mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
358 lines
12 KiB
358 lines
12 KiB
#include <algorithm> |
|
#include <functional> |
|
#include <opencv2/calib3d/calib3d.hpp> |
|
#include <opencv2/gpu/gpu.hpp> |
|
#include "matchers.hpp" |
|
#include "util.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
namespace |
|
{ |
|
class CpuSurfFeaturesFinder : public FeaturesFinder |
|
{ |
|
public: |
|
inline CpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers, |
|
int num_octaves_descr, int num_layers_descr) |
|
{ |
|
detector_ = new SurfFeatureDetector(hess_thresh, num_octaves, num_layers); |
|
extractor_ = new SurfDescriptorExtractor(num_octaves_descr, num_layers_descr); |
|
} |
|
|
|
protected: |
|
void find(const vector<Mat> &images, vector<ImageFeatures> &features); |
|
|
|
private: |
|
Ptr<FeatureDetector> detector_; |
|
Ptr<DescriptorExtractor> extractor_; |
|
}; |
|
|
|
void CpuSurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features) |
|
{ |
|
// Make images gray |
|
vector<Mat> gray_images(images.size()); |
|
for (size_t i = 0; i < images.size(); ++i) |
|
{ |
|
CV_Assert(images[i].depth() == CV_8U); |
|
cvtColor(images[i], gray_images[i], CV_BGR2GRAY); |
|
} |
|
|
|
features.resize(images.size()); |
|
|
|
// Find keypoints in all images |
|
for (size_t i = 0; i < images.size(); ++i) |
|
{ |
|
detector_->detect(gray_images[i], features[i].keypoints); |
|
extractor_->compute(gray_images[i], features[i].keypoints, features[i].descriptors); |
|
} |
|
} |
|
|
|
class GpuSurfFeaturesFinder : public FeaturesFinder |
|
{ |
|
public: |
|
inline GpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers, |
|
int num_octaves_descr, int num_layers_descr) |
|
{ |
|
surf_.hessianThreshold = hess_thresh; |
|
surf_.extended = false; |
|
num_octaves_ = num_octaves; |
|
num_layers_ = num_layers; |
|
num_octaves_descr_ = num_octaves_descr; |
|
num_layers_descr_ = num_layers_descr; |
|
} |
|
|
|
protected: |
|
void find(const vector<Mat> &images, vector<ImageFeatures> &features); |
|
|
|
private: |
|
SURF_GPU surf_; |
|
int num_octaves_, num_layers_; |
|
int num_octaves_descr_, num_layers_descr_; |
|
}; |
|
|
|
void GpuSurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features) |
|
{ |
|
// Make images gray |
|
vector<GpuMat> gray_images(images.size()); |
|
for (size_t i = 0; i < images.size(); ++i) |
|
{ |
|
CV_Assert(images[i].depth() == CV_8U); |
|
cvtColor(GpuMat(images[i]), gray_images[i], CV_BGR2GRAY); |
|
} |
|
|
|
features.resize(images.size()); |
|
|
|
// Find keypoints in all images |
|
GpuMat d_keypoints; |
|
GpuMat d_descriptors; |
|
for (size_t i = 0; i < images.size(); ++i) |
|
{ |
|
surf_.nOctaves = num_octaves_; |
|
surf_.nOctaveLayers = num_layers_; |
|
surf_(gray_images[i], GpuMat(), d_keypoints); |
|
|
|
surf_.nOctaves = num_octaves_descr_; |
|
surf_.nOctaveLayers = num_layers_descr_; |
|
surf_(gray_images[i], GpuMat(), d_keypoints, d_descriptors, true); |
|
|
|
surf_.downloadKeypoints(d_keypoints, features[i].keypoints); |
|
d_descriptors.download(features[i].descriptors); |
|
} |
|
} |
|
} |
|
|
|
SurfFeaturesFinder::SurfFeaturesFinder(bool gpu_hint, double hess_thresh, int num_octaves, int num_layers, |
|
int num_octaves_descr, int num_layers_descr) |
|
{ |
|
if (gpu_hint && getCudaEnabledDeviceCount() > 0) |
|
impl_ = new GpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr); |
|
else |
|
impl_ = new CpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr); |
|
} |
|
|
|
|
|
void SurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features) |
|
{ |
|
(*impl_)(images, features); |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0) {} |
|
|
|
|
|
MatchesInfo::MatchesInfo(const MatchesInfo &other) |
|
{ |
|
*this = other; |
|
} |
|
|
|
|
|
const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other) |
|
{ |
|
src_img_idx = other.src_img_idx; |
|
dst_img_idx = other.dst_img_idx; |
|
matches = other.matches; |
|
num_inliers = other.num_inliers; |
|
H = other.H.clone(); |
|
return *this; |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
void FeaturesMatcher::operator ()(const vector<Mat> &images, const vector<ImageFeatures> &features, |
|
vector<MatchesInfo> &pairwise_matches) |
|
{ |
|
pairwise_matches.resize(images.size() * images.size()); |
|
for (size_t i = 0; i < images.size(); ++i) |
|
{ |
|
LOGLN("Processing image " << i << "... "); |
|
for (size_t j = 0; j < images.size(); ++j) |
|
{ |
|
if (i == j) |
|
continue; |
|
size_t pair_idx = i * images.size() + j; |
|
(*this)(images[i], features[i], images[j], features[j], pairwise_matches[pair_idx]); |
|
pairwise_matches[pair_idx].src_img_idx = i; |
|
pairwise_matches[pair_idx].dst_img_idx = j; |
|
} |
|
} |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
namespace |
|
{ |
|
class CpuMatcher : public FeaturesMatcher |
|
{ |
|
public: |
|
inline CpuMatcher(float match_conf) : match_conf_(match_conf) {} |
|
|
|
void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info); |
|
|
|
private: |
|
float match_conf_; |
|
}; |
|
|
|
void CpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info) |
|
{ |
|
matches_info.matches.clear(); |
|
|
|
BruteForceMatcher< L2<float> > matcher; |
|
vector< vector<DMatch> > pair_matches; |
|
|
|
// Find 1->2 matches |
|
matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2); |
|
for (size_t i = 0; i < pair_matches.size(); ++i) |
|
{ |
|
if (pair_matches[i].size() < 2) |
|
continue; |
|
const DMatch& m0 = pair_matches[i][0]; |
|
const DMatch& m1 = pair_matches[i][1]; |
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
matches_info.matches.push_back(m0); |
|
} |
|
|
|
// Find 2->1 matches |
|
pair_matches.clear(); |
|
matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2); |
|
for (size_t i = 0; i < pair_matches.size(); ++i) |
|
{ |
|
if (pair_matches[i].size() < 2) |
|
continue; |
|
const DMatch& m0 = pair_matches[i][0]; |
|
const DMatch& m1 = pair_matches[i][1]; |
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); |
|
} |
|
} |
|
|
|
class GpuMatcher : public FeaturesMatcher |
|
{ |
|
public: |
|
inline GpuMatcher(float match_conf) : match_conf_(match_conf) {} |
|
|
|
void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info); |
|
|
|
private: |
|
float match_conf_; |
|
|
|
GpuMat descriptors1_; |
|
GpuMat descriptors2_; |
|
|
|
GpuMat trainIdx_, distance_, allDist_; |
|
}; |
|
|
|
void GpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info) |
|
{ |
|
matches_info.matches.clear(); |
|
|
|
BruteForceMatcher_GPU< L2<float> > matcher; |
|
|
|
descriptors1_.upload(features1.descriptors); |
|
descriptors2_.upload(features2.descriptors); |
|
|
|
vector< vector<DMatch> > pair_matches; |
|
|
|
// Find 1->2 matches |
|
matcher.knnMatch(descriptors1_, descriptors2_, trainIdx_, distance_, allDist_, 2); |
|
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches); |
|
for (size_t i = 0; i < pair_matches.size(); ++i) |
|
{ |
|
if (pair_matches[i].size() < 2) |
|
continue; |
|
const DMatch& m0 = pair_matches[i][0]; |
|
const DMatch& m1 = pair_matches[i][1]; |
|
|
|
CV_Assert(m0.queryIdx < static_cast<int>(features1.keypoints.size())); |
|
CV_Assert(m0.trainIdx < static_cast<int>(features2.keypoints.size())); |
|
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
matches_info.matches.push_back(m0); |
|
} |
|
|
|
// Find 2->1 matches |
|
pair_matches.clear(); |
|
matcher.knnMatch(descriptors2_, descriptors1_, trainIdx_, distance_, allDist_, 2); |
|
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches); |
|
for (size_t i = 0; i < pair_matches.size(); ++i) |
|
{ |
|
if (pair_matches[i].size() < 2) |
|
continue; |
|
const DMatch& m0 = pair_matches[i][0]; |
|
const DMatch& m1 = pair_matches[i][1]; |
|
|
|
CV_Assert(m0.trainIdx < static_cast<int>(features1.keypoints.size())); |
|
CV_Assert(m0.queryIdx < static_cast<int>(features2.keypoints.size())); |
|
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); |
|
} |
|
} |
|
} |
|
|
|
BestOf2NearestMatcher::BestOf2NearestMatcher(bool gpu_hint, float match_conf, int num_matches_thresh1, int num_matches_thresh2) |
|
{ |
|
if (gpu_hint && getCudaEnabledDeviceCount() > 0) |
|
impl_ = new GpuMatcher(match_conf); |
|
else |
|
impl_ = new CpuMatcher(match_conf); |
|
|
|
num_matches_thresh1_ = num_matches_thresh1; |
|
num_matches_thresh2_ = num_matches_thresh2; |
|
} |
|
|
|
|
|
void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features1, const Mat &img2, const ImageFeatures &features2, |
|
MatchesInfo &matches_info) |
|
{ |
|
(*impl_)(img1, features1, img2, features2, matches_info); |
|
|
|
// Check if it makes sense to find homography |
|
if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_)) |
|
return; |
|
|
|
// Construct point-point correspondences for homography estimation |
|
Mat src_points(1, matches_info.matches.size(), CV_32FC2); |
|
Mat dst_points(1, matches_info.matches.size(), CV_32FC2); |
|
for (size_t i = 0; i < matches_info.matches.size(); ++i) |
|
{ |
|
const DMatch& m = matches_info.matches[i]; |
|
|
|
Point2f p = features1.keypoints[m.queryIdx].pt; |
|
p.x -= img1.cols * 0.5f; |
|
p.y -= img1.rows * 0.5f; |
|
src_points.at<Point2f>(0, i) = p; |
|
|
|
p = features2.keypoints[m.trainIdx].pt; |
|
p.x -= img2.cols * 0.5f; |
|
p.y -= img2.rows * 0.5f; |
|
dst_points.at<Point2f>(0, i) = p; |
|
} |
|
|
|
// Find pair-wise motion |
|
matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, CV_RANSAC); |
|
|
|
// Find number of inliers |
|
matches_info.num_inliers = 0; |
|
for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i) |
|
if (matches_info.inliers_mask[i]) |
|
matches_info.num_inliers++; |
|
|
|
// Check if we should try to refine motion |
|
if (matches_info.num_inliers < num_matches_thresh2_) |
|
return; |
|
|
|
// Construct point-point correspondences for inliers only |
|
src_points.create(1, matches_info.num_inliers, CV_32FC2); |
|
dst_points.create(1, matches_info.num_inliers, CV_32FC2); |
|
int inlier_idx = 0; |
|
for (size_t i = 0; i < matches_info.matches.size(); ++i) |
|
{ |
|
if (!matches_info.inliers_mask[i]) |
|
continue; |
|
|
|
const DMatch& m = matches_info.matches[i]; |
|
|
|
Point2f p = features1.keypoints[m.queryIdx].pt; |
|
p.x -= img1.cols * 0.5f; |
|
p.y -= img2.rows * 0.5f; |
|
src_points.at<Point2f>(0, inlier_idx) = p; |
|
|
|
p = features2.keypoints[m.trainIdx].pt; |
|
p.x -= img2.cols * 0.5f; |
|
p.y -= img2.rows * 0.5f; |
|
dst_points.at<Point2f>(0, inlier_idx) = p; |
|
|
|
inlier_idx++; |
|
} |
|
|
|
// Rerun motion estimation on inliers only |
|
matches_info.H = findHomography(src_points, dst_points, CV_RANSAC); |
|
}
|
|
|