mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
2.8 KiB
100 lines
2.8 KiB
/** |
|
* @file SURF_FlannMatcher |
|
* @brief SURF detector + descriptor + FLANN Matcher |
|
* @author A. Huaman |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <iostream> |
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/features2d/features2d.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/nonfree/features2d.hpp" |
|
|
|
using namespace cv; |
|
|
|
void readme(); |
|
|
|
/** |
|
* @function main |
|
* @brief Main function |
|
*/ |
|
int main( int argc, char** argv ) |
|
{ |
|
if( argc != 3 ) |
|
{ readme(); return -1; } |
|
|
|
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE ); |
|
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE ); |
|
|
|
if( !img_1.data || !img_2.data ) |
|
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; } |
|
|
|
//-- Step 1: Detect the keypoints using SURF Detector |
|
int minHessian = 400; |
|
|
|
SurfFeatureDetector detector( minHessian ); |
|
|
|
std::vector<KeyPoint> keypoints_1, keypoints_2; |
|
|
|
detector.detect( img_1, keypoints_1 ); |
|
detector.detect( img_2, keypoints_2 ); |
|
|
|
//-- Step 2: Calculate descriptors (feature vectors) |
|
SurfDescriptorExtractor extractor; |
|
|
|
Mat descriptors_1, descriptors_2; |
|
|
|
extractor.compute( img_1, keypoints_1, descriptors_1 ); |
|
extractor.compute( img_2, keypoints_2, descriptors_2 ); |
|
|
|
//-- Step 3: Matching descriptor vectors using FLANN matcher |
|
FlannBasedMatcher matcher; |
|
std::vector< DMatch > matches; |
|
matcher.match( descriptors_1, descriptors_2, matches ); |
|
|
|
double max_dist = 0; double min_dist = 100; |
|
|
|
//-- Quick calculation of max and min distances between keypoints |
|
for( int i = 0; i < descriptors_1.rows; i++ ) |
|
{ double dist = matches[i].distance; |
|
if( dist < min_dist ) min_dist = dist; |
|
if( dist > max_dist ) max_dist = dist; |
|
} |
|
|
|
printf("-- Max dist : %f \n", max_dist ); |
|
printf("-- Min dist : %f \n", min_dist ); |
|
|
|
//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist, |
|
//-- or a small arbitary value ( 0.02 ) in the event that min_dist is very |
|
//-- small) |
|
//-- PS.- radiusMatch can also be used here. |
|
std::vector< DMatch > good_matches; |
|
|
|
for( int i = 0; i < descriptors_1.rows; i++ ) |
|
{ if( matches[i].distance <= max(2*min_dist, 0.02) ) |
|
{ good_matches.push_back( matches[i]); } |
|
} |
|
|
|
//-- Draw only "good" matches |
|
Mat img_matches; |
|
drawMatches( img_1, keypoints_1, img_2, keypoints_2, |
|
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), |
|
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); |
|
|
|
//-- Show detected matches |
|
imshow( "Good Matches", img_matches ); |
|
|
|
for( int i = 0; i < (int)good_matches.size(); i++ ) |
|
{ printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); } |
|
|
|
waitKey(0); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* @function readme |
|
*/ |
|
void readme() |
|
{ std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; }
|
|
|