Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1190 lines
59 KiB
1190 lines
59 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef OPENCV_DNN_DNN_HPP |
|
#define OPENCV_DNN_DNN_HPP |
|
|
|
#include <vector> |
|
#include <opencv2/core.hpp> |
|
#include "opencv2/core/async.hpp" |
|
|
|
#include "../dnn/version.hpp" |
|
|
|
#include <opencv2/dnn/dict.hpp> |
|
|
|
namespace cv { |
|
namespace dnn { |
|
CV__DNN_INLINE_NS_BEGIN |
|
//! @addtogroup dnn |
|
//! @{ |
|
|
|
typedef std::vector<int> MatShape; |
|
|
|
/** |
|
* @brief Enum of computation backends supported by layers. |
|
* @see Net::setPreferableBackend |
|
*/ |
|
enum Backend |
|
{ |
|
//! DNN_BACKEND_DEFAULT equals to DNN_BACKEND_INFERENCE_ENGINE if |
|
//! OpenCV is built with Intel's Inference Engine library or |
|
//! DNN_BACKEND_OPENCV otherwise. |
|
DNN_BACKEND_DEFAULT, |
|
DNN_BACKEND_HALIDE, |
|
DNN_BACKEND_INFERENCE_ENGINE, //!< Intel's Inference Engine computational backend. |
|
DNN_BACKEND_OPENCV, |
|
DNN_BACKEND_VKCOM |
|
}; |
|
|
|
/** |
|
* @brief Enum of target devices for computations. |
|
* @see Net::setPreferableTarget |
|
*/ |
|
enum Target |
|
{ |
|
DNN_TARGET_CPU, |
|
DNN_TARGET_OPENCL, |
|
DNN_TARGET_OPENCL_FP16, |
|
DNN_TARGET_MYRIAD, |
|
DNN_TARGET_VULKAN, |
|
DNN_TARGET_FPGA //!< FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin. |
|
}; |
|
|
|
CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends(); |
|
CV_EXPORTS std::vector<Target> getAvailableTargets(Backend be); |
|
|
|
/** @brief This class provides all data needed to initialize layer. |
|
* |
|
* It includes dictionary with scalar params (which can be read by using Dict interface), |
|
* blob params #blobs and optional meta information: #name and #type of layer instance. |
|
*/ |
|
class CV_EXPORTS LayerParams : public Dict |
|
{ |
|
public: |
|
//TODO: Add ability to name blob params |
|
std::vector<Mat> blobs; //!< List of learned parameters stored as blobs. |
|
|
|
String name; //!< Name of the layer instance (optional, can be used internal purposes). |
|
String type; //!< Type name which was used for creating layer by layer factory (optional). |
|
}; |
|
|
|
/** |
|
* @brief Derivatives of this class encapsulates functions of certain backends. |
|
*/ |
|
class BackendNode |
|
{ |
|
public: |
|
BackendNode(int backendId); |
|
|
|
virtual ~BackendNode(); //!< Virtual destructor to make polymorphism. |
|
|
|
int backendId; //!< Backend identifier. |
|
}; |
|
|
|
/** |
|
* @brief Derivatives of this class wraps cv::Mat for different backends and targets. |
|
*/ |
|
class BackendWrapper |
|
{ |
|
public: |
|
BackendWrapper(int backendId, int targetId); |
|
|
|
/** |
|
* @brief Wrap cv::Mat for specific backend and target. |
|
* @param[in] targetId Target identifier. |
|
* @param[in] m cv::Mat for wrapping. |
|
* |
|
* Make CPU->GPU data transfer if it's require for the target. |
|
*/ |
|
BackendWrapper(int targetId, const cv::Mat& m); |
|
|
|
/** |
|
* @brief Make wrapper for reused cv::Mat. |
|
* @param[in] base Wrapper of cv::Mat that will be reused. |
|
* @param[in] shape Specific shape. |
|
* |
|
* Initialize wrapper from another one. It'll wrap the same host CPU |
|
* memory and mustn't allocate memory on device(i.e. GPU). It might |
|
* has different shape. Use in case of CPU memory reusing for reuse |
|
* associated memory on device too. |
|
*/ |
|
BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape); |
|
|
|
virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism. |
|
|
|
/** |
|
* @brief Transfer data to CPU host memory. |
|
*/ |
|
virtual void copyToHost() = 0; |
|
|
|
/** |
|
* @brief Indicate that an actual data is on CPU. |
|
*/ |
|
virtual void setHostDirty() = 0; |
|
|
|
int backendId; //!< Backend identifier. |
|
int targetId; //!< Target identifier. |
|
}; |
|
|
|
class CV_EXPORTS ActivationLayer; |
|
|
|
/** @brief This interface class allows to build new Layers - are building blocks of networks. |
|
* |
|
* Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs. |
|
* Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros. |
|
*/ |
|
class CV_EXPORTS_W Layer : public Algorithm |
|
{ |
|
public: |
|
|
|
//! List of learned parameters must be stored here to allow read them by using Net::getParam(). |
|
CV_PROP_RW std::vector<Mat> blobs; |
|
|
|
/** @brief Computes and sets internal parameters according to inputs, outputs and blobs. |
|
* @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead |
|
* @param[in] input vector of already allocated input blobs |
|
* @param[out] output vector of already allocated output blobs |
|
* |
|
* If this method is called after network has allocated all memory for input and output blobs |
|
* and before inferencing. |
|
*/ |
|
CV_DEPRECATED_EXTERNAL |
|
virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output); |
|
|
|
/** @brief Computes and sets internal parameters according to inputs, outputs and blobs. |
|
* @param[in] inputs vector of already allocated input blobs |
|
* @param[out] outputs vector of already allocated output blobs |
|
* |
|
* If this method is called after network has allocated all memory for input and output blobs |
|
* and before inferencing. |
|
*/ |
|
CV_WRAP virtual void finalize(InputArrayOfArrays inputs, OutputArrayOfArrays outputs); |
|
|
|
/** @brief Given the @p input blobs, computes the output @p blobs. |
|
* @deprecated Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead |
|
* @param[in] input the input blobs. |
|
* @param[out] output allocated output blobs, which will store results of the computation. |
|
* @param[out] internals allocated internal blobs |
|
*/ |
|
CV_DEPRECATED_EXTERNAL |
|
virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals); |
|
|
|
/** @brief Given the @p input blobs, computes the output @p blobs. |
|
* @param[in] inputs the input blobs. |
|
* @param[out] outputs allocated output blobs, which will store results of the computation. |
|
* @param[out] internals allocated internal blobs |
|
*/ |
|
virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals); |
|
|
|
/** @brief Given the @p input blobs, computes the output @p blobs. |
|
* @param[in] inputs the input blobs. |
|
* @param[out] outputs allocated output blobs, which will store results of the computation. |
|
* @param[out] internals allocated internal blobs |
|
*/ |
|
void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals); |
|
|
|
/** @brief |
|
* @overload |
|
* @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead |
|
*/ |
|
CV_DEPRECATED_EXTERNAL |
|
void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs); |
|
|
|
/** @brief |
|
* @overload |
|
* @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead |
|
*/ |
|
CV_DEPRECATED std::vector<Mat> finalize(const std::vector<Mat> &inputs); |
|
|
|
/** @brief Allocates layer and computes output. |
|
* @deprecated This method will be removed in the future release. |
|
*/ |
|
CV_DEPRECATED CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs, |
|
CV_IN_OUT std::vector<Mat> &internals); |
|
|
|
/** @brief Returns index of input blob into the input array. |
|
* @param inputName label of input blob |
|
* |
|
* Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation. |
|
* This method maps label of input blob to its index into input vector. |
|
*/ |
|
virtual int inputNameToIndex(String inputName); |
|
/** @brief Returns index of output blob in output array. |
|
* @see inputNameToIndex() |
|
*/ |
|
CV_WRAP virtual int outputNameToIndex(const String& outputName); |
|
|
|
/** |
|
* @brief Ask layer if it support specific backend for doing computations. |
|
* @param[in] backendId computation backend identifier. |
|
* @see Backend |
|
*/ |
|
virtual bool supportBackend(int backendId); |
|
|
|
/** |
|
* @brief Returns Halide backend node. |
|
* @param[in] inputs Input Halide buffers. |
|
* @see BackendNode, BackendWrapper |
|
* |
|
* Input buffers should be exactly the same that will be used in forward invocations. |
|
* Despite we can use Halide::ImageParam based on input shape only, |
|
* it helps prevent some memory management issues (if something wrong, |
|
* Halide tests will be failed). |
|
*/ |
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs); |
|
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &inputs); |
|
|
|
virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs); |
|
/** |
|
* @brief Automatic Halide scheduling based on layer hyper-parameters. |
|
* @param[in] node Backend node with Halide functions. |
|
* @param[in] inputs Blobs that will be used in forward invocations. |
|
* @param[in] outputs Blobs that will be used in forward invocations. |
|
* @param[in] targetId Target identifier |
|
* @see BackendNode, Target |
|
* |
|
* Layer don't use own Halide::Func members because we can have applied |
|
* layers fusing. In this way the fused function should be scheduled. |
|
*/ |
|
virtual void applyHalideScheduler(Ptr<BackendNode>& node, |
|
const std::vector<Mat*> &inputs, |
|
const std::vector<Mat> &outputs, |
|
int targetId) const; |
|
|
|
/** |
|
* @brief Implement layers fusing. |
|
* @param[in] node Backend node of bottom layer. |
|
* @see BackendNode |
|
* |
|
* Actual for graph-based backends. If layer attached successfully, |
|
* returns non-empty cv::Ptr to node of the same backend. |
|
* Fuse only over the last function. |
|
*/ |
|
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node); |
|
|
|
/** |
|
* @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case. |
|
* @param[in] layer The subsequent activation layer. |
|
* |
|
* Returns true if the activation layer has been attached successfully. |
|
*/ |
|
virtual bool setActivation(const Ptr<ActivationLayer>& layer); |
|
|
|
/** |
|
* @brief Try to fuse current layer with a next one |
|
* @param[in] top Next layer to be fused. |
|
* @returns True if fusion was performed. |
|
*/ |
|
virtual bool tryFuse(Ptr<Layer>& top); |
|
|
|
/** |
|
* @brief Returns parameters of layers with channel-wise multiplication and addition. |
|
* @param[out] scale Channel-wise multipliers. Total number of values should |
|
* be equal to number of channels. |
|
* @param[out] shift Channel-wise offsets. Total number of values should |
|
* be equal to number of channels. |
|
* |
|
* Some layers can fuse their transformations with further layers. |
|
* In example, convolution + batch normalization. This way base layer |
|
* use weights from layer after it. Fused layer is skipped. |
|
* By default, @p scale and @p shift are empty that means layer has no |
|
* element-wise multiplications or additions. |
|
*/ |
|
virtual void getScaleShift(Mat& scale, Mat& shift) const; |
|
|
|
/** |
|
* @brief "Deattaches" all the layers, attached to particular layer. |
|
*/ |
|
virtual void unsetAttached(); |
|
|
|
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const; |
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
|
const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;} |
|
|
|
CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes. |
|
CV_PROP String type; //!< Type name which was used for creating layer by layer factory. |
|
CV_PROP int preferableTarget; //!< prefer target for layer forwarding |
|
|
|
Layer(); |
|
explicit Layer(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. |
|
void setParamsFrom(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. |
|
virtual ~Layer(); |
|
}; |
|
|
|
/** @brief This class allows to create and manipulate comprehensive artificial neural networks. |
|
* |
|
* Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances, |
|
* and edges specify relationships between layers inputs and outputs. |
|
* |
|
* Each network layer has unique integer id and unique string name inside its network. |
|
* LayerId can store either layer name or layer id. |
|
* |
|
* This class supports reference counting of its instances, i. e. copies point to the same instance. |
|
*/ |
|
class CV_EXPORTS_W_SIMPLE Net |
|
{ |
|
public: |
|
|
|
CV_WRAP Net(); //!< Default constructor. |
|
CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore. |
|
|
|
/** @brief Create a network from Intel's Model Optimizer intermediate representation. |
|
* @param[in] xml XML configuration file with network's topology. |
|
* @param[in] bin Binary file with trained weights. |
|
* Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine |
|
* backend. |
|
*/ |
|
CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin); |
|
|
|
/** Returns true if there are no layers in the network. */ |
|
CV_WRAP bool empty() const; |
|
|
|
/** @brief Dump net to String |
|
* @returns String with structure, hyperparameters, backend, target and fusion |
|
* Call method after setInput(). To see correct backend, target and fusion run after forward(). |
|
*/ |
|
CV_WRAP String dump(); |
|
/** @brief Dump net structure, hyperparameters, backend, target and fusion to dot file |
|
* @param path path to output file with .dot extension |
|
* @see dump() |
|
*/ |
|
CV_WRAP void dumpToFile(const String& path); |
|
/** @brief Adds new layer to the net. |
|
* @param name unique name of the adding layer. |
|
* @param type typename of the adding layer (type must be registered in LayerRegister). |
|
* @param params parameters which will be used to initialize the creating layer. |
|
* @returns unique identifier of created layer, or -1 if a failure will happen. |
|
*/ |
|
int addLayer(const String &name, const String &type, LayerParams ¶ms); |
|
/** @brief Adds new layer and connects its first input to the first output of previously added layer. |
|
* @see addLayer() |
|
*/ |
|
int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms); |
|
|
|
/** @brief Converts string name of the layer to the integer identifier. |
|
* @returns id of the layer, or -1 if the layer wasn't found. |
|
*/ |
|
CV_WRAP int getLayerId(const String &layer); |
|
|
|
CV_WRAP std::vector<String> getLayerNames() const; |
|
|
|
/** @brief Container for strings and integers. */ |
|
typedef DictValue LayerId; |
|
|
|
/** @brief Returns pointer to layer with specified id or name which the network use. */ |
|
CV_WRAP Ptr<Layer> getLayer(LayerId layerId); |
|
|
|
/** @brief Returns pointers to input layers of specific layer. */ |
|
std::vector<Ptr<Layer> > getLayerInputs(LayerId layerId); // FIXIT: CV_WRAP |
|
|
|
/** @brief Connects output of the first layer to input of the second layer. |
|
* @param outPin descriptor of the first layer output. |
|
* @param inpPin descriptor of the second layer input. |
|
* |
|
* Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>: |
|
* - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer. |
|
* If this part is empty then the network input pseudo layer will be used; |
|
* - the second optional part of the template <DFN>input_number</DFN> |
|
* is either number of the layer input, either label one. |
|
* If this part is omitted then the first layer input will be used. |
|
* |
|
* @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex() |
|
*/ |
|
CV_WRAP void connect(String outPin, String inpPin); |
|
|
|
/** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer. |
|
* @param outLayerId identifier of the first layer |
|
* @param outNum number of the first layer output |
|
* @param inpLayerId identifier of the second layer |
|
* @param inpNum number of the second layer input |
|
*/ |
|
void connect(int outLayerId, int outNum, int inpLayerId, int inpNum); |
|
|
|
/** @brief Sets outputs names of the network input pseudo layer. |
|
* |
|
* Each net always has special own the network input pseudo layer with id=0. |
|
* This layer stores the user blobs only and don't make any computations. |
|
* In fact, this layer provides the only way to pass user data into the network. |
|
* As any other layer, this layer can label its outputs and this function provides an easy way to do this. |
|
*/ |
|
CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames); |
|
|
|
/** @brief Runs forward pass to compute output of layer with name @p outputName. |
|
* @param outputName name for layer which output is needed to get |
|
* @return blob for first output of specified layer. |
|
* @details By default runs forward pass for the whole network. |
|
*/ |
|
CV_WRAP Mat forward(const String& outputName = String()); |
|
|
|
/** @brief Runs forward pass to compute output of layer with name @p outputName. |
|
* @param outputName name for layer which output is needed to get |
|
* @details By default runs forward pass for the whole network. |
|
* |
|
* This is an asynchronous version of forward(const String&). |
|
* dnn::DNN_BACKEND_INFERENCE_ENGINE backend is required. |
|
*/ |
|
CV_WRAP AsyncArray forwardAsync(const String& outputName = String()); |
|
|
|
/** @brief Runs forward pass to compute output of layer with name @p outputName. |
|
* @param outputBlobs contains all output blobs for specified layer. |
|
* @param outputName name for layer which output is needed to get |
|
* @details If @p outputName is empty, runs forward pass for the whole network. |
|
*/ |
|
CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String()); |
|
|
|
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames. |
|
* @param outputBlobs contains blobs for first outputs of specified layers. |
|
* @param outBlobNames names for layers which outputs are needed to get |
|
*/ |
|
CV_WRAP void forward(OutputArrayOfArrays outputBlobs, |
|
const std::vector<String>& outBlobNames); |
|
|
|
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames. |
|
* @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames. |
|
* @param outBlobNames names for layers which outputs are needed to get |
|
*/ |
|
CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs, |
|
const std::vector<String>& outBlobNames); |
|
|
|
/** |
|
* @brief Compile Halide layers. |
|
* @param[in] scheduler Path to YAML file with scheduling directives. |
|
* @see setPreferableBackend |
|
* |
|
* Schedule layers that support Halide backend. Then compile them for |
|
* specific target. For layers that not represented in scheduling file |
|
* or if no manual scheduling used at all, automatic scheduling will be applied. |
|
*/ |
|
CV_WRAP void setHalideScheduler(const String& scheduler); |
|
|
|
/** |
|
* @brief Ask network to use specific computation backend where it supported. |
|
* @param[in] backendId backend identifier. |
|
* @see Backend |
|
* |
|
* If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT |
|
* means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV. |
|
*/ |
|
CV_WRAP void setPreferableBackend(int backendId); |
|
|
|
/** |
|
* @brief Ask network to make computations on specific target device. |
|
* @param[in] targetId target identifier. |
|
* @see Target |
|
* |
|
* List of supported combinations backend / target: |
|
* | | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE | |
|
* |------------------------|--------------------|------------------------------|--------------------| |
|
* | DNN_TARGET_CPU | + | + | + | |
|
* | DNN_TARGET_OPENCL | + | + | + | |
|
* | DNN_TARGET_OPENCL_FP16 | + | + | | |
|
* | DNN_TARGET_MYRIAD | | + | | |
|
* | DNN_TARGET_FPGA | | + | | |
|
*/ |
|
CV_WRAP void setPreferableTarget(int targetId); |
|
|
|
/** @brief Sets the new input value for the network |
|
* @param blob A new blob. Should have CV_32F or CV_8U depth. |
|
* @param name A name of input layer. |
|
* @param scalefactor An optional normalization scale. |
|
* @param mean An optional mean subtraction values. |
|
* @see connect(String, String) to know format of the descriptor. |
|
* |
|
* If scale or mean values are specified, a final input blob is computed |
|
* as: |
|
* \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f] |
|
*/ |
|
CV_WRAP void setInput(InputArray blob, const String& name = "", |
|
double scalefactor = 1.0, const Scalar& mean = Scalar()); |
|
|
|
/** @brief Sets the new value for the learned param of the layer. |
|
* @param layer name or id of the layer. |
|
* @param numParam index of the layer parameter in the Layer::blobs array. |
|
* @param blob the new value. |
|
* @see Layer::blobs |
|
* @note If shape of the new blob differs from the previous shape, |
|
* then the following forward pass may fail. |
|
*/ |
|
CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob); |
|
|
|
/** @brief Returns parameter blob of the layer. |
|
* @param layer name or id of the layer. |
|
* @param numParam index of the layer parameter in the Layer::blobs array. |
|
* @see Layer::blobs |
|
*/ |
|
CV_WRAP Mat getParam(LayerId layer, int numParam = 0); |
|
|
|
/** @brief Returns indexes of layers with unconnected outputs. |
|
*/ |
|
CV_WRAP std::vector<int> getUnconnectedOutLayers() const; |
|
|
|
/** @brief Returns names of layers with unconnected outputs. |
|
*/ |
|
CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const; |
|
|
|
/** @brief Returns input and output shapes for all layers in loaded model; |
|
* preliminary inferencing isn't necessary. |
|
* @param netInputShapes shapes for all input blobs in net input layer. |
|
* @param layersIds output parameter for layer IDs. |
|
* @param inLayersShapes output parameter for input layers shapes; |
|
* order is the same as in layersIds |
|
* @param outLayersShapes output parameter for output layers shapes; |
|
* order is the same as in layersIds |
|
*/ |
|
CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes, |
|
CV_OUT std::vector<int>& layersIds, |
|
CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes, |
|
CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const; |
|
|
|
/** @overload */ |
|
CV_WRAP void getLayersShapes(const MatShape& netInputShape, |
|
CV_OUT std::vector<int>& layersIds, |
|
CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes, |
|
CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const; |
|
|
|
/** @brief Returns input and output shapes for layer with specified |
|
* id in loaded model; preliminary inferencing isn't necessary. |
|
* @param netInputShape shape input blob in net input layer. |
|
* @param layerId id for layer. |
|
* @param inLayerShapes output parameter for input layers shapes; |
|
* order is the same as in layersIds |
|
* @param outLayerShapes output parameter for output layers shapes; |
|
* order is the same as in layersIds |
|
*/ |
|
void getLayerShapes(const MatShape& netInputShape, |
|
const int layerId, |
|
CV_OUT std::vector<MatShape>& inLayerShapes, |
|
CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP |
|
|
|
/** @overload */ |
|
void getLayerShapes(const std::vector<MatShape>& netInputShapes, |
|
const int layerId, |
|
CV_OUT std::vector<MatShape>& inLayerShapes, |
|
CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP |
|
|
|
/** @brief Computes FLOP for whole loaded model with specified input shapes. |
|
* @param netInputShapes vector of shapes for all net inputs. |
|
* @returns computed FLOP. |
|
*/ |
|
CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const; |
|
/** @overload */ |
|
CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const; |
|
/** @overload */ |
|
CV_WRAP int64 getFLOPS(const int layerId, |
|
const std::vector<MatShape>& netInputShapes) const; |
|
/** @overload */ |
|
CV_WRAP int64 getFLOPS(const int layerId, |
|
const MatShape& netInputShape) const; |
|
|
|
/** @brief Returns list of types for layer used in model. |
|
* @param layersTypes output parameter for returning types. |
|
*/ |
|
CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const; |
|
|
|
/** @brief Returns count of layers of specified type. |
|
* @param layerType type. |
|
* @returns count of layers |
|
*/ |
|
CV_WRAP int getLayersCount(const String& layerType) const; |
|
|
|
/** @brief Computes bytes number which are required to store |
|
* all weights and intermediate blobs for model. |
|
* @param netInputShapes vector of shapes for all net inputs. |
|
* @param weights output parameter to store resulting bytes for weights. |
|
* @param blobs output parameter to store resulting bytes for intermediate blobs. |
|
*/ |
|
void getMemoryConsumption(const std::vector<MatShape>& netInputShapes, |
|
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP |
|
/** @overload */ |
|
CV_WRAP void getMemoryConsumption(const MatShape& netInputShape, |
|
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; |
|
/** @overload */ |
|
CV_WRAP void getMemoryConsumption(const int layerId, |
|
const std::vector<MatShape>& netInputShapes, |
|
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; |
|
/** @overload */ |
|
CV_WRAP void getMemoryConsumption(const int layerId, |
|
const MatShape& netInputShape, |
|
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; |
|
|
|
/** @brief Computes bytes number which are required to store |
|
* all weights and intermediate blobs for each layer. |
|
* @param netInputShapes vector of shapes for all net inputs. |
|
* @param layerIds output vector to save layer IDs. |
|
* @param weights output parameter to store resulting bytes for weights. |
|
* @param blobs output parameter to store resulting bytes for intermediate blobs. |
|
*/ |
|
void getMemoryConsumption(const std::vector<MatShape>& netInputShapes, |
|
CV_OUT std::vector<int>& layerIds, |
|
CV_OUT std::vector<size_t>& weights, |
|
CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP |
|
/** @overload */ |
|
void getMemoryConsumption(const MatShape& netInputShape, |
|
CV_OUT std::vector<int>& layerIds, |
|
CV_OUT std::vector<size_t>& weights, |
|
CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP |
|
|
|
/** @brief Enables or disables layer fusion in the network. |
|
* @param fusion true to enable the fusion, false to disable. The fusion is enabled by default. |
|
*/ |
|
CV_WRAP void enableFusion(bool fusion); |
|
|
|
/** @brief Returns overall time for inference and timings (in ticks) for layers. |
|
* Indexes in returned vector correspond to layers ids. Some layers can be fused with others, |
|
* in this case zero ticks count will be return for that skipped layers. |
|
* @param timings vector for tick timings for all layers. |
|
* @return overall ticks for model inference. |
|
*/ |
|
CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings); |
|
|
|
private: |
|
struct Impl; |
|
Ptr<Impl> impl; |
|
}; |
|
|
|
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. |
|
* @param cfgFile path to the .cfg file with text description of the network architecture. |
|
* @param darknetModel path to the .weights file with learned network. |
|
* @returns Network object that ready to do forward, throw an exception in failure cases. |
|
* @returns Net object. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String()); |
|
|
|
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. |
|
* @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture. |
|
* @param bufferModel A buffer contains a content of .weights file with learned network. |
|
* @returns Net object. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg, |
|
const std::vector<uchar>& bufferModel = std::vector<uchar>()); |
|
|
|
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. |
|
* @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture. |
|
* @param lenCfg Number of bytes to read from bufferCfg |
|
* @param bufferModel A buffer contains a content of .weights file with learned network. |
|
* @param lenModel Number of bytes to read from bufferModel |
|
* @returns Net object. |
|
*/ |
|
CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg, |
|
const char *bufferModel = NULL, size_t lenModel = 0); |
|
|
|
/** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format. |
|
* @param prototxt path to the .prototxt file with text description of the network architecture. |
|
* @param caffeModel path to the .caffemodel file with learned network. |
|
* @returns Net object. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String()); |
|
|
|
/** @brief Reads a network model stored in Caffe model in memory. |
|
* @param bufferProto buffer containing the content of the .prototxt file |
|
* @param bufferModel buffer containing the content of the .caffemodel file |
|
* @returns Net object. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto, |
|
const std::vector<uchar>& bufferModel = std::vector<uchar>()); |
|
|
|
/** @brief Reads a network model stored in Caffe model in memory. |
|
* @details This is an overloaded member function, provided for convenience. |
|
* It differs from the above function only in what argument(s) it accepts. |
|
* @param bufferProto buffer containing the content of the .prototxt file |
|
* @param lenProto length of bufferProto |
|
* @param bufferModel buffer containing the content of the .caffemodel file |
|
* @param lenModel length of bufferModel |
|
* @returns Net object. |
|
*/ |
|
CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto, |
|
const char *bufferModel = NULL, size_t lenModel = 0); |
|
|
|
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. |
|
* @param model path to the .pb file with binary protobuf description of the network architecture |
|
* @param config path to the .pbtxt file that contains text graph definition in protobuf format. |
|
* Resulting Net object is built by text graph using weights from a binary one that |
|
* let us make it more flexible. |
|
* @returns Net object. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String()); |
|
|
|
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. |
|
* @param bufferModel buffer containing the content of the pb file |
|
* @param bufferConfig buffer containing the content of the pbtxt file |
|
* @returns Net object. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel, |
|
const std::vector<uchar>& bufferConfig = std::vector<uchar>()); |
|
|
|
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format. |
|
* @details This is an overloaded member function, provided for convenience. |
|
* It differs from the above function only in what argument(s) it accepts. |
|
* @param bufferModel buffer containing the content of the pb file |
|
* @param lenModel length of bufferModel |
|
* @param bufferConfig buffer containing the content of the pbtxt file |
|
* @param lenConfig length of bufferConfig |
|
*/ |
|
CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel, |
|
const char *bufferConfig = NULL, size_t lenConfig = 0); |
|
|
|
/** |
|
* @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format. |
|
* @param model path to the file, dumped from Torch by using torch.save() function. |
|
* @param isBinary specifies whether the network was serialized in ascii mode or binary. |
|
* @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch. |
|
* @returns Net object. |
|
* |
|
* @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language, |
|
* which has various bit-length on different systems. |
|
* |
|
* The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object |
|
* with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors. |
|
* |
|
* List of supported layers (i.e. object instances derived from Torch nn.Module class): |
|
* - nn.Sequential |
|
* - nn.Parallel |
|
* - nn.Concat |
|
* - nn.Linear |
|
* - nn.SpatialConvolution |
|
* - nn.SpatialMaxPooling, nn.SpatialAveragePooling |
|
* - nn.ReLU, nn.TanH, nn.Sigmoid |
|
* - nn.Reshape |
|
* - nn.SoftMax, nn.LogSoftMax |
|
* |
|
* Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true, bool evaluate = true); |
|
|
|
/** |
|
* @brief Read deep learning network represented in one of the supported formats. |
|
* @param[in] model Binary file contains trained weights. The following file |
|
* extensions are expected for models from different frameworks: |
|
* * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/) |
|
* * `*.pb` (TensorFlow, https://www.tensorflow.org/) |
|
* * `*.t7` | `*.net` (Torch, http://torch.ch/) |
|
* * `*.weights` (Darknet, https://pjreddie.com/darknet/) |
|
* * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit) |
|
* * `*.onnx` (ONNX, https://onnx.ai/) |
|
* @param[in] config Text file contains network configuration. It could be a |
|
* file with the following extensions: |
|
* * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/) |
|
* * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/) |
|
* * `*.cfg` (Darknet, https://pjreddie.com/darknet/) |
|
* * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit) |
|
* @param[in] framework Explicit framework name tag to determine a format. |
|
* @returns Net object. |
|
* |
|
* This function automatically detects an origin framework of trained model |
|
* and calls an appropriate function such @ref readNetFromCaffe, @ref readNetFromTensorflow, |
|
* @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config |
|
* arguments does not matter. |
|
*/ |
|
CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = ""); |
|
|
|
/** |
|
* @brief Read deep learning network represented in one of the supported formats. |
|
* @details This is an overloaded member function, provided for convenience. |
|
* It differs from the above function only in what argument(s) it accepts. |
|
* @param[in] framework Name of origin framework. |
|
* @param[in] bufferModel A buffer with a content of binary file with weights |
|
* @param[in] bufferConfig A buffer with a content of text file contains network configuration. |
|
* @returns Net object. |
|
*/ |
|
CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel, |
|
const std::vector<uchar>& bufferConfig = std::vector<uchar>()); |
|
|
|
/** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework. |
|
* @warning This function has the same limitations as readNetFromTorch(). |
|
*/ |
|
CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true); |
|
|
|
/** @brief Load a network from Intel's Model Optimizer intermediate representation. |
|
* @param[in] xml XML configuration file with network's topology. |
|
* @param[in] bin Binary file with trained weights. |
|
* @returns Net object. |
|
* Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine |
|
* backend. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromModelOptimizer(const String &xml, const String &bin); |
|
|
|
/** @brief Reads a network model <a href="https://onnx.ai/">ONNX</a>. |
|
* @param onnxFile path to the .onnx file with text description of the network architecture. |
|
* @returns Network object that ready to do forward, throw an exception in failure cases. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile); |
|
|
|
/** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a> |
|
* in-memory buffer. |
|
* @param buffer memory address of the first byte of the buffer. |
|
* @param sizeBuffer size of the buffer. |
|
* @returns Network object that ready to do forward, throw an exception |
|
* in failure cases. |
|
*/ |
|
CV_EXPORTS Net readNetFromONNX(const char* buffer, size_t sizeBuffer); |
|
|
|
/** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a> |
|
* in-memory buffer. |
|
* @param buffer in-memory buffer that stores the ONNX model bytes. |
|
* @returns Network object that ready to do forward, throw an exception |
|
* in failure cases. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromONNX(const std::vector<uchar>& buffer); |
|
|
|
/** @brief Creates blob from .pb file. |
|
* @param path to the .pb file with input tensor. |
|
* @returns Mat. |
|
*/ |
|
CV_EXPORTS_W Mat readTensorFromONNX(const String& path); |
|
|
|
/** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center, |
|
* subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels. |
|
* @param image input image (with 1-, 3- or 4-channels). |
|
* @param size spatial size for output image |
|
* @param mean scalar with mean values which are subtracted from channels. Values are intended |
|
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true. |
|
* @param scalefactor multiplier for @p image values. |
|
* @param swapRB flag which indicates that swap first and last channels |
|
* in 3-channel image is necessary. |
|
* @param crop flag which indicates whether image will be cropped after resize or not |
|
* @param ddepth Depth of output blob. Choose CV_32F or CV_8U. |
|
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponding |
|
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed. |
|
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. |
|
* @returns 4-dimensional Mat with NCHW dimensions order. |
|
*/ |
|
CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(), |
|
const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, |
|
int ddepth=CV_32F); |
|
|
|
/** @brief Creates 4-dimensional blob from image. |
|
* @details This is an overloaded member function, provided for convenience. |
|
* It differs from the above function only in what argument(s) it accepts. |
|
*/ |
|
CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0, |
|
const Size& size = Size(), const Scalar& mean = Scalar(), |
|
bool swapRB=false, bool crop=false, int ddepth=CV_32F); |
|
|
|
|
|
/** @brief Creates 4-dimensional blob from series of images. Optionally resizes and |
|
* crops @p images from center, subtract @p mean values, scales values by @p scalefactor, |
|
* swap Blue and Red channels. |
|
* @param images input images (all with 1-, 3- or 4-channels). |
|
* @param size spatial size for output image |
|
* @param mean scalar with mean values which are subtracted from channels. Values are intended |
|
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true. |
|
* @param scalefactor multiplier for @p images values. |
|
* @param swapRB flag which indicates that swap first and last channels |
|
* in 3-channel image is necessary. |
|
* @param crop flag which indicates whether image will be cropped after resize or not |
|
* @param ddepth Depth of output blob. Choose CV_32F or CV_8U. |
|
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponding |
|
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed. |
|
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. |
|
* @returns 4-dimensional Mat with NCHW dimensions order. |
|
*/ |
|
CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0, |
|
Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, |
|
int ddepth=CV_32F); |
|
|
|
/** @brief Creates 4-dimensional blob from series of images. |
|
* @details This is an overloaded member function, provided for convenience. |
|
* It differs from the above function only in what argument(s) it accepts. |
|
*/ |
|
CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob, |
|
double scalefactor=1.0, Size size = Size(), |
|
const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false, |
|
int ddepth=CV_32F); |
|
|
|
/** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure |
|
* (std::vector<cv::Mat>). |
|
* @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from |
|
* which you would like to extract the images. |
|
* @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision |
|
* (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension |
|
* of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth). |
|
*/ |
|
CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_); |
|
|
|
/** @brief Convert all weights of Caffe network to half precision floating point. |
|
* @param src Path to origin model from Caffe framework contains single |
|
* precision floating point weights (usually has `.caffemodel` extension). |
|
* @param dst Path to destination model with updated weights. |
|
* @param layersTypes Set of layers types which parameters will be converted. |
|
* By default, converts only Convolutional and Fully-Connected layers' |
|
* weights. |
|
* |
|
* @note Shrinked model has no origin float32 weights so it can't be used |
|
* in origin Caffe framework anymore. However the structure of data |
|
* is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe. |
|
* So the resulting model may be used there. |
|
*/ |
|
CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst, |
|
const std::vector<String>& layersTypes = std::vector<String>()); |
|
|
|
/** @brief Create a text representation for a binary network stored in protocol buffer format. |
|
* @param[in] model A path to binary network. |
|
* @param[in] output A path to output text file to be created. |
|
* |
|
* @note To reduce output file size, trained weights are not included. |
|
*/ |
|
CV_EXPORTS_W void writeTextGraph(const String& model, const String& output); |
|
|
|
/** @brief Performs non maximum suppression given boxes and corresponding scores. |
|
|
|
* @param bboxes a set of bounding boxes to apply NMS. |
|
* @param scores a set of corresponding confidences. |
|
* @param score_threshold a threshold used to filter boxes by score. |
|
* @param nms_threshold a threshold used in non maximum suppression. |
|
* @param indices the kept indices of bboxes after NMS. |
|
* @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$. |
|
* @param top_k if `>0`, keep at most @p top_k picked indices. |
|
*/ |
|
CV_EXPORTS_W void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores, |
|
const float score_threshold, const float nms_threshold, |
|
CV_OUT std::vector<int>& indices, |
|
const float eta = 1.f, const int top_k = 0); |
|
|
|
CV_EXPORTS_W void NMSBoxes(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores, |
|
const float score_threshold, const float nms_threshold, |
|
CV_OUT std::vector<int>& indices, |
|
const float eta = 1.f, const int top_k = 0); |
|
|
|
CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores, |
|
const float score_threshold, const float nms_threshold, |
|
CV_OUT std::vector<int>& indices, |
|
const float eta = 1.f, const int top_k = 0); |
|
|
|
|
|
/** @brief This class is presented high-level API for neural networks. |
|
* |
|
* Model allows to set params for preprocessing input image. |
|
* Model creates net from file with trained weights and config, |
|
* sets preprocessing input and runs forward pass. |
|
*/ |
|
class CV_EXPORTS_W_SIMPLE Model : public Net |
|
{ |
|
public: |
|
/** |
|
* @brief Default constructor. |
|
*/ |
|
Model(); |
|
|
|
/** |
|
* @brief Create model from deep learning network represented in one of the supported formats. |
|
* An order of @p model and @p config arguments does not matter. |
|
* @param[in] model Binary file contains trained weights. |
|
* @param[in] config Text file contains network configuration. |
|
*/ |
|
CV_WRAP Model(const String& model, const String& config = ""); |
|
|
|
/** |
|
* @brief Create model from deep learning network. |
|
* @param[in] network Net object. |
|
*/ |
|
CV_WRAP Model(const Net& network); |
|
|
|
/** @brief Set input size for frame. |
|
* @param[in] size New input size. |
|
* @note If shape of the new blob less than 0, then frame size not change. |
|
*/ |
|
CV_WRAP Model& setInputSize(const Size& size); |
|
|
|
/** @brief Set input size for frame. |
|
* @param[in] width New input width. |
|
* @param[in] height New input height. |
|
* @note If shape of the new blob less than 0, |
|
* then frame size not change. |
|
*/ |
|
CV_WRAP Model& setInputSize(int width, int height); |
|
|
|
/** @brief Set mean value for frame. |
|
* @param[in] mean Scalar with mean values which are subtracted from channels. |
|
*/ |
|
CV_WRAP Model& setInputMean(const Scalar& mean); |
|
|
|
/** @brief Set scalefactor value for frame. |
|
* @param[in] scale Multiplier for frame values. |
|
*/ |
|
CV_WRAP Model& setInputScale(double scale); |
|
|
|
/** @brief Set flag crop for frame. |
|
* @param[in] crop Flag which indicates whether image will be cropped after resize or not. |
|
*/ |
|
CV_WRAP Model& setInputCrop(bool crop); |
|
|
|
/** @brief Set flag swapRB for frame. |
|
* @param[in] swapRB Flag which indicates that swap first and last channels. |
|
*/ |
|
CV_WRAP Model& setInputSwapRB(bool swapRB); |
|
|
|
/** @brief Set preprocessing parameters for frame. |
|
* @param[in] size New input size. |
|
* @param[in] mean Scalar with mean values which are subtracted from channels. |
|
* @param[in] scale Multiplier for frame values. |
|
* @param[in] swapRB Flag which indicates that swap first and last channels. |
|
* @param[in] crop Flag which indicates whether image will be cropped after resize or not. |
|
* blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) ) |
|
*/ |
|
CV_WRAP void setInputParams(double scale = 1.0, const Size& size = Size(), |
|
const Scalar& mean = Scalar(), bool swapRB = false, bool crop = false); |
|
|
|
/** @brief Given the @p input frame, create input blob, run net and return the output @p blobs. |
|
* @param[in] frame The input image. |
|
* @param[out] outs Allocated output blobs, which will store results of the computation. |
|
*/ |
|
CV_WRAP void predict(InputArray frame, OutputArrayOfArrays outs); |
|
|
|
protected: |
|
struct Impl; |
|
Ptr<Impl> impl; |
|
}; |
|
|
|
/** @brief This class represents high-level API for classification models. |
|
* |
|
* ClassificationModel allows to set params for preprocessing input image. |
|
* ClassificationModel creates net from file with trained weights and config, |
|
* sets preprocessing input, runs forward pass and return top-1 prediction. |
|
*/ |
|
class CV_EXPORTS_W_SIMPLE ClassificationModel : public Model |
|
{ |
|
public: |
|
/** |
|
* @brief Create classification model from network represented in one of the supported formats. |
|
* An order of @p model and @p config arguments does not matter. |
|
* @param[in] model Binary file contains trained weights. |
|
* @param[in] config Text file contains network configuration. |
|
*/ |
|
CV_WRAP ClassificationModel(const String& model, const String& config = ""); |
|
|
|
/** |
|
* @brief Create model from deep learning network. |
|
* @param[in] network Net object. |
|
*/ |
|
CV_WRAP ClassificationModel(const Net& network); |
|
|
|
/** @brief Given the @p input frame, create input blob, run net and return top-1 prediction. |
|
* @param[in] frame The input image. |
|
*/ |
|
std::pair<int, float> classify(InputArray frame); |
|
|
|
/** @overload */ |
|
CV_WRAP void classify(InputArray frame, CV_OUT int& classId, CV_OUT float& conf); |
|
}; |
|
|
|
/** @brief This class represents high-level API for segmentation models |
|
* |
|
* SegmentationModel allows to set params for preprocessing input image. |
|
* SegmentationModel creates net from file with trained weights and config, |
|
* sets preprocessing input, runs forward pass and returns the class prediction for each pixel. |
|
*/ |
|
class CV_EXPORTS_W SegmentationModel: public Model |
|
{ |
|
public: |
|
/** |
|
* @brief Create segmentation model from network represented in one of the supported formats. |
|
* An order of @p model and @p config arguments does not matter. |
|
* @param[in] model Binary file contains trained weights. |
|
* @param[in] config Text file contains network configuration. |
|
*/ |
|
CV_WRAP SegmentationModel(const String& model, const String& config = ""); |
|
|
|
/** |
|
* @brief Create model from deep learning network. |
|
* @param[in] network Net object. |
|
*/ |
|
CV_WRAP SegmentationModel(const Net& network); |
|
|
|
/** @brief Given the @p input frame, create input blob, run net |
|
* @param[in] frame The input image. |
|
* @param[out] mask Allocated class prediction for each pixel |
|
*/ |
|
CV_WRAP void segment(InputArray frame, OutputArray mask); |
|
}; |
|
|
|
/** @brief This class represents high-level API for object detection networks. |
|
* |
|
* DetectionModel allows to set params for preprocessing input image. |
|
* DetectionModel creates net from file with trained weights and config, |
|
* sets preprocessing input, runs forward pass and return result detections. |
|
* For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported. |
|
*/ |
|
class CV_EXPORTS_W_SIMPLE DetectionModel : public Model |
|
{ |
|
public: |
|
/** |
|
* @brief Create detection model from network represented in one of the supported formats. |
|
* An order of @p model and @p config arguments does not matter. |
|
* @param[in] model Binary file contains trained weights. |
|
* @param[in] config Text file contains network configuration. |
|
*/ |
|
CV_WRAP DetectionModel(const String& model, const String& config = ""); |
|
|
|
/** |
|
* @brief Create model from deep learning network. |
|
* @param[in] network Net object. |
|
*/ |
|
CV_WRAP DetectionModel(const Net& network); |
|
|
|
/** @brief Given the @p input frame, create input blob, run net and return result detections. |
|
* @param[in] frame The input image. |
|
* @param[out] classIds Class indexes in result detection. |
|
* @param[out] confidences A set of corresponding confidences. |
|
* @param[out] boxes A set of bounding boxes. |
|
* @param[in] confThreshold A threshold used to filter boxes by confidences. |
|
* @param[in] nmsThreshold A threshold used in non maximum suppression. |
|
*/ |
|
CV_WRAP void detect(InputArray frame, CV_OUT std::vector<int>& classIds, |
|
CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes, |
|
float confThreshold = 0.5f, float nmsThreshold = 0.0f); |
|
}; |
|
|
|
//! @} |
|
CV__DNN_INLINE_NS_END |
|
} |
|
} |
|
|
|
#include <opencv2/dnn/layer.hpp> |
|
#include <opencv2/dnn/dnn.inl.hpp> |
|
|
|
/// @deprecated Include this header directly from application. Automatic inclusion will be removed |
|
#include <opencv2/dnn/utils/inference_engine.hpp> |
|
|
|
#endif /* OPENCV_DNN_DNN_HPP */
|
|
|