.create( nidx, ptdims, points.type());
pts = _pts.getMat();
}
if(_labels.needed())
{
_labels.create(nidx, 1, CV_32S, -1, true);
labelsmat = _labels.getMat();
CV_Assert( labelsmat.isContinuous() );
dstlabels = labelsmat.ptr<int>();
}
const int* srclabels = !labels.empty() ? &labels[0] : 0;
for( i = 0; i < nidx; i++ )
{
int k = idx[i];
CV_Assert( (unsigned)k < (unsigned)points.rows );
const float* src = points.ptr<float>(k);
if( !pts.empty() )
std::copy(src, src + ptdims, pts.ptr<float>(i));
if( dstlabels )
dstlabels[i] = srclabels ? srclabels[k] : k;
}
}
const float* KDTree::getPoint(int ptidx, int* label) const
{
CV_Assert( (unsigned)ptidx < (unsigned)points.rows);
if(label)
*label = labels[ptidx];
return points.ptr<float>(ptidx);
}
int KDTree::dims() const
{
return !points.empty() ? points.cols : 0;
}
}
}