Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

293 lines
11 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Implementation of padding layer, which adds paddings to input blob.
*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include <vector>
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/padding.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
class PaddingLayerImpl CV_FINAL : public PaddingLayer
{
public:
PaddingLayerImpl(const LayerParams &params)
{
setParamsFrom(params);
paddingValue = params.get<float>("value", 0);
inputDims = params.get<int>("input_dims", -1);
paddingType = params.get<String>("type", "constant");
CV_Assert(params.has("paddings"));
const DictValue& paddingsParam = params.get("paddings");
CV_Assert((paddingsParam.size() & 1) == 0);
paddings.resize(paddingsParam.size() / 2);
for (int i = 0; i < paddings.size(); ++i)
{
paddings[i].first = paddingsParam.get<int>(i * 2); // Pad before.
paddings[i].second = paddingsParam.get<int>(i * 2 + 1); // Pad after.
CV_Assert_N(paddings[i].first >= 0, paddings[i].second >= 0);
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() == 1);
const MatShape& inpShape = inputs[0];
CV_Assert(inpShape.size() >= paddings.size());
CV_Assert(inputDims == -1 || inpShape.size() == inputDims || inpShape.size() > paddings.size());
outputs.resize(1, inpShape);
int offset = (inputDims == -1 ? 0 : (inpShape.size() > inputDims ? 1 : 0));
for (int i = 0; i < paddings.size(); ++i)
{
outputs[0][offset + i] = inpShape[offset + i] + paddings[i].first + paddings[i].second;
}
return false;
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE
{
std::vector<Mat> inputs;
inputs_arr.getMatVector(inputs);
// Compute dstRanges.
const MatSize& inpShape = inputs[0].size;
if (inputDims != -1 && inputs[0].dims != inputDims)
{
paddings.insert(paddings.begin(), std::make_pair(0, 0));
}
dstRanges.resize(paddings.size());
for (int i = 0; i < paddings.size(); ++i)
{
dstRanges[i].start = paddings[i].first;
dstRanges[i].end = paddings[i].first + inpShape[i];
}
// Add the rest of dimensions.
for (int i = dstRanges.size(); i < inputs[0].dims; ++i)
{
dstRanges.push_back(Range::all());
paddings.push_back(std::make_pair(0, 0));
}
inputDims = -1; // Next time paddings are filled for all the dimensions.
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
bool isMyriad = preferableTarget == DNN_TARGET_MYRIAD || preferableTarget == DNN_TARGET_HDDL;
if (INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1) && isMyriad)
return dstRanges.size() == 4 && paddings[0].first == 0 && paddings[0].second == 0;
return (dstRanges.size() <= 4 || !isArmComputePlugin());
}
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && dstRanges.size() == 4);
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
if (paddingType == "constant")
{
if (inputs_arr.depth() == CV_16S)
{
std::vector<float> paddingValue_fp32(1, paddingValue);
std::vector<int16_t> paddingValue_fp16(1);
cv::convertFp16(paddingValue_fp32, paddingValue_fp16);
outputs[0].setTo(paddingValue_fp16[0]);
}
else if (inputs_arr.depth() == CV_8S)
outputs[0].setTo(saturate_cast<int8_t>(paddingValue));
else
outputs[0].setTo(paddingValue);
inputs[0].copyTo(outputs[0](dstRanges));
}
else if (paddingType == "reflect")
{
CV_Assert(inputs.size() == 1);
CV_Assert(outputs.size() == 1);
CV_Assert(inputs[0].dims == 4);
CV_Assert(outputs[0].dims == 4);
if (inputs[0].size[0] != outputs[0].size[0] || inputs[0].size[1] != outputs[0].size[1])
CV_Error(Error::StsNotImplemented, "Only spatial reflection padding is supported.");
const int inpHeight = inputs[0].size[2];
const int inpWidth = inputs[0].size[3];
const int outHeight = outputs[0].size[2];
const int outWidth = outputs[0].size[3];
const int padTop = dstRanges[2].start;
const int padBottom = outHeight - dstRanges[2].end;
const int padLeft = dstRanges[3].start;
const int padRight = outWidth - dstRanges[3].end;
CV_CheckLT(padTop, inpHeight, ""); CV_CheckLT(padBottom, inpHeight, "");
CV_CheckLT(padLeft, inpWidth, ""); CV_CheckLT(padRight, inpWidth, "");
for (size_t n = 0; n < inputs[0].size[0]; ++n)
{
for (size_t ch = 0; ch < inputs[0].size[1]; ++ch)
{
copyMakeBorder(getPlane(inputs[0], n, ch),
getPlane(outputs[0], n, ch),
padTop, padBottom, padLeft, padRight,
BORDER_REFLECT_101);
}
}
}
else
CV_Error(Error::StsNotImplemented, "Unknown padding type: " + paddingType);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
cuda4dnn::PaddingType ptype;
if (paddingType == "constant")
ptype = PaddingType::CONSTANT;
else if (paddingType == "reflect")
ptype = PaddingType::REFLECTION101;
else
CV_Error(Error::StsNotImplemented, "Unsupported padding mode");
return make_cuda_node<cuda4dnn::PaddingOp>(preferableTarget, std::move(context->stream), ptype, paddingValue, dstRanges);
}
#endif
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
int inW, inH, inC, inN;
int minN = std::max(dstRanges[0].start, 0);
int minC = std::max(dstRanges[1].start, 0);
int minY = std::max(dstRanges[2].start, 0);
int minX = std::max(dstRanges[3].start, 0);
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Func padded =
Halide::BoundaryConditions::constant_exterior(inputBuffer, paddingValue);
top(x, y, c, n) = padded(x - minX, y - minY, c - minC, n - minN);
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
InferenceEngine::Builder::Layer ieLayer(name);
ieLayer.setName(name);
ieLayer.setType("Pad");
std::vector<int> begins(paddings.size(), 0), ends(paddings.size(), 0);
for (int i = 0; i < paddings.size(); ++i)
{
begins[i] = paddings[i].first;
ends[i] = paddings[i].second;
}
ieLayer.getParameters()["pads_begin"] = begins;
ieLayer.getParameters()["pads_end"] = ends;
ieLayer.getParameters()["pad_mode"] = paddingType;
if (paddingType == "constant")
ieLayer.getParameters()["pad_value"] = paddingValue;
ieLayer.setInputPorts(std::vector<InferenceEngine::Port>(1));
ieLayer.setOutputPorts(std::vector<InferenceEngine::Port>(1));
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
}
#endif
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
std::vector<int64_t> begins(paddings.size(), 0), ends(paddings.size(), 0);
for (int i = 0; i < paddings.size(); ++i)
{
begins[i] = static_cast<int64_t>(paddings[i].first);
ends[i] = static_cast<int64_t>(paddings[i].second);
}
auto padding_below = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{begins.size()}, begins.data());
auto padding_above = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{ends.size()}, ends.data());
auto pad_mode = paddingType == "constant" ? ngraph::op::PadMode::CONSTANT : ngraph::op::PadMode::REFLECT; // SYMMETRIC
auto arg_pad_value = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{}, &paddingValue);;
auto pad = paddingType == "constant" ?
std::make_shared<ngraph::op::v1::Pad>(ieInpNode, padding_below, padding_above, arg_pad_value, pad_mode) :
std::make_shared<ngraph::op::v1::Pad>(ieInpNode, padding_below, padding_above, pad_mode);
return Ptr<BackendNode>(new InfEngineNgraphNode(pad));
}
#endif
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
{
float outputScale = scales[1][0];
int outputZp = zeropoints[1][0];
float padValue = outputZp + std::round(params.get<float>("value", 0)/outputScale);
params.set("value", padValue);
return true;
}
private:
std::vector<std::pair<int, int> > paddings; // Pairs pad before, pad after.
std::vector<Range> dstRanges;
int inputDims;
float paddingValue;
std::string paddingType;
};
Ptr<PaddingLayer> PaddingLayer::create(const LayerParams &params)
{
return Ptr<PaddingLayer>(new PaddingLayerImpl(params));
}
}
}