mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
291 lines
11 KiB
291 lines
11 KiB
import argparse |
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
from tensorflow.core.framework.node_def_pb2 import NodeDef |
|
from tensorflow.tools.graph_transforms import TransformGraph |
|
from google.protobuf import text_format |
|
|
|
parser = argparse.ArgumentParser(description='Run this script to get a text graph of ' |
|
'SSD model from TensorFlow Object Detection API. ' |
|
'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.') |
|
parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.') |
|
parser.add_argument('--output', required=True, help='Path to output text graph.') |
|
parser.add_argument('--num_classes', default=90, type=int, help='Number of trained classes.') |
|
parser.add_argument('--scales', default=[0.25, 0.5, 1.0, 2.0], type=float, nargs='+', |
|
help='Hyper-parameter of grid_anchor_generator from a config file.') |
|
parser.add_argument('--aspect_ratios', default=[0.5, 1.0, 2.0], type=float, nargs='+', |
|
help='Hyper-parameter of grid_anchor_generator from a config file.') |
|
parser.add_argument('--features_stride', default=16, type=float, nargs='+', |
|
help='Hyper-parameter from a config file.') |
|
args = parser.parse_args() |
|
|
|
scopesToKeep = ('FirstStageFeatureExtractor', 'Conv', |
|
'FirstStageBoxPredictor/BoxEncodingPredictor', |
|
'FirstStageBoxPredictor/ClassPredictor', |
|
'CropAndResize', |
|
'MaxPool2D', |
|
'SecondStageFeatureExtractor', |
|
'SecondStageBoxPredictor', |
|
'image_tensor') |
|
|
|
scopesToIgnore = ('FirstStageFeatureExtractor/Assert', |
|
'FirstStageFeatureExtractor/Shape', |
|
'FirstStageFeatureExtractor/strided_slice', |
|
'FirstStageFeatureExtractor/GreaterEqual', |
|
'FirstStageFeatureExtractor/LogicalAnd') |
|
|
|
unusedAttrs = ['T', 'Tshape', 'N', 'Tidx', 'Tdim', 'use_cudnn_on_gpu', |
|
'Index', 'Tperm', 'is_training', 'Tpaddings'] |
|
|
|
# Read the graph. |
|
with tf.gfile.FastGFile(args.input, 'rb') as f: |
|
graph_def = tf.GraphDef() |
|
graph_def.ParseFromString(f.read()) |
|
|
|
# Removes Identity nodes |
|
def removeIdentity(): |
|
identities = {} |
|
for node in graph_def.node: |
|
if node.op == 'Identity': |
|
identities[node.name] = node.input[0] |
|
graph_def.node.remove(node) |
|
|
|
for node in graph_def.node: |
|
for i in range(len(node.input)): |
|
if node.input[i] in identities: |
|
node.input[i] = identities[node.input[i]] |
|
|
|
removeIdentity() |
|
|
|
removedNodes = [] |
|
|
|
for i in reversed(range(len(graph_def.node))): |
|
op = graph_def.node[i].op |
|
name = graph_def.node[i].name |
|
|
|
if op == 'Const' or name.startswith(scopesToIgnore) or not name.startswith(scopesToKeep): |
|
if op != 'Const': |
|
removedNodes.append(name) |
|
|
|
del graph_def.node[i] |
|
else: |
|
for attr in unusedAttrs: |
|
if attr in graph_def.node[i].attr: |
|
del graph_def.node[i].attr[attr] |
|
|
|
# Remove references to removed nodes except Const nodes. |
|
for node in graph_def.node: |
|
for i in reversed(range(len(node.input))): |
|
if node.input[i] in removedNodes: |
|
del node.input[i] |
|
|
|
|
|
# Connect input node to the first layer |
|
assert(graph_def.node[0].op == 'Placeholder') |
|
graph_def.node[1].input.insert(0, graph_def.node[0].name) |
|
|
|
# Temporarily remove top nodes. |
|
topNodes = [] |
|
while True: |
|
node = graph_def.node.pop() |
|
topNodes.append(node) |
|
if node.op == 'CropAndResize': |
|
break |
|
|
|
def tensorMsg(values): |
|
if all([isinstance(v, float) for v in values]): |
|
dtype = 'DT_FLOAT' |
|
field = 'float_val' |
|
elif all([isinstance(v, int) for v in values]): |
|
dtype = 'DT_INT32' |
|
field = 'int_val' |
|
else: |
|
raise Exception('Wrong values types') |
|
|
|
msg = 'tensor { dtype: ' + dtype + ' tensor_shape { dim { size: %d } }' % len(values) |
|
for value in values: |
|
msg += '%s: %s ' % (field, str(value)) |
|
return msg + '}' |
|
|
|
def addSlice(inp, out, begins, sizes): |
|
beginsNode = NodeDef() |
|
beginsNode.name = out + '/begins' |
|
beginsNode.op = 'Const' |
|
text_format.Merge(tensorMsg(begins), beginsNode.attr["value"]) |
|
graph_def.node.extend([beginsNode]) |
|
|
|
sizesNode = NodeDef() |
|
sizesNode.name = out + '/sizes' |
|
sizesNode.op = 'Const' |
|
text_format.Merge(tensorMsg(sizes), sizesNode.attr["value"]) |
|
graph_def.node.extend([sizesNode]) |
|
|
|
sliced = NodeDef() |
|
sliced.name = out |
|
sliced.op = 'Slice' |
|
sliced.input.append(inp) |
|
sliced.input.append(beginsNode.name) |
|
sliced.input.append(sizesNode.name) |
|
graph_def.node.extend([sliced]) |
|
|
|
def addReshape(inp, out, shape): |
|
shapeNode = NodeDef() |
|
shapeNode.name = out + '/shape' |
|
shapeNode.op = 'Const' |
|
text_format.Merge(tensorMsg(shape), shapeNode.attr["value"]) |
|
graph_def.node.extend([shapeNode]) |
|
|
|
reshape = NodeDef() |
|
reshape.name = out |
|
reshape.op = 'Reshape' |
|
reshape.input.append(inp) |
|
reshape.input.append(shapeNode.name) |
|
graph_def.node.extend([reshape]) |
|
|
|
def addSoftMax(inp, out): |
|
softmax = NodeDef() |
|
softmax.name = out |
|
softmax.op = 'Softmax' |
|
text_format.Merge('i: -1', softmax.attr['axis']) |
|
softmax.input.append(inp) |
|
graph_def.node.extend([softmax]) |
|
|
|
addReshape('FirstStageBoxPredictor/ClassPredictor/BiasAdd', |
|
'FirstStageBoxPredictor/ClassPredictor/reshape_1', [0, -1, 2]) |
|
|
|
addSoftMax('FirstStageBoxPredictor/ClassPredictor/reshape_1', |
|
'FirstStageBoxPredictor/ClassPredictor/softmax') # Compare with Reshape_4 |
|
|
|
flatten = NodeDef() |
|
flatten.name = 'FirstStageBoxPredictor/BoxEncodingPredictor/flatten' # Compare with FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd |
|
flatten.op = 'Flatten' |
|
flatten.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd') |
|
graph_def.node.extend([flatten]) |
|
|
|
proposals = NodeDef() |
|
proposals.name = 'proposals' # Compare with ClipToWindow/Gather/Gather (NOTE: normalized) |
|
proposals.op = 'PriorBox' |
|
proposals.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd') |
|
proposals.input.append(graph_def.node[0].name) # image_tensor |
|
|
|
text_format.Merge('b: false', proposals.attr["flip"]) |
|
text_format.Merge('b: true', proposals.attr["clip"]) |
|
text_format.Merge('f: %f' % args.features_stride, proposals.attr["step"]) |
|
text_format.Merge('f: 0.0', proposals.attr["offset"]) |
|
text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), proposals.attr["variance"]) |
|
|
|
widths = [] |
|
heights = [] |
|
for a in args.aspect_ratios: |
|
for s in args.scales: |
|
ar = np.sqrt(a) |
|
heights.append((args.features_stride**2) * s / ar) |
|
widths.append((args.features_stride**2) * s * ar) |
|
|
|
text_format.Merge(tensorMsg(widths), proposals.attr["width"]) |
|
text_format.Merge(tensorMsg(heights), proposals.attr["height"]) |
|
|
|
graph_def.node.extend([proposals]) |
|
|
|
# Compare with Reshape_5 |
|
detectionOut = NodeDef() |
|
detectionOut.name = 'detection_out' |
|
detectionOut.op = 'DetectionOutput' |
|
|
|
detectionOut.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/flatten') |
|
detectionOut.input.append('FirstStageBoxPredictor/ClassPredictor/softmax') |
|
detectionOut.input.append('proposals') |
|
|
|
text_format.Merge('i: 2', detectionOut.attr['num_classes']) |
|
text_format.Merge('b: true', detectionOut.attr['share_location']) |
|
text_format.Merge('i: 0', detectionOut.attr['background_label_id']) |
|
text_format.Merge('f: 0.7', detectionOut.attr['nms_threshold']) |
|
text_format.Merge('i: 6000', detectionOut.attr['top_k']) |
|
text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type']) |
|
text_format.Merge('i: 100', detectionOut.attr['keep_top_k']) |
|
text_format.Merge('b: true', detectionOut.attr['clip']) |
|
text_format.Merge('b: true', detectionOut.attr['loc_pred_transposed']) |
|
|
|
graph_def.node.extend([detectionOut]) |
|
|
|
# Save as text. |
|
for node in reversed(topNodes): |
|
graph_def.node.extend([node]) |
|
|
|
addSoftMax('SecondStageBoxPredictor/Reshape_1', 'SecondStageBoxPredictor/Reshape_1/softmax') |
|
|
|
addSlice('SecondStageBoxPredictor/Reshape_1/softmax', |
|
'SecondStageBoxPredictor/Reshape_1/slice', |
|
[0, 0, 1], [-1, -1, -1]) |
|
|
|
addReshape('SecondStageBoxPredictor/Reshape_1/slice', |
|
'SecondStageBoxPredictor/Reshape_1/Reshape', [1, -1]) |
|
|
|
# Replace Flatten subgraph onto a single node. |
|
for i in reversed(range(len(graph_def.node))): |
|
if graph_def.node[i].op == 'CropAndResize': |
|
graph_def.node[i].input.insert(1, 'detection_out') |
|
|
|
if graph_def.node[i].name == 'SecondStageBoxPredictor/Reshape': |
|
shapeNode = NodeDef() |
|
shapeNode.name = 'SecondStageBoxPredictor/Reshape/shape2' |
|
shapeNode.op = 'Const' |
|
text_format.Merge(tensorMsg([1, -1, 4]), shapeNode.attr["value"]) |
|
graph_def.node.extend([shapeNode]) |
|
|
|
graph_def.node[i].input.pop() |
|
graph_def.node[i].input.append(shapeNode.name) |
|
|
|
if graph_def.node[i].name in ['SecondStageBoxPredictor/Flatten/flatten/Shape', |
|
'SecondStageBoxPredictor/Flatten/flatten/strided_slice', |
|
'SecondStageBoxPredictor/Flatten/flatten/Reshape/shape']: |
|
del graph_def.node[i] |
|
|
|
for node in graph_def.node: |
|
if node.name == 'SecondStageBoxPredictor/Flatten/flatten/Reshape': |
|
node.op = 'Flatten' |
|
node.input.pop() |
|
break |
|
|
|
################################################################################ |
|
### Postprocessing |
|
################################################################################ |
|
addSlice('detection_out', 'detection_out/slice', [0, 0, 0, 3], [-1, -1, -1, 4]) |
|
|
|
variance = NodeDef() |
|
variance.name = 'proposals/variance' |
|
variance.op = 'Const' |
|
text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), variance.attr["value"]) |
|
graph_def.node.extend([variance]) |
|
|
|
varianceEncoder = NodeDef() |
|
varianceEncoder.name = 'variance_encoded' |
|
varianceEncoder.op = 'Mul' |
|
varianceEncoder.input.append('SecondStageBoxPredictor/Reshape') |
|
varianceEncoder.input.append(variance.name) |
|
text_format.Merge('i: 2', varianceEncoder.attr["axis"]) |
|
graph_def.node.extend([varianceEncoder]) |
|
|
|
addReshape('detection_out/slice', 'detection_out/slice/reshape', [1, 1, -1]) |
|
|
|
detectionOut = NodeDef() |
|
detectionOut.name = 'detection_out_final' |
|
detectionOut.op = 'DetectionOutput' |
|
|
|
detectionOut.input.append('variance_encoded') |
|
detectionOut.input.append('SecondStageBoxPredictor/Reshape_1/Reshape') |
|
detectionOut.input.append('detection_out/slice/reshape') |
|
|
|
text_format.Merge('i: %d' % args.num_classes, detectionOut.attr['num_classes']) |
|
text_format.Merge('b: false', detectionOut.attr['share_location']) |
|
text_format.Merge('i: %d' % (args.num_classes + 1), detectionOut.attr['background_label_id']) |
|
text_format.Merge('f: 0.6', detectionOut.attr['nms_threshold']) |
|
text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type']) |
|
text_format.Merge('i: 100', detectionOut.attr['keep_top_k']) |
|
text_format.Merge('b: true', detectionOut.attr['loc_pred_transposed']) |
|
text_format.Merge('b: true', detectionOut.attr['clip']) |
|
text_format.Merge('b: true', detectionOut.attr['variance_encoded_in_target']) |
|
graph_def.node.extend([detectionOut]) |
|
|
|
tf.train.write_graph(graph_def, "", args.output, as_text=True)
|
|
|