Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
787 lines
38 KiB
787 lines
38 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef OPENCV_DNN_DNN_HPP |
|
#define OPENCV_DNN_DNN_HPP |
|
|
|
#include <vector> |
|
#include <opencv2/core.hpp> |
|
|
|
#if !defined CV_DOXYGEN && !defined CV_DNN_DONT_ADD_EXPERIMENTAL_NS |
|
#define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_v2 { |
|
#define CV__DNN_EXPERIMENTAL_NS_END } |
|
namespace cv { namespace dnn { namespace experimental_dnn_v2 { } using namespace experimental_dnn_v2; }} |
|
#else |
|
#define CV__DNN_EXPERIMENTAL_NS_BEGIN |
|
#define CV__DNN_EXPERIMENTAL_NS_END |
|
#endif |
|
|
|
#include <opencv2/dnn/dict.hpp> |
|
|
|
namespace cv { |
|
namespace dnn { |
|
CV__DNN_EXPERIMENTAL_NS_BEGIN |
|
//! @addtogroup dnn |
|
//! @{ |
|
|
|
typedef std::vector<int> MatShape; |
|
|
|
/** |
|
* @brief Enum of computation backends supported by layers. |
|
*/ |
|
enum Backend |
|
{ |
|
DNN_BACKEND_DEFAULT, |
|
DNN_BACKEND_HALIDE |
|
}; |
|
|
|
/** |
|
* @brief Enum of target devices for computations. |
|
*/ |
|
enum Target |
|
{ |
|
DNN_TARGET_CPU, |
|
DNN_TARGET_OPENCL |
|
}; |
|
|
|
/** @brief This class provides all data needed to initialize layer. |
|
* |
|
* It includes dictionary with scalar params (which can be readed by using Dict interface), |
|
* blob params #blobs and optional meta information: #name and #type of layer instance. |
|
*/ |
|
class CV_EXPORTS LayerParams : public Dict |
|
{ |
|
public: |
|
//TODO: Add ability to name blob params |
|
std::vector<Mat> blobs; //!< List of learned parameters stored as blobs. |
|
|
|
String name; //!< Name of the layer instance (optional, can be used internal purposes). |
|
String type; //!< Type name which was used for creating layer by layer factory (optional). |
|
}; |
|
|
|
/** |
|
* @brief Derivatives of this class encapsulates functions of certain backends. |
|
*/ |
|
class BackendNode |
|
{ |
|
public: |
|
BackendNode(int backendId); |
|
|
|
virtual ~BackendNode(); //!< Virtual destructor to make polymorphism. |
|
|
|
int backendId; //!< Backend identifier. |
|
}; |
|
|
|
/** |
|
* @brief Derivatives of this class wraps cv::Mat for different backends and targets. |
|
*/ |
|
class BackendWrapper |
|
{ |
|
public: |
|
BackendWrapper(int backendId, int targetId); |
|
|
|
/** |
|
* @brief Wrap cv::Mat for specific backend and target. |
|
* @param[in] targetId Target identifier. |
|
* @param[in] m cv::Mat for wrapping. |
|
* |
|
* Make CPU->GPU data transfer if it's require for the target. |
|
*/ |
|
BackendWrapper(int targetId, const cv::Mat& m); |
|
|
|
/** |
|
* @brief Make wrapper for reused cv::Mat. |
|
* @param[in] base Wrapper of cv::Mat that will be reused. |
|
* @param[in] shape Specific shape. |
|
* |
|
* Initialize wrapper from another one. It'll wrap the same host CPU |
|
* memory and mustn't allocate memory on device(i.e. GPU). It might |
|
* has different shape. Use in case of CPU memory reusing for reuse |
|
* associented memory on device too. |
|
*/ |
|
BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape); |
|
|
|
virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism. |
|
|
|
/** |
|
* @brief Transfer data to CPU host memory. |
|
*/ |
|
virtual void copyToHost() = 0; |
|
|
|
/** |
|
* @brief Indicate that an actual data is on CPU. |
|
*/ |
|
virtual void setHostDirty() = 0; |
|
|
|
int backendId; //!< Backend identifier. |
|
int targetId; //!< Target identifier. |
|
}; |
|
|
|
class CV_EXPORTS ActivationLayer; |
|
class CV_EXPORTS BatchNormLayer; |
|
class CV_EXPORTS ScaleLayer; |
|
|
|
/** @brief This interface class allows to build new Layers - are building blocks of networks. |
|
* |
|
* Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs. |
|
* Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros. |
|
*/ |
|
class CV_EXPORTS_W Layer : public Algorithm |
|
{ |
|
public: |
|
|
|
//! List of learned parameters must be stored here to allow read them by using Net::getParam(). |
|
CV_PROP_RW std::vector<Mat> blobs; |
|
|
|
/** @brief Computes and sets internal parameters according to inputs, outputs and blobs. |
|
* @param[in] input vector of already allocated input blobs |
|
* @param[out] output vector of already allocated output blobs |
|
* |
|
* If this method is called after network has allocated all memory for input and output blobs |
|
* and before inferencing. |
|
*/ |
|
virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output); |
|
|
|
/** @brief Given the @p input blobs, computes the output @p blobs. |
|
* @param[in] input the input blobs. |
|
* @param[out] output allocated output blobs, which will store results of the computation. |
|
* @param[out] internals allocated internal blobs |
|
*/ |
|
virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals) = 0; |
|
|
|
/** @brief @overload */ |
|
CV_WRAP void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs); |
|
|
|
/** @brief @overload */ |
|
CV_WRAP std::vector<Mat> finalize(const std::vector<Mat> &inputs); |
|
|
|
/** @brief @overload */ |
|
CV_WRAP void forward(const std::vector<Mat> &inputs, CV_IN_OUT std::vector<Mat> &outputs, |
|
CV_IN_OUT std::vector<Mat> &internals); |
|
|
|
/** @brief Allocates layer and computes output. */ |
|
CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs, |
|
CV_IN_OUT std::vector<Mat> &internals); |
|
|
|
/** @brief Returns index of input blob into the input array. |
|
* @param inputName label of input blob |
|
* |
|
* Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation. |
|
* This method maps label of input blob to its index into input vector. |
|
*/ |
|
virtual int inputNameToIndex(String inputName); |
|
/** @brief Returns index of output blob in output array. |
|
* @see inputNameToIndex() |
|
*/ |
|
virtual int outputNameToIndex(String outputName); |
|
|
|
/** |
|
* @brief Ask layer if it support specific backend for doing computations. |
|
* @param[in] backendId computation backend identifier. |
|
* @see Backend |
|
*/ |
|
virtual bool supportBackend(int backendId); |
|
|
|
/** |
|
* @brief Returns Halide backend node. |
|
* @param[in] inputs Input Halide buffers. |
|
* @see BackendNode, BackendWrapper |
|
* |
|
* Input buffers should be exactly the same that will be used in forward invocations. |
|
* Despite we can use Halide::ImageParam based on input shape only, |
|
* it helps prevent some memory management issues (if something wrong, |
|
* Halide tests will be failed). |
|
*/ |
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs); |
|
|
|
/** |
|
* @brief Automatic Halide scheduling based on layer hyper-parameters. |
|
* @param[in] node Backend node with Halide functions. |
|
* @param[in] inputs Blobs that will be used in forward invocations. |
|
* @param[in] outputs Blobs that will be used in forward invocations. |
|
* @param[in] targetId Target identifier |
|
* @see BackendNode, Target |
|
* |
|
* Layer don't use own Halide::Func members because we can have applied |
|
* layers fusing. In this way the fused function should be scheduled. |
|
*/ |
|
virtual void applyHalideScheduler(Ptr<BackendNode>& node, |
|
const std::vector<Mat*> &inputs, |
|
const std::vector<Mat> &outputs, |
|
int targetId) const; |
|
|
|
/** |
|
* @brief Implement layers fusing. |
|
* @param[in] node Backend node of bottom layer. |
|
* @see BackendNode |
|
* |
|
* Actual for graph-based backends. If layer attached successfully, |
|
* returns non-empty cv::Ptr to node of the same backend. |
|
* Fuse only over the last function. |
|
*/ |
|
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node); |
|
|
|
/** |
|
* @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case. |
|
* @param[in] layer The subsequent activation layer. |
|
* |
|
* Returns true if the activation layer has been attached successfully. |
|
*/ |
|
virtual bool setActivation(const Ptr<ActivationLayer>& layer); |
|
|
|
/** |
|
* @brief Tries to attach to the layer the subsequent batch normalization layer, i.e. do the layer fusion in a partial case. |
|
* @param[in] layer The subsequent batch normalization layer. |
|
* |
|
* Returns true if the batch normalization layer has been attached successfully. |
|
*/ |
|
virtual bool setBatchNorm(const Ptr<BatchNormLayer>& layer); |
|
|
|
/** |
|
* @brief Tries to attach to the layer the subsequent scaling layer, i.e. do the layer fusion in a partial case. |
|
* @param[in] layer The subsequent scaling layer. |
|
* |
|
* Returns true if the scaling layer has been attached successfully. |
|
*/ |
|
virtual bool setScale(const Ptr<ScaleLayer>& layer); |
|
|
|
/** |
|
* @brief "Deattaches" all the layers, attached to particular layer. |
|
*/ |
|
virtual void unsetAttached(); |
|
|
|
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const; |
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
|
const std::vector<MatShape> &outputs) const {(void)inputs; (void)outputs; return 0;} |
|
|
|
CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes. |
|
CV_PROP String type; //!< Type name which was used for creating layer by layer factory. |
|
CV_PROP int preferableTarget; //!< prefer target for layer forwarding |
|
|
|
Layer(); |
|
explicit Layer(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. |
|
void setParamsFrom(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. |
|
virtual ~Layer(); |
|
}; |
|
|
|
/** @brief This class allows to create and manipulate comprehensive artificial neural networks. |
|
* |
|
* Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances, |
|
* and edges specify relationships between layers inputs and outputs. |
|
* |
|
* Each network layer has unique integer id and unique string name inside its network. |
|
* LayerId can store either layer name or layer id. |
|
* |
|
* This class supports reference counting of its instances, i. e. copies point to the same instance. |
|
*/ |
|
class CV_EXPORTS_W_SIMPLE Net |
|
{ |
|
public: |
|
|
|
CV_WRAP Net(); //!< Default constructor. |
|
CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore. |
|
|
|
/** Returns true if there are no layers in the network. */ |
|
CV_WRAP bool empty() const; |
|
|
|
/** @brief Adds new layer to the net. |
|
* @param name unique name of the adding layer. |
|
* @param type typename of the adding layer (type must be registered in LayerRegister). |
|
* @param params parameters which will be used to initialize the creating layer. |
|
* @returns unique identifier of created layer, or -1 if a failure will happen. |
|
*/ |
|
int addLayer(const String &name, const String &type, LayerParams ¶ms); |
|
/** @brief Adds new layer and connects its first input to the first output of previously added layer. |
|
* @see addLayer() |
|
*/ |
|
int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms); |
|
|
|
/** @brief Converts string name of the layer to the integer identifier. |
|
* @returns id of the layer, or -1 if the layer wasn't found. |
|
*/ |
|
CV_WRAP int getLayerId(const String &layer); |
|
|
|
CV_WRAP std::vector<String> getLayerNames() const; |
|
|
|
/** @brief Container for strings and integers. */ |
|
typedef DictValue LayerId; |
|
|
|
/** @brief Returns pointer to layer with specified id or name which the network use. */ |
|
CV_WRAP Ptr<Layer> getLayer(LayerId layerId); |
|
|
|
/** @brief Returns pointers to input layers of specific layer. */ |
|
std::vector<Ptr<Layer> > getLayerInputs(LayerId layerId); // FIXIT: CV_WRAP |
|
|
|
/** @brief Delete layer for the network (not implemented yet) */ |
|
CV_WRAP void deleteLayer(LayerId layer); |
|
|
|
/** @brief Connects output of the first layer to input of the second layer. |
|
* @param outPin descriptor of the first layer output. |
|
* @param inpPin descriptor of the second layer input. |
|
* |
|
* Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>: |
|
* - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer. |
|
* If this part is empty then the network input pseudo layer will be used; |
|
* - the second optional part of the template <DFN>input_number</DFN> |
|
* is either number of the layer input, either label one. |
|
* If this part is omitted then the first layer input will be used. |
|
* |
|
* @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex() |
|
*/ |
|
CV_WRAP void connect(String outPin, String inpPin); |
|
|
|
/** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer. |
|
* @param outLayerId identifier of the first layer |
|
* @param inpLayerId identifier of the second layer |
|
* @param outNum number of the first layer output |
|
* @param inpNum number of the second layer input |
|
*/ |
|
void connect(int outLayerId, int outNum, int inpLayerId, int inpNum); |
|
|
|
/** @brief Sets outputs names of the network input pseudo layer. |
|
* |
|
* Each net always has special own the network input pseudo layer with id=0. |
|
* This layer stores the user blobs only and don't make any computations. |
|
* In fact, this layer provides the only way to pass user data into the network. |
|
* As any other layer, this layer can label its outputs and this function provides an easy way to do this. |
|
*/ |
|
CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames); |
|
|
|
/** @brief Runs forward pass to compute output of layer with name @p outputName. |
|
* @param outputName name for layer which output is needed to get |
|
* @return blob for first output of specified layer. |
|
* @details By default runs forward pass for the whole network. |
|
*/ |
|
CV_WRAP Mat forward(const String& outputName = String()); |
|
|
|
/** @brief Runs forward pass to compute output of layer with name @p outputName. |
|
* @param outputBlobs contains all output blobs for specified layer. |
|
* @param outputName name for layer which output is needed to get |
|
* @details If @p outputName is empty, runs forward pass for the whole network. |
|
*/ |
|
CV_WRAP void forward(std::vector<Mat>& outputBlobs, const String& outputName = String()); |
|
|
|
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames. |
|
* @param outputBlobs contains blobs for first outputs of specified layers. |
|
* @param outBlobNames names for layers which outputs are needed to get |
|
*/ |
|
CV_WRAP void forward(std::vector<Mat>& outputBlobs, |
|
const std::vector<String>& outBlobNames); |
|
|
|
/** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames. |
|
* @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames. |
|
* @param outBlobNames names for layers which outputs are needed to get |
|
*/ |
|
CV_WRAP void forward(std::vector<std::vector<Mat> >& outputBlobs, |
|
const std::vector<String>& outBlobNames); |
|
|
|
//TODO: |
|
/** @brief Optimized forward. |
|
* @warning Not implemented yet. |
|
* @details Makes forward only those layers which weren't changed after previous forward(). |
|
*/ |
|
void forwardOpt(LayerId toLayer); |
|
/** @overload */ |
|
void forwardOpt(const std::vector<LayerId> &toLayers); |
|
|
|
/** |
|
* @brief Compile Halide layers. |
|
* @param[in] scheduler Path to YAML file with scheduling directives. |
|
* @see setPreferableBackend |
|
* |
|
* Schedule layers that support Halide backend. Then compile them for |
|
* specific target. For layers that not represented in scheduling file |
|
* or if no manual scheduling used at all, automatic scheduling will be applied. |
|
*/ |
|
CV_WRAP void setHalideScheduler(const String& scheduler); |
|
|
|
/** |
|
* @brief Ask network to use specific computation backend where it supported. |
|
* @param[in] backendId backend identifier. |
|
* @see Backend |
|
*/ |
|
CV_WRAP void setPreferableBackend(int backendId); |
|
|
|
/** |
|
* @brief Ask network to make computations on specific target device. |
|
* @param[in] targetId target identifier. |
|
* @see Target |
|
*/ |
|
CV_WRAP void setPreferableTarget(int targetId); |
|
|
|
/** @brief Sets the new value for the layer output blob |
|
* @param name descriptor of the updating layer output blob. |
|
* @param blob new blob. |
|
* @see connect(String, String) to know format of the descriptor. |
|
* @note If updating blob is not empty then @p blob must have the same shape, |
|
* because network reshaping is not implemented yet. |
|
*/ |
|
CV_WRAP void setInput(const Mat &blob, const String& name = ""); |
|
|
|
/** @brief Sets the new value for the learned param of the layer. |
|
* @param layer name or id of the layer. |
|
* @param numParam index of the layer parameter in the Layer::blobs array. |
|
* @param blob the new value. |
|
* @see Layer::blobs |
|
* @note If shape of the new blob differs from the previous shape, |
|
* then the following forward pass may fail. |
|
*/ |
|
CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob); |
|
|
|
/** @brief Returns parameter blob of the layer. |
|
* @param layer name or id of the layer. |
|
* @param numParam index of the layer parameter in the Layer::blobs array. |
|
* @see Layer::blobs |
|
*/ |
|
CV_WRAP Mat getParam(LayerId layer, int numParam = 0); |
|
|
|
/** @brief Returns indexes of layers with unconnected outputs. |
|
*/ |
|
CV_WRAP std::vector<int> getUnconnectedOutLayers() const; |
|
/** @brief Returns input and output shapes for all layers in loaded model; |
|
* preliminary inferencing isn't necessary. |
|
* @param netInputShapes shapes for all input blobs in net input layer. |
|
* @param layersIds output parameter for layer IDs. |
|
* @param inLayersShapes output parameter for input layers shapes; |
|
* order is the same as in layersIds |
|
* @param outLayersShapes output parameter for output layers shapes; |
|
* order is the same as in layersIds |
|
*/ |
|
CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes, |
|
CV_OUT std::vector<int>& layersIds, |
|
CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes, |
|
CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const; |
|
|
|
/** @overload */ |
|
CV_WRAP void getLayersShapes(const MatShape& netInputShape, |
|
CV_OUT std::vector<int>& layersIds, |
|
CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes, |
|
CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const; |
|
|
|
/** @brief Returns input and output shapes for layer with specified |
|
* id in loaded model; preliminary inferencing isn't necessary. |
|
* @param netInputShape shape input blob in net input layer. |
|
* @param layerId id for layer. |
|
* @param inLayerShapes output parameter for input layers shapes; |
|
* order is the same as in layersIds |
|
* @param outLayerShapes output parameter for output layers shapes; |
|
* order is the same as in layersIds |
|
*/ |
|
void getLayerShapes(const MatShape& netInputShape, |
|
const int layerId, |
|
CV_OUT std::vector<MatShape>& inLayerShapes, |
|
CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP |
|
|
|
/** @overload */ |
|
void getLayerShapes(const std::vector<MatShape>& netInputShapes, |
|
const int layerId, |
|
CV_OUT std::vector<MatShape>& inLayerShapes, |
|
CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP |
|
|
|
/** @brief Computes FLOP for whole loaded model with specified input shapes. |
|
* @param netInputShapes vector of shapes for all net inputs. |
|
* @returns computed FLOP. |
|
*/ |
|
CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const; |
|
/** @overload */ |
|
CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const; |
|
/** @overload */ |
|
CV_WRAP int64 getFLOPS(const int layerId, |
|
const std::vector<MatShape>& netInputShapes) const; |
|
/** @overload */ |
|
CV_WRAP int64 getFLOPS(const int layerId, |
|
const MatShape& netInputShape) const; |
|
|
|
/** @brief Returns list of types for layer used in model. |
|
* @param layersTypes output parameter for returning types. |
|
*/ |
|
CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const; |
|
|
|
/** @brief Returns count of layers of specified type. |
|
* @param layerType type. |
|
* @returns count of layers |
|
*/ |
|
CV_WRAP int getLayersCount(const String& layerType) const; |
|
|
|
/** @brief Computes bytes number which are requered to store |
|
* all weights and intermediate blobs for model. |
|
* @param netInputShapes vector of shapes for all net inputs. |
|
* @param weights output parameter to store resulting bytes for weights. |
|
* @param blobs output parameter to store resulting bytes for intermediate blobs. |
|
*/ |
|
void getMemoryConsumption(const std::vector<MatShape>& netInputShapes, |
|
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP |
|
/** @overload */ |
|
CV_WRAP void getMemoryConsumption(const MatShape& netInputShape, |
|
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; |
|
/** @overload */ |
|
CV_WRAP void getMemoryConsumption(const int layerId, |
|
const std::vector<MatShape>& netInputShapes, |
|
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; |
|
/** @overload */ |
|
CV_WRAP void getMemoryConsumption(const int layerId, |
|
const MatShape& netInputShape, |
|
CV_OUT size_t& weights, CV_OUT size_t& blobs) const; |
|
|
|
/** @brief Computes bytes number which are requered to store |
|
* all weights and intermediate blobs for each layer. |
|
* @param netInputShapes vector of shapes for all net inputs. |
|
* @param layerIds output vector to save layer IDs. |
|
* @param weights output parameter to store resulting bytes for weights. |
|
* @param blobs output parameter to store resulting bytes for intermediate blobs. |
|
*/ |
|
void getMemoryConsumption(const std::vector<MatShape>& netInputShapes, |
|
CV_OUT std::vector<int>& layerIds, |
|
CV_OUT std::vector<size_t>& weights, |
|
CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP |
|
/** @overload */ |
|
void getMemoryConsumption(const MatShape& netInputShape, |
|
CV_OUT std::vector<int>& layerIds, |
|
CV_OUT std::vector<size_t>& weights, |
|
CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP |
|
|
|
/** @brief Enables or disables layer fusion in the network. |
|
* @param fusion true to enable the fusion, false to disable. The fusion is enabled by default. |
|
*/ |
|
CV_WRAP void enableFusion(bool fusion); |
|
|
|
/** @brief Returns overall time for inference and timings (in ticks) for layers. |
|
* Indexes in returned vector correspond to layers ids. Some layers can be fused with others, |
|
* in this case zero ticks count will be return for that skipped layers. |
|
* @param timings vector for tick timings for all layers. |
|
* @return overall ticks for model inference. |
|
*/ |
|
CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings); |
|
|
|
private: |
|
struct Impl; |
|
Ptr<Impl> impl; |
|
}; |
|
|
|
/** |
|
* @deprecated Deprecated as external interface. Will be for internal needs only. |
|
* @brief Small interface class for loading trained serialized models of different dnn-frameworks. */ |
|
class CV_EXPORTS_W Importer : public Algorithm |
|
{ |
|
public: |
|
|
|
/** @brief Adds loaded layers into the @p net and sets connections between them. */ |
|
CV_DEPRECATED CV_WRAP virtual void populateNet(Net net) = 0; |
|
|
|
virtual ~Importer(); |
|
}; |
|
|
|
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files. |
|
* @param cfgFile path to the .cfg file with text description of the network architecture. |
|
* @param darknetModel path to the .weights file with learned network. |
|
* @returns Network object that ready to do forward, throw an exception in failure cases. |
|
* @details This is shortcut consisting from DarknetImporter and Net::populateNet calls. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String()); |
|
|
|
/** |
|
* @deprecated Use @ref readNetFromCaffe instead. |
|
* @brief Creates the importer of <a href="http://caffe.berkeleyvision.org">Caffe</a> framework network. |
|
* @param prototxt path to the .prototxt file with text description of the network architecture. |
|
* @param caffeModel path to the .caffemodel file with learned network. |
|
* @returns Pointer to the created importer, NULL in failure cases. |
|
*/ |
|
CV_DEPRECATED CV_EXPORTS_W Ptr<Importer> createCaffeImporter(const String &prototxt, const String &caffeModel = String()); |
|
|
|
/** @brief Reads a network model stored in Caffe model files. |
|
* @details This is shortcut consisting from createCaffeImporter and Net::populateNet calls. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String()); |
|
|
|
/** @brief Reads a network model stored in Caffe model in memory. |
|
* @details This is an overloaded member function, provided for convenience. |
|
* It differs from the above function only in what argument(s) it accepts. |
|
* @param bufferProto buffer containing the content of the .prototxt file |
|
* @param lenProto length of bufferProto |
|
* @param bufferModel buffer containing the content of the .caffemodel file |
|
* @param lenModel length of bufferModel |
|
*/ |
|
CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto, |
|
const char *bufferModel = NULL, size_t lenModel = 0); |
|
|
|
/** @brief Reads a network model stored in Tensorflow model file. |
|
* @details This is shortcut consisting from createTensorflowImporter and Net::populateNet calls. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String()); |
|
|
|
/** @brief Reads a network model stored in Tensorflow model in memory. |
|
* @details This is an overloaded member function, provided for convenience. |
|
* It differs from the above function only in what argument(s) it accepts. |
|
* @param bufferModel buffer containing the content of the pb file |
|
* @param lenModel length of bufferModel |
|
* @param bufferConfig buffer containing the content of the pbtxt file |
|
* @param lenConfig length of bufferConfig |
|
*/ |
|
CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel, |
|
const char *bufferConfig = NULL, size_t lenConfig = 0); |
|
|
|
/** @brief Reads a network model stored in Torch model file. |
|
* @details This is shortcut consisting from createTorchImporter and Net::populateNet calls. |
|
*/ |
|
CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true); |
|
|
|
/** |
|
* @deprecated Use @ref readNetFromTensorflow instead. |
|
* @brief Creates the importer of <a href="http://www.tensorflow.org">TensorFlow</a> framework network. |
|
* @param model path to the .pb file with binary protobuf description of the network architecture. |
|
* @returns Pointer to the created importer, NULL in failure cases. |
|
*/ |
|
CV_DEPRECATED CV_EXPORTS_W Ptr<Importer> createTensorflowImporter(const String &model); |
|
|
|
/** |
|
* @deprecated Use @ref readNetFromTorch instead. |
|
* @brief Creates the importer of <a href="http://torch.ch">Torch7</a> framework network. |
|
* @param filename path to the file, dumped from Torch by using torch.save() function. |
|
* @param isBinary specifies whether the network was serialized in ascii mode or binary. |
|
* @returns Pointer to the created importer, NULL in failure cases. |
|
* |
|
* @warning Torch7 importer is experimental now, you need explicitly set CMake `opencv_dnn_BUILD_TORCH_IMPORTER` flag to compile its. |
|
* |
|
* @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language, |
|
* which has various bit-length on different systems. |
|
* |
|
* The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object |
|
* with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors. |
|
* |
|
* List of supported layers (i.e. object instances derived from Torch nn.Module class): |
|
* - nn.Sequential |
|
* - nn.Parallel |
|
* - nn.Concat |
|
* - nn.Linear |
|
* - nn.SpatialConvolution |
|
* - nn.SpatialMaxPooling, nn.SpatialAveragePooling |
|
* - nn.ReLU, nn.TanH, nn.Sigmoid |
|
* - nn.Reshape |
|
* - nn.SoftMax, nn.LogSoftMax |
|
* |
|
* Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported. |
|
*/ |
|
CV_DEPRECATED CV_EXPORTS_W Ptr<Importer> createTorchImporter(const String &filename, bool isBinary = true); |
|
|
|
/** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework. |
|
* @warning This function has the same limitations as createTorchImporter(). |
|
*/ |
|
CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true); |
|
/** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center, |
|
* subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels. |
|
* @param image input image (with 1-, 3- or 4-channels). |
|
* @param size spatial size for output image |
|
* @param mean scalar with mean values which are subtracted from channels. Values are intended |
|
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true. |
|
* @param scalefactor multiplier for @p image values. |
|
* @param swapRB flag which indicates that swap first and last channels |
|
* in 3-channel image is necessary. |
|
* @param crop flag which indicates whether image will be cropped after resize or not |
|
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponing |
|
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed. |
|
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. |
|
* @returns 4-dimansional Mat with NCHW dimensions order. |
|
*/ |
|
CV_EXPORTS_W Mat blobFromImage(const Mat& image, double scalefactor=1.0, const Size& size = Size(), |
|
const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true); |
|
/** @brief Creates 4-dimensional blob from series of images. Optionally resizes and |
|
* crops @p images from center, subtract @p mean values, scales values by @p scalefactor, |
|
* swap Blue and Red channels. |
|
* @param images input images (all with 1-, 3- or 4-channels). |
|
* @param size spatial size for output image |
|
* @param mean scalar with mean values which are subtracted from channels. Values are intended |
|
* to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true. |
|
* @param scalefactor multiplier for @p images values. |
|
* @param swapRB flag which indicates that swap first and last channels |
|
* in 3-channel image is necessary. |
|
* @param crop flag which indicates whether image will be cropped after resize or not |
|
* @details if @p crop is true, input image is resized so one side after resize is equal to corresponing |
|
* dimension in @p size and another one is equal or larger. Then, crop from the center is performed. |
|
* If @p crop is false, direct resize without cropping and preserving aspect ratio is performed. |
|
* @returns 4-dimansional Mat with NCHW dimensions order. |
|
*/ |
|
CV_EXPORTS_W Mat blobFromImages(const std::vector<Mat>& images, double scalefactor=1.0, |
|
Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true); |
|
|
|
/** @brief Convert all weights of Caffe network to half precision floating point. |
|
* @param src Path to origin model from Caffe framework contains single |
|
* precision floating point weights (usually has `.caffemodel` extension). |
|
* @param dst Path to destination model with updated weights. |
|
* @param layersTypes Set of layers types which parameters will be converted. |
|
* By default, converts only Convolutional and Fully-Connected layers' |
|
* weights. |
|
* |
|
* @note Shrinked model has no origin float32 weights so it can't be used |
|
* in origin Caffe framework anymore. However the structure of data |
|
* is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe. |
|
* So the resulting model may be used there. |
|
*/ |
|
CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst, |
|
const std::vector<String>& layersTypes = std::vector<String>()); |
|
|
|
/** @brief Performs non maximum suppression given boxes and corresponding scores. |
|
|
|
* @param bboxes a set of bounding boxes to apply NMS. |
|
* @param scores a set of corresponding confidences. |
|
* @param score_threshold a threshold used to filter boxes by score. |
|
* @param nms_threshold a threshold used in non maximum suppression. |
|
* @param indices the kept indices of bboxes after NMS. |
|
* @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$. |
|
* @param top_k if `>0`, keep at most @p top_k picked indices. |
|
*/ |
|
CV_EXPORTS_W void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores, |
|
const float score_threshold, const float nms_threshold, |
|
CV_OUT std::vector<int>& indices, |
|
const float eta = 1.f, const int top_k = 0); |
|
|
|
|
|
//! @} |
|
CV__DNN_EXPERIMENTAL_NS_END |
|
} |
|
} |
|
|
|
#include <opencv2/dnn/layer.hpp> |
|
#include <opencv2/dnn/dnn.inl.hpp> |
|
|
|
#endif /* OPENCV_DNN_DNN_HPP */
|
|
|