mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
326 lines
9.6 KiB
326 lines
9.6 KiB
#include <opencv2/imgproc/imgproc.hpp> |
|
#include <opencv2/highgui/highgui.hpp> |
|
#include "blenders.hpp" |
|
#include "util.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
static const float WEIGHT_EPS = 1e-5f; |
|
|
|
Ptr<Blender> Blender::createDefault(int type) |
|
{ |
|
if (type == NO) |
|
return new Blender(); |
|
if (type == FEATHER) |
|
return new FeatherBlender(); |
|
if (type == MULTI_BAND) |
|
return new MultiBandBlender(); |
|
CV_Error(CV_StsBadArg, "unsupported blending method"); |
|
return NULL; |
|
} |
|
|
|
|
|
Point Blender::operator ()(const vector<Mat> &src, const vector<Point> &corners, const vector<Mat> &masks, |
|
Mat& dst) |
|
{ |
|
Mat dst_mask; |
|
return (*this)(src, corners, masks, dst, dst_mask); |
|
} |
|
|
|
|
|
Point Blender::operator ()(const vector<Mat> &src, const vector<Point> &corners, const vector<Mat> &masks, |
|
Mat &dst, Mat &dst_mask) |
|
{ |
|
Point dst_tl = blend(src, corners, masks, dst, dst_mask); |
|
dst.setTo(Scalar::all(0), dst_mask == 0); |
|
return dst_tl; |
|
} |
|
|
|
|
|
Point Blender::blend(const vector<Mat> &src, const vector<Point> &corners, const vector<Mat> &masks, |
|
Mat &dst, Mat &dst_mask) |
|
{ |
|
for (size_t i = 0; i < src.size(); ++i) |
|
{ |
|
CV_Assert(src[i].type() == CV_32FC3); |
|
CV_Assert(masks[i].type() == CV_8U); |
|
} |
|
const int image_type = src[0].type(); |
|
|
|
Rect dst_roi = resultRoi(src, corners); |
|
|
|
dst.create(dst_roi.size(), image_type); |
|
dst.setTo(Scalar::all(0)); |
|
|
|
dst_mask.create(dst_roi.size(), CV_8U); |
|
dst_mask.setTo(Scalar::all(0)); |
|
|
|
for (size_t i = 0; i < src.size(); ++i) |
|
{ |
|
int dx = corners[i].x - dst_roi.x; |
|
int dy = corners[i].y - dst_roi.y; |
|
|
|
for (int y = 0; y < src[i].rows; ++y) |
|
{ |
|
const Point3f *src_row = src[i].ptr<Point3f>(y); |
|
Point3f *dst_row = dst.ptr<Point3f>(dy + y); |
|
|
|
const uchar *mask_row = masks[i].ptr<uchar>(y); |
|
uchar *dst_mask_row = dst_mask.ptr<uchar>(dy + y); |
|
|
|
for (int x = 0; x < src[i].cols; ++x) |
|
{ |
|
if (mask_row[x]) |
|
dst_row[dx + x] = src_row[x]; |
|
dst_mask_row[dx + x] |= mask_row[x]; |
|
} |
|
} |
|
} |
|
|
|
return dst_roi.tl(); |
|
} |
|
|
|
|
|
Point FeatherBlender::blend(const vector<Mat> &src, const vector<Point> &corners, const vector<Mat> &masks, |
|
Mat &dst, Mat &dst_mask) |
|
{ |
|
vector<Mat> weights(masks.size()); |
|
for (size_t i = 0; i < weights.size(); ++i) |
|
createWeightMap(masks[i], sharpness_, weights[i]); |
|
|
|
Mat dst_weight; |
|
Point dst_tl = blendLinear(src, corners, weights, dst, dst_weight); |
|
dst_mask = dst_weight > WEIGHT_EPS; |
|
|
|
return dst_tl; |
|
} |
|
|
|
|
|
Point MultiBandBlender::blend(const vector<Mat> &src, const vector<Point> &corners, const vector<Mat> &masks, |
|
Mat &dst, Mat &dst_mask) |
|
{ |
|
CV_Assert(src.size() == corners.size() && src.size() == masks.size()); |
|
const int num_images = src.size(); |
|
const int img_type = src[0].type(); |
|
|
|
Rect dst_roi = resultRoi(src, corners); |
|
computeResultMask(masks, corners, dst_mask); |
|
|
|
vector<Mat> dst_pyr_laplace(num_bands_ + 1); |
|
dst_pyr_laplace[0].create(dst_roi.size(), img_type); |
|
dst_pyr_laplace[0].setTo(Scalar::all(0)); |
|
|
|
vector<Mat> dst_band_weights(num_bands_ + 1); |
|
dst_band_weights[0].create(dst_roi.size(), CV_32F); |
|
dst_band_weights[0].setTo(0); |
|
|
|
for (int i = 1; i <= num_bands_; ++i) |
|
{ |
|
dst_pyr_laplace[i].create((dst_pyr_laplace[i - 1].rows + 1) / 2, |
|
(dst_pyr_laplace[i - 1].cols + 1) / 2, img_type); |
|
dst_pyr_laplace[i].setTo(Scalar::all(0)); |
|
|
|
dst_band_weights[i].create((dst_band_weights[i - 1].rows + 1) / 2, |
|
(dst_band_weights[i - 1].cols + 1) / 2, CV_32F); |
|
dst_band_weights[i].setTo(0); |
|
} |
|
|
|
for (int img_idx = 0; img_idx < num_images; ++img_idx) |
|
{ |
|
int top = corners[img_idx].y - dst_roi.y; |
|
int bottom = dst_roi.br().y - corners[img_idx].y - src[img_idx].rows; |
|
int left = corners[img_idx].x - dst_roi.x; |
|
int right = dst_roi.br().x - corners[img_idx].x - src[img_idx].cols; |
|
|
|
Mat big_src; |
|
copyMakeBorder(src[img_idx], big_src, top, bottom, left, right, BORDER_REFLECT); |
|
vector<Mat> src_pyr_gauss; |
|
vector<Mat> src_pyr_laplace; |
|
createGaussPyr(big_src, num_bands_, src_pyr_gauss); |
|
createLaplacePyr(src_pyr_gauss, src_pyr_laplace); |
|
|
|
Mat big_mask; |
|
copyMakeBorder(masks[img_idx], big_mask, top, bottom, left, right, BORDER_CONSTANT); |
|
Mat weight_map; |
|
big_mask.convertTo(weight_map, CV_32F, 1./255.); |
|
vector<Mat> weight_pyr_gauss; |
|
createGaussPyr(weight_map, num_bands_, weight_pyr_gauss); |
|
|
|
for (int band_idx = 0; band_idx <= num_bands_; ++band_idx) |
|
{ |
|
for (int y = 0; y < dst_pyr_laplace[band_idx].rows; ++y) |
|
{ |
|
const Point3f* src_row = src_pyr_laplace[band_idx].ptr<Point3f>(y); |
|
const float* weight_row = weight_pyr_gauss[band_idx].ptr<float>(y); |
|
Point3f* dst_row = dst_pyr_laplace[band_idx].ptr<Point3f>(y); |
|
for (int x = 0; x < dst_pyr_laplace[band_idx].cols; ++x) |
|
dst_row[x] += src_row[x] * weight_row[x]; |
|
} |
|
dst_band_weights[band_idx] += weight_pyr_gauss[band_idx]; |
|
} |
|
} |
|
|
|
for (int band_idx = 0; band_idx <= num_bands_; ++band_idx) |
|
normalize(dst_band_weights[band_idx], dst_pyr_laplace[band_idx]); |
|
|
|
restoreImageFromLaplacePyr(dst_pyr_laplace); |
|
dst = dst_pyr_laplace[0]; |
|
return dst_roi.tl(); |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// Auxiliary functions |
|
|
|
Rect resultRoi(const vector<Mat> &src, const vector<Point> &corners) |
|
{ |
|
Point tl(numeric_limits<int>::max(), numeric_limits<int>::max()); |
|
Point br(numeric_limits<int>::min(), numeric_limits<int>::min()); |
|
|
|
CV_Assert(src.size() == corners.size()); |
|
for (size_t i = 0; i < src.size(); ++i) |
|
{ |
|
tl.x = min(tl.x, corners[i].x); |
|
tl.y = min(tl.y, corners[i].y); |
|
br.x = max(br.x, corners[i].x + src[i].cols); |
|
br.y = max(br.y, corners[i].y + src[i].rows); |
|
} |
|
|
|
return Rect(tl, br); |
|
} |
|
|
|
|
|
Point computeResultMask(const vector<Mat> &masks, const vector<Point> &corners, Mat &dst_mask) |
|
{ |
|
Rect dst_roi = resultRoi(masks, corners); |
|
|
|
dst_mask.create(dst_roi.size(), CV_8U); |
|
dst_mask.setTo(Scalar::all(0)); |
|
|
|
for (size_t i = 0; i < masks.size(); ++i) |
|
{ |
|
int dx = corners[i].x - dst_roi.x; |
|
int dy = corners[i].y - dst_roi.y; |
|
|
|
for (int y = 0; y < masks[i].rows; ++y) |
|
{ |
|
const uchar *mask_row = masks[i].ptr<uchar>(y); |
|
uchar *dst_mask_row = dst_mask.ptr<uchar>(dy + y); |
|
|
|
for (int x = 0; x < masks[i].cols; ++x) |
|
dst_mask_row[dx + x] |= mask_row[x]; |
|
} |
|
} |
|
|
|
return dst_roi.tl(); |
|
} |
|
|
|
|
|
Point blendLinear(const vector<Mat> &src, const vector<Point> &corners, const vector<Mat> &weights, |
|
Mat &dst, Mat& dst_weight) |
|
{ |
|
for (size_t i = 0; i < src.size(); ++i) |
|
{ |
|
CV_Assert(src[i].type() == CV_32FC3); |
|
CV_Assert(weights[i].type() == CV_32F); |
|
} |
|
const int image_type = src[0].type(); |
|
|
|
Rect dst_roi = resultRoi(src, corners); |
|
|
|
dst.create(dst_roi.size(), image_type); |
|
dst.setTo(Scalar::all(0)); |
|
|
|
dst_weight.create(dst_roi.size(), CV_32F); |
|
dst_weight.setTo(Scalar::all(0)); |
|
|
|
// Compute colors sums and weights |
|
for (size_t i = 0; i < src.size(); ++i) |
|
{ |
|
int dx = corners[i].x - dst_roi.x; |
|
int dy = corners[i].y - dst_roi.y; |
|
|
|
for (int y = 0; y < src[i].rows; ++y) |
|
{ |
|
const Point3f *src_row = src[i].ptr<Point3f>(y); |
|
Point3f *dst_row = dst.ptr<Point3f>(dy + y); |
|
|
|
const float *weight_row = weights[i].ptr<float>(y); |
|
float *dst_weight_row = dst_weight.ptr<float>(dy + y); |
|
|
|
for (int x = 0; x < src[i].cols; ++x) |
|
{ |
|
dst_row[dx + x] += src_row[x] * weight_row[x]; |
|
dst_weight_row[dx + x] += weight_row[x]; |
|
} |
|
} |
|
} |
|
|
|
normalize(dst_weight, dst); |
|
|
|
return dst_roi.tl(); |
|
} |
|
|
|
|
|
void normalize(const Mat& weight, Mat& src) |
|
{ |
|
CV_Assert(weight.type() == CV_32F); |
|
CV_Assert(src.type() == CV_32FC3); |
|
for (int y = 0; y < src.rows; ++y) |
|
{ |
|
Point3f *row = src.ptr<Point3f>(y); |
|
const float *weight_row = weight.ptr<float>(y); |
|
|
|
for (int x = 0; x < src.cols; ++x) |
|
row[x] *= 1.f / (weight_row[x] + WEIGHT_EPS); |
|
} |
|
} |
|
|
|
|
|
void createWeightMap(const Mat &mask, float sharpness, Mat &weight) |
|
{ |
|
CV_Assert(mask.type() == CV_8U); |
|
distanceTransform(mask, weight, CV_DIST_L1, 3); |
|
threshold(weight * sharpness, weight, 1.f, 1.f, THRESH_TRUNC); |
|
} |
|
|
|
|
|
void createGaussPyr(const Mat &img, int num_layers, vector<Mat> &pyr) |
|
{ |
|
pyr.resize(num_layers + 1); |
|
pyr[0] = img.clone(); |
|
for (int i = 0; i < num_layers; ++i) |
|
pyrDown(pyr[i], pyr[i + 1]); |
|
} |
|
|
|
|
|
void createLaplacePyr(const vector<Mat> &pyr_gauss, vector<Mat> &pyr_laplace) |
|
{ |
|
if (pyr_gauss.size() == 0) |
|
return; |
|
|
|
pyr_laplace.resize(pyr_gauss.size()); |
|
|
|
Mat tmp; |
|
for (size_t i = 0; i < pyr_laplace.size() - 1; ++i) |
|
{ |
|
pyrUp(pyr_gauss[i + 1], tmp, pyr_gauss[i].size()); |
|
pyr_laplace[i] = pyr_gauss[i] - tmp; |
|
} |
|
pyr_laplace[pyr_laplace.size() - 1] = pyr_gauss[pyr_laplace.size() - 1].clone(); |
|
} |
|
|
|
|
|
void restoreImageFromLaplacePyr(vector<Mat> &pyr) |
|
{ |
|
if (pyr.size() == 0) |
|
return; |
|
|
|
Mat tmp; |
|
for (size_t i = pyr.size() - 1; i > 0; --i) |
|
{ |
|
pyrUp(pyr[i], tmp, pyr[i - 1].size()); |
|
pyr[i - 1] += tmp; |
|
} |
|
}
|
|
|