mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
157 lines
5.7 KiB
157 lines
5.7 KiB
// |
|
// this sample demonstrates the use of pretrained openpose networks with opencv's dnn module. |
|
// |
|
// it can be used for body pose detection, using either the COCO model(18 parts): |
|
// http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/coco/pose_iter_440000.caffemodel |
|
// https://raw.githubusercontent.com/opencv/opencv_extra/3.4/testdata/dnn/openpose_pose_coco.prototxt |
|
// |
|
// or the MPI model(16 parts): |
|
// http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/mpi/pose_iter_160000.caffemodel |
|
// https://raw.githubusercontent.com/opencv/opencv_extra/3.4/testdata/dnn/openpose_pose_mpi_faster_4_stages.prototxt |
|
// |
|
// (to simplify this sample, the body models are restricted to a single person.) |
|
// |
|
// |
|
// you can also try the hand pose model: |
|
// http://posefs1.perception.cs.cmu.edu/OpenPose/models/hand/pose_iter_102000.caffemodel |
|
// https://raw.githubusercontent.com/CMU-Perceptual-Computing-Lab/openpose/master/models/hand/pose_deploy.prototxt |
|
// |
|
|
|
#include <opencv2/dnn.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
#include <iostream> |
|
using namespace std; |
|
|
|
|
|
// connection table, in the format [model_id][pair_id][from/to] |
|
// please look at the nice explanation at the bottom of: |
|
// https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md |
|
// |
|
const int POSE_PAIRS[3][20][2] = { |
|
{ // COCO body |
|
{1,2}, {1,5}, {2,3}, |
|
{3,4}, {5,6}, {6,7}, |
|
{1,8}, {8,9}, {9,10}, |
|
{1,11}, {11,12}, {12,13}, |
|
{1,0}, {0,14}, |
|
{14,16}, {0,15}, {15,17} |
|
}, |
|
{ // MPI body |
|
{0,1}, {1,2}, {2,3}, |
|
{3,4}, {1,5}, {5,6}, |
|
{6,7}, {1,14}, {14,8}, {8,9}, |
|
{9,10}, {14,11}, {11,12}, {12,13} |
|
}, |
|
{ // hand |
|
{0,1}, {1,2}, {2,3}, {3,4}, // thumb |
|
{0,5}, {5,6}, {6,7}, {7,8}, // pinkie |
|
{0,9}, {9,10}, {10,11}, {11,12}, // middle |
|
{0,13}, {13,14}, {14,15}, {15,16}, // ring |
|
{0,17}, {17,18}, {18,19}, {19,20} // small |
|
}}; |
|
|
|
int main(int argc, char **argv) |
|
{ |
|
CommandLineParser parser(argc, argv, |
|
"{ h help | false | print this help message }" |
|
"{ p proto | | (required) model configuration, e.g. hand/pose.prototxt }" |
|
"{ m model | | (required) model weights, e.g. hand/pose_iter_102000.caffemodel }" |
|
"{ i image | | (required) path to image file (containing a single person, or hand) }" |
|
"{ d dataset | | specify what kind of model was trained. It could be (COCO, MPI, HAND) depends on dataset. }" |
|
"{ width | 368 | Preprocess input image by resizing to a specific width. }" |
|
"{ height | 368 | Preprocess input image by resizing to a specific height. }" |
|
"{ t threshold | 0.1 | threshold or confidence value for the heatmap }" |
|
"{ s scale | 0.003922 | scale for blob }" |
|
); |
|
|
|
String modelTxt = samples::findFile(parser.get<string>("proto")); |
|
String modelBin = samples::findFile(parser.get<string>("model")); |
|
String imageFile = samples::findFile(parser.get<String>("image")); |
|
String dataset = parser.get<String>("dataset"); |
|
int W_in = parser.get<int>("width"); |
|
int H_in = parser.get<int>("height"); |
|
float thresh = parser.get<float>("threshold"); |
|
float scale = parser.get<float>("scale"); |
|
|
|
if (parser.get<bool>("help") || modelTxt.empty() || modelBin.empty() || imageFile.empty()) |
|
{ |
|
cout << "A sample app to demonstrate human or hand pose detection with a pretrained OpenPose dnn." << endl; |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
int midx, npairs, nparts; |
|
if (!dataset.compare("COCO")) { midx = 0; npairs = 17; nparts = 18; } |
|
else if (!dataset.compare("MPI")) { midx = 1; npairs = 14; nparts = 16; } |
|
else if (!dataset.compare("HAND")) { midx = 2; npairs = 20; nparts = 22; } |
|
else |
|
{ |
|
std::cerr << "Can't interpret dataset parameter: " << dataset << std::endl; |
|
exit(-1); |
|
} |
|
|
|
// read the network model |
|
Net net = readNet(modelBin, modelTxt); |
|
// and the image |
|
Mat img = imread(imageFile); |
|
if (img.empty()) |
|
{ |
|
std::cerr << "Can't read image from the file: " << imageFile << std::endl; |
|
exit(-1); |
|
} |
|
|
|
// send it through the network |
|
Mat inputBlob = blobFromImage(img, scale, Size(W_in, H_in), Scalar(0, 0, 0), false, false); |
|
net.setInput(inputBlob); |
|
Mat result = net.forward(); |
|
// the result is an array of "heatmaps", the probability of a body part being in location x,y |
|
|
|
int H = result.size[2]; |
|
int W = result.size[3]; |
|
|
|
// find the position of the body parts |
|
vector<Point> points(22); |
|
for (int n=0; n<nparts; n++) |
|
{ |
|
// Slice heatmap of corresponding body's part. |
|
Mat heatMap(H, W, CV_32F, result.ptr(0,n)); |
|
// 1 maximum per heatmap |
|
Point p(-1,-1),pm; |
|
double conf; |
|
minMaxLoc(heatMap, 0, &conf, 0, &pm); |
|
if (conf > thresh) |
|
p = pm; |
|
points[n] = p; |
|
} |
|
|
|
// connect body parts and draw it ! |
|
float SX = float(img.cols) / W; |
|
float SY = float(img.rows) / H; |
|
for (int n=0; n<npairs; n++) |
|
{ |
|
// lookup 2 connected body/hand parts |
|
Point2f a = points[POSE_PAIRS[midx][n][0]]; |
|
Point2f b = points[POSE_PAIRS[midx][n][1]]; |
|
|
|
// we did not find enough confidence before |
|
if (a.x<=0 || a.y<=0 || b.x<=0 || b.y<=0) |
|
continue; |
|
|
|
// scale to image size |
|
a.x*=SX; a.y*=SY; |
|
b.x*=SX; b.y*=SY; |
|
|
|
line(img, a, b, Scalar(0,200,0), 2); |
|
circle(img, a, 3, Scalar(0,0,200), -1); |
|
circle(img, b, 3, Scalar(0,0,200), -1); |
|
} |
|
|
|
imshow("OpenPose", img); |
|
waitKey(); |
|
|
|
return 0; |
|
}
|
|
|