mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
534 lines
16 KiB
534 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2014, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "kdtree.hpp" |
|
|
|
namespace cv |
|
{ |
|
namespace ml |
|
{ |
|
// This is reimplementation of kd-trees from cvkdtree*.* by Xavier Delacour, cleaned-up and |
|
// adopted to work with the new OpenCV data structures. |
|
|
|
// The algorithm is taken from: |
|
// J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search |
|
// in highdimensional spaces. In Proc. IEEE Conf. Comp. Vision Patt. Recog., |
|
// pages 1000--1006, 1997. http://citeseer.ist.psu.edu/beis97shape.html |
|
|
|
const int MAX_TREE_DEPTH = 32; |
|
|
|
KDTree::KDTree() |
|
{ |
|
maxDepth = -1; |
|
normType = NORM_L2; |
|
} |
|
|
|
KDTree::KDTree(InputArray _points, bool _copyData) |
|
{ |
|
maxDepth = -1; |
|
normType = NORM_L2; |
|
build(_points, _copyData); |
|
} |
|
|
|
KDTree::KDTree(InputArray _points, InputArray _labels, bool _copyData) |
|
{ |
|
maxDepth = -1; |
|
normType = NORM_L2; |
|
build(_points, _labels, _copyData); |
|
} |
|
|
|
struct SubTree |
|
{ |
|
SubTree() : first(0), last(0), nodeIdx(0), depth(0) {} |
|
SubTree(int _first, int _last, int _nodeIdx, int _depth) |
|
: first(_first), last(_last), nodeIdx(_nodeIdx), depth(_depth) {} |
|
int first; |
|
int last; |
|
int nodeIdx; |
|
int depth; |
|
}; |
|
|
|
|
|
static float |
|
medianPartition( size_t* ofs, int a, int b, const float* vals ) |
|
{ |
|
int k, a0 = a, b0 = b; |
|
int middle = (a + b)/2; |
|
while( b > a ) |
|
{ |
|
int i0 = a, i1 = (a+b)/2, i2 = b; |
|
float v0 = vals[ofs[i0]], v1 = vals[ofs[i1]], v2 = vals[ofs[i2]]; |
|
int ip = v0 < v1 ? (v1 < v2 ? i1 : v0 < v2 ? i2 : i0) : |
|
v0 < v2 ? i0 : (v1 < v2 ? i2 : i1); |
|
float pivot = vals[ofs[ip]]; |
|
std::swap(ofs[ip], ofs[i2]); |
|
|
|
for( i1 = i0, i0--; i1 <= i2; i1++ ) |
|
if( vals[ofs[i1]] <= pivot ) |
|
{ |
|
i0++; |
|
std::swap(ofs[i0], ofs[i1]); |
|
} |
|
if( i0 == middle ) |
|
break; |
|
if( i0 > middle ) |
|
b = i0 - (b == i0); |
|
else |
|
a = i0; |
|
} |
|
|
|
float pivot = vals[ofs[middle]]; |
|
int less = 0, more = 0; |
|
for( k = a0; k < middle; k++ ) |
|
{ |
|
CV_Assert(vals[ofs[k]] <= pivot); |
|
less += vals[ofs[k]] < pivot; |
|
} |
|
for( k = b0; k > middle; k-- ) |
|
{ |
|
CV_Assert(vals[ofs[k]] >= pivot); |
|
more += vals[ofs[k]] > pivot; |
|
} |
|
CV_Assert(std::abs(more - less) <= 1); |
|
|
|
return vals[ofs[middle]]; |
|
} |
|
|
|
static void |
|
computeSums( const Mat& points, const size_t* ofs, int a, int b, double* sums ) |
|
{ |
|
int i, j, dims = points.cols; |
|
const float* data = points.ptr<float>(0); |
|
for( j = 0; j < dims; j++ ) |
|
sums[j*2] = sums[j*2+1] = 0; |
|
for( i = a; i <= b; i++ ) |
|
{ |
|
const float* row = data + ofs[i]; |
|
for( j = 0; j < dims; j++ ) |
|
{ |
|
double t = row[j], s = sums[j*2] + t, s2 = sums[j*2+1] + t*t; |
|
sums[j*2] = s; sums[j*2+1] = s2; |
|
} |
|
} |
|
} |
|
|
|
|
|
void KDTree::build(InputArray _points, bool _copyData) |
|
{ |
|
build(_points, noArray(), _copyData); |
|
} |
|
|
|
|
|
void KDTree::build(InputArray __points, InputArray __labels, bool _copyData) |
|
{ |
|
Mat _points = __points.getMat(), _labels = __labels.getMat(); |
|
CV_Assert(_points.type() == CV_32F && !_points.empty()); |
|
std::vector<KDTree::Node>().swap(nodes); |
|
|
|
if( !_copyData ) |
|
points = _points; |
|
else |
|
{ |
|
points.release(); |
|
points.create(_points.size(), _points.type()); |
|
} |
|
|
|
int i, j, n = _points.rows, ptdims = _points.cols, top = 0; |
|
const float* data = _points.ptr<float>(0); |
|
float* dstdata = points.ptr<float>(0); |
|
size_t step = _points.step1(); |
|
size_t dstep = points.step1(); |
|
int ptpos = 0; |
|
labels.resize(n); |
|
const int* _labels_data = 0; |
|
|
|
if( !_labels.empty() ) |
|
{ |
|
int nlabels = _labels.checkVector(1, CV_32S, true); |
|
CV_Assert(nlabels == n); |
|
_labels_data = _labels.ptr<int>(); |
|
} |
|
|
|
Mat sumstack(MAX_TREE_DEPTH*2, ptdims*2, CV_64F); |
|
SubTree stack[MAX_TREE_DEPTH*2]; |
|
|
|
std::vector<size_t> _ptofs(n); |
|
size_t* ptofs = &_ptofs[0]; |
|
|
|
for( i = 0; i < n; i++ ) |
|
ptofs[i] = i*step; |
|
|
|
nodes.push_back(Node()); |
|
computeSums(points, ptofs, 0, n-1, sumstack.ptr<double>(top)); |
|
stack[top++] = SubTree(0, n-1, 0, 0); |
|
int _maxDepth = 0; |
|
|
|
while( --top >= 0 ) |
|
{ |
|
int first = stack[top].first, last = stack[top].last; |
|
int depth = stack[top].depth, nidx = stack[top].nodeIdx; |
|
int count = last - first + 1, dim = -1; |
|
const double* sums = sumstack.ptr<double>(top); |
|
double invCount = 1./count, maxVar = -1.; |
|
|
|
if( count == 1 ) |
|
{ |
|
int idx0 = (int)(ptofs[first]/step); |
|
int idx = _copyData ? ptpos++ : idx0; |
|
nodes[nidx].idx = ~idx; |
|
if( _copyData ) |
|
{ |
|
const float* src = data + ptofs[first]; |
|
float* dst = dstdata + idx*dstep; |
|
for( j = 0; j < ptdims; j++ ) |
|
dst[j] = src[j]; |
|
} |
|
labels[idx] = _labels_data ? _labels_data[idx0] : idx0; |
|
_maxDepth = std::max(_maxDepth, depth); |
|
continue; |
|
} |
|
|
|
// find the dimensionality with the biggest variance |
|
for( j = 0; j < ptdims; j++ ) |
|
{ |
|
double m = sums[j*2]*invCount; |
|
double varj = sums[j*2+1]*invCount - m*m; |
|
if( maxVar < varj ) |
|
{ |
|
maxVar = varj; |
|
dim = j; |
|
} |
|
} |
|
|
|
int left = (int)nodes.size(), right = left + 1; |
|
nodes.push_back(Node()); |
|
nodes.push_back(Node()); |
|
nodes[nidx].idx = dim; |
|
nodes[nidx].left = left; |
|
nodes[nidx].right = right; |
|
nodes[nidx].boundary = medianPartition(ptofs, first, last, data + dim); |
|
|
|
int middle = (first + last)/2; |
|
double *lsums = (double*)sums, *rsums = lsums + ptdims*2; |
|
computeSums(points, ptofs, middle+1, last, rsums); |
|
for( j = 0; j < ptdims*2; j++ ) |
|
lsums[j] = sums[j] - rsums[j]; |
|
stack[top++] = SubTree(first, middle, left, depth+1); |
|
stack[top++] = SubTree(middle+1, last, right, depth+1); |
|
} |
|
maxDepth = _maxDepth; |
|
} |
|
|
|
|
|
struct PQueueElem |
|
{ |
|
PQueueElem() : dist(0), idx(0) {} |
|
PQueueElem(float _dist, int _idx) : dist(_dist), idx(_idx) {} |
|
float dist; |
|
int idx; |
|
}; |
|
|
|
|
|
int KDTree::findNearest(InputArray _vec, int K, int emax, |
|
OutputArray _neighborsIdx, OutputArray _neighbors, |
|
OutputArray _dist, OutputArray _labels) const |
|
|
|
{ |
|
Mat vecmat = _vec.getMat(); |
|
CV_Assert( vecmat.isContinuous() && vecmat.type() == CV_32F && vecmat.total() == (size_t)points.cols ); |
|
const float* vec = vecmat.ptr<float>(); |
|
K = std::min(K, points.rows); |
|
int ptdims = points.cols; |
|
|
|
CV_Assert(K > 0 && (normType == NORM_L2 || normType == NORM_L1)); |
|
|
|
AutoBuffer<uchar> _buf((K+1)*(sizeof(float) + sizeof(int))); |
|
int* idx = (int*)(uchar*)_buf; |
|
float* dist = (float*)(idx + K + 1); |
|
int i, j, ncount = 0, e = 0; |
|
|
|
int qsize = 0, maxqsize = 1 << 10; |
|
AutoBuffer<uchar> _pqueue(maxqsize*sizeof(PQueueElem)); |
|
PQueueElem* pqueue = (PQueueElem*)(uchar*)_pqueue; |
|
emax = std::max(emax, 1); |
|
|
|
for( e = 0; e < emax; ) |
|
{ |
|
float d, alt_d = 0.f; |
|
int nidx; |
|
|
|
if( e == 0 ) |
|
nidx = 0; |
|
else |
|
{ |
|
// take the next node from the priority queue |
|
if( qsize == 0 ) |
|
break; |
|
nidx = pqueue[0].idx; |
|
alt_d = pqueue[0].dist; |
|
if( --qsize > 0 ) |
|
{ |
|
std::swap(pqueue[0], pqueue[qsize]); |
|
d = pqueue[0].dist; |
|
for( i = 0;;) |
|
{ |
|
int left = i*2 + 1, right = i*2 + 2; |
|
if( left >= qsize ) |
|
break; |
|
if( right < qsize && pqueue[right].dist < pqueue[left].dist ) |
|
left = right; |
|
if( pqueue[left].dist >= d ) |
|
break; |
|
std::swap(pqueue[i], pqueue[left]); |
|
i = left; |
|
} |
|
} |
|
|
|
if( ncount == K && alt_d > dist[ncount-1] ) |
|
continue; |
|
} |
|
|
|
for(;;) |
|
{ |
|
if( nidx < 0 ) |
|
break; |
|
const Node& n = nodes[nidx]; |
|
|
|
if( n.idx < 0 ) |
|
{ |
|
i = ~n.idx; |
|
const float* row = points.ptr<float>(i); |
|
if( normType == NORM_L2 ) |
|
for( j = 0, d = 0.f; j < ptdims; j++ ) |
|
{ |
|
float t = vec[j] - row[j]; |
|
d += t*t; |
|
} |
|
else |
|
for( j = 0, d = 0.f; j < ptdims; j++ ) |
|
d += std::abs(vec[j] - row[j]); |
|
|
|
dist[ncount] = d; |
|
idx[ncount] = i; |
|
for( i = ncount-1; i >= 0; i-- ) |
|
{ |
|
if( dist[i] <= d ) |
|
break; |
|
std::swap(dist[i], dist[i+1]); |
|
std::swap(idx[i], idx[i+1]); |
|
} |
|
ncount += ncount < K; |
|
e++; |
|
break; |
|
} |
|
|
|
int alt; |
|
if( vec[n.idx] <= n.boundary ) |
|
{ |
|
nidx = n.left; |
|
alt = n.right; |
|
} |
|
else |
|
{ |
|
nidx = n.right; |
|
alt = n.left; |
|
} |
|
|
|
d = vec[n.idx] - n.boundary; |
|
if( normType == NORM_L2 ) |
|
d = d*d + alt_d; |
|
else |
|
d = std::abs(d) + alt_d; |
|
// subtree prunning |
|
if( ncount == K && d > dist[ncount-1] ) |
|
continue; |
|
// add alternative subtree to the priority queue |
|
pqueue[qsize] = PQueueElem(d, alt); |
|
for( i = qsize; i > 0; ) |
|
{ |
|
int parent = (i-1)/2; |
|
if( parent < 0 || pqueue[parent].dist <= d ) |
|
break; |
|
std::swap(pqueue[i], pqueue[parent]); |
|
i = parent; |
|
} |
|
qsize += qsize+1 < maxqsize; |
|
} |
|
} |
|
|
|
K = std::min(K, ncount); |
|
if( _neighborsIdx.needed() ) |
|
{ |
|
_neighborsIdx.create(K, 1, CV_32S, -1, true); |
|
Mat nidx = _neighborsIdx.getMat(); |
|
Mat(nidx.size(), CV_32S, &idx[0]).copyTo(nidx); |
|
} |
|
if( _dist.needed() ) |
|
sqrt(Mat(K, 1, CV_32F, dist), _dist); |
|
|
|
if( _neighbors.needed() || _labels.needed() ) |
|
getPoints(Mat(K, 1, CV_32S, idx), _neighbors, _labels); |
|
return K; |
|
} |
|
|
|
|
|
void KDTree::findOrthoRange(InputArray _lowerBound, |
|
InputArray _upperBound, |
|
OutputArray _neighborsIdx, |
|
OutputArray _neighbors, |
|
OutputArray _labels ) const |
|
{ |
|
int ptdims = points.cols; |
|
Mat lowerBound = _lowerBound.getMat(), upperBound = _upperBound.getMat(); |
|
CV_Assert( lowerBound.size == upperBound.size && |
|
lowerBound.isContinuous() && |
|
upperBound.isContinuous() && |
|
lowerBound.type() == upperBound.type() && |
|
lowerBound.type() == CV_32F && |
|
lowerBound.total() == (size_t)ptdims ); |
|
const float* L = lowerBound.ptr<float>(); |
|
const float* R = upperBound.ptr<float>(); |
|
|
|
std::vector<int> idx; |
|
AutoBuffer<int> _stack(MAX_TREE_DEPTH*2 + 1); |
|
int* stack = _stack; |
|
int top = 0; |
|
|
|
stack[top++] = 0; |
|
|
|
while( --top >= 0 ) |
|
{ |
|
int nidx = stack[top]; |
|
if( nidx < 0 ) |
|
break; |
|
const Node& n = nodes[nidx]; |
|
if( n.idx < 0 ) |
|
{ |
|
int j, i = ~n.idx; |
|
const float* row = points.ptr<float>(i); |
|
for( j = 0; j < ptdims; j++ ) |
|
if( row[j] < L[j] || row[j] >= R[j] ) |
|
break; |
|
if( j == ptdims ) |
|
idx.push_back(i); |
|
continue; |
|
} |
|
if( L[n.idx] <= n.boundary ) |
|
stack[top++] = n.left; |
|
if( R[n.idx] > n.boundary ) |
|
stack[top++] = n.right; |
|
} |
|
|
|
if( _neighborsIdx.needed() ) |
|
{ |
|
_neighborsIdx.create((int)idx.size(), 1, CV_32S, -1, true); |
|
Mat nidx = _neighborsIdx.getMat(); |
|
Mat(nidx.size(), CV_32S, &idx[0]).copyTo(nidx); |
|
} |
|
getPoints( idx, _neighbors, _labels ); |
|
} |
|
|
|
|
|
void KDTree::getPoints(InputArray _idx, OutputArray _pts, OutputArray _labels) const |
|
{ |
|
Mat idxmat = _idx.getMat(), pts, labelsmat; |
|
CV_Assert( idxmat.isContinuous() && idxmat.type() == CV_32S && |
|
(idxmat.cols == 1 || idxmat.rows == 1) ); |
|
const int* idx = idxmat.ptr<int>(); |
|
int* dstlabels = 0; |
|
|
|
int ptdims = points.cols; |
|
int i, nidx = (int)idxmat.total(); |
|
if( nidx == 0 ) |
|
{ |
|
_pts.release(); |
|
_labels.release(); |
|
return; |
|
} |
|
|
|
if( _pts.needed() ) |
|
{ |
|
_pts.create( nidx, ptdims, points.type()); |
|
pts = _pts.getMat(); |
|
} |
|
|
|
if(_labels.needed()) |
|
{ |
|
_labels.create(nidx, 1, CV_32S, -1, true); |
|
labelsmat = _labels.getMat(); |
|
CV_Assert( labelsmat.isContinuous() ); |
|
dstlabels = labelsmat.ptr<int>(); |
|
} |
|
const int* srclabels = !labels.empty() ? &labels[0] : 0; |
|
|
|
for( i = 0; i < nidx; i++ ) |
|
{ |
|
int k = idx[i]; |
|
CV_Assert( (unsigned)k < (unsigned)points.rows ); |
|
const float* src = points.ptr<float>(k); |
|
if( !pts.empty() ) |
|
std::copy(src, src + ptdims, pts.ptr<float>(i)); |
|
if( dstlabels ) |
|
dstlabels[i] = srclabels ? srclabels[k] : k; |
|
} |
|
} |
|
|
|
|
|
const float* KDTree::getPoint(int ptidx, int* label) const |
|
{ |
|
CV_Assert( (unsigned)ptidx < (unsigned)points.rows); |
|
if(label) |
|
*label = labels[ptidx]; |
|
return points.ptr<float>(ptidx); |
|
} |
|
|
|
|
|
int KDTree::dims() const |
|
{ |
|
return !points.empty() ? points.cols : 0; |
|
} |
|
|
|
} |
|
}
|
|
|