Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
749 lines
21 KiB
749 lines
21 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
/* //////////////////////////////////////////////////////////////////// |
|
// |
|
// Filling CvMat/IplImage instances with random numbers |
|
// |
|
// */ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
///////////////////////////// Functions Declaration ////////////////////////////////////// |
|
|
|
/* |
|
Multiply-with-carry generator is used here: |
|
temp = ( A*X(n) + carry ) |
|
X(n+1) = temp mod (2^32) |
|
carry = temp / (2^32) |
|
*/ |
|
|
|
#define RNG_NEXT(x) ((uint64)(unsigned)(x)*RNG::A + ((x) >> 32)) |
|
|
|
/***************************************************************************************\ |
|
* Pseudo-Random Number Generators (PRNGs) * |
|
\***************************************************************************************/ |
|
|
|
template<typename T> static void |
|
RandBits_( Mat& _arr, uint64* state, const void* _param ) |
|
{ |
|
uint64 temp = *state; |
|
const int* param = (const int*)_param; |
|
int small_flag = (param[12]|param[13]|param[14]|param[15]) <= 255; |
|
Size size = getContinuousSize(_arr,_arr.channels()); |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
T* arr = (T*)(_arr.data + _arr.step*y); |
|
int i, k = 3; |
|
const int* p = param; |
|
|
|
if( !small_flag ) |
|
{ |
|
for( i = 0; i <= size.width - 4; i += 4 ) |
|
{ |
|
int t0, t1; |
|
|
|
temp = RNG_NEXT(temp); |
|
t0 = ((int)temp & p[i + 12]) + p[i]; |
|
temp = RNG_NEXT(temp); |
|
t1 = ((int)temp & p[i + 13]) + p[i+1]; |
|
arr[i] = saturate_cast<T>(t0); |
|
arr[i+1] = saturate_cast<T>(t1); |
|
|
|
temp = RNG_NEXT(temp); |
|
t0 = ((int)temp & p[i + 14]) + p[i+2]; |
|
temp = RNG_NEXT(temp); |
|
t1 = ((int)temp & p[i + 15]) + p[i+3]; |
|
arr[i+2] = saturate_cast<T>(t0); |
|
arr[i+3] = saturate_cast<T>(t1); |
|
|
|
if( !--k ) |
|
{ |
|
k = 3; |
|
p -= 12; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( i = 0; i <= size.width - 4; i += 4 ) |
|
{ |
|
int t0, t1, t; |
|
|
|
temp = RNG_NEXT(temp); |
|
t = (int)temp; |
|
t0 = (t & p[i + 12]) + p[i]; |
|
t1 = ((t >> 8) & p[i + 13]) + p[i+1]; |
|
arr[i] = saturate_cast<T>(t0); |
|
arr[i+1] = saturate_cast<T>(t1); |
|
|
|
t0 = ((t >> 16) & p[i + 14]) + p[i + 2]; |
|
t1 = ((t >> 24) & p[i + 15]) + p[i + 3]; |
|
arr[i+2] = saturate_cast<T>(t0); |
|
arr[i+3] = saturate_cast<T>(t1); |
|
|
|
if( !--k ) |
|
{ |
|
k = 3; |
|
p -= 12; |
|
} |
|
} |
|
} |
|
|
|
for( ; i < size.width; i++ ) |
|
{ |
|
int t0; |
|
temp = RNG_NEXT(temp); |
|
|
|
t0 = ((int)temp & p[i + 12]) + p[i]; |
|
arr[i] = saturate_cast<T>(t0); |
|
} |
|
} |
|
|
|
*state = temp; |
|
} |
|
|
|
struct DivStruct |
|
{ |
|
unsigned d; |
|
unsigned M; |
|
int sh1, sh2; |
|
int delta; |
|
}; |
|
|
|
template<typename T> static void |
|
Randi_( Mat& _arr, uint64* state, const void* _param ) |
|
{ |
|
uint64 temp = *state; |
|
const int* param = (const int*)_param; |
|
Size size = getContinuousSize(_arr,_arr.channels()); |
|
int i, k, cn = _arr.channels(); |
|
DivStruct ds[12]; |
|
|
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
ds[k].delta = param[k]; |
|
ds[k].d = (unsigned)(param[k+12] - param[k]); |
|
int l = 0; |
|
while(((uint64)1 << l) < ds[k].d) |
|
l++; |
|
ds[k].M = (unsigned)(((uint64)1 << 32)*(((uint64)1 << l) - ds[k].d)/ds[k].d) + 1; |
|
ds[k].sh1 = min(l, 1); |
|
ds[k].sh2 = max(l - 1, 0); |
|
} |
|
|
|
for( ; k < 12; k++ ) |
|
ds[k] = ds[k - cn]; |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
T* arr = (T*)(_arr.data + _arr.step*y); |
|
const DivStruct* p = ds; |
|
unsigned t0, t1, v0, v1; |
|
|
|
for( i = 0, k = 3; i <= size.width - 4; i += 4 ) |
|
{ |
|
temp = RNG_NEXT(temp); |
|
t0 = (unsigned)temp; |
|
temp = RNG_NEXT(temp); |
|
t1 = (unsigned)temp; |
|
v0 = (unsigned)(((uint64)t0 * p[i].M) >> 32); |
|
v1 = (unsigned)(((uint64)t1 * p[i+1].M) >> 32); |
|
v0 = (v0 + ((t0 - v0) >> p[i].sh1)) >> p[i].sh2; |
|
v1 = (v1 + ((t1 - v1) >> p[i+1].sh1)) >> p[i+1].sh2; |
|
v0 = t0 - v0*p[i].d + p[i].delta; |
|
v1 = t1 - v1*p[i+1].d + p[i+1].delta; |
|
arr[i] = saturate_cast<T>((int)v0); |
|
arr[i+1] = saturate_cast<T>((int)v1); |
|
|
|
temp = RNG_NEXT(temp); |
|
t0 = (unsigned)temp; |
|
temp = RNG_NEXT(temp); |
|
t1 = (unsigned)temp; |
|
v0 = (unsigned)(((uint64)t0 * p[i+2].M) >> 32); |
|
v1 = (unsigned)(((uint64)t1 * p[i+3].M) >> 32); |
|
v0 = (v0 + ((t0 - v0) >> p[i+2].sh1)) >> p[i+2].sh2; |
|
v1 = (v1 + ((t1 - v1) >> p[i+3].sh1)) >> p[i+3].sh2; |
|
v0 = t0 - v0*p[i+2].d + p[i+2].delta; |
|
v1 = t1 - v1*p[i+3].d + p[i+3].delta; |
|
arr[i+2] = saturate_cast<T>((int)v0); |
|
arr[i+3] = saturate_cast<T>((int)v1); |
|
|
|
if( !--k ) |
|
{ |
|
k = 3; |
|
p -= 12; |
|
} |
|
} |
|
|
|
for( ; i < size.width; i++ ) |
|
{ |
|
temp = RNG_NEXT(temp); |
|
t0 = (unsigned)temp; |
|
v0 = (unsigned)(((uint64)t0 * p[i].M) >> 32); |
|
v0 = (v0 + ((t0 - v0) >> p[i].sh1)) >> p[i].sh2; |
|
v0 = t0 - v0*p[i].d + p[i].delta; |
|
arr[i] = saturate_cast<T>((int)v0); |
|
} |
|
} |
|
|
|
*state = temp; |
|
} |
|
|
|
|
|
static void Randf_( Mat& _arr, uint64* state, const void* _param ) |
|
{ |
|
uint64 temp = *state; |
|
const float* param = (const float*)_param; |
|
Size size = getContinuousSize(_arr,_arr.channels()); |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
float* arr = (float*)(_arr.data + _arr.step*y); |
|
int i, k = 3; |
|
const float* p = param; |
|
for( i = 0; i <= size.width - 4; i += 4 ) |
|
{ |
|
float f0, f1; |
|
|
|
temp = RNG_NEXT(temp); |
|
f0 = (int)temp*p[i+12] + p[i]; |
|
temp = RNG_NEXT(temp); |
|
f1 = (int)temp*p[i+13] + p[i+1]; |
|
arr[i] = f0; arr[i+1] = f1; |
|
|
|
temp = RNG_NEXT(temp); |
|
f0 = (int)temp*p[i+14] + p[i+2]; |
|
temp = RNG_NEXT(temp); |
|
f1 = (int)temp*p[i+15] + p[i+3]; |
|
arr[i+2] = f0; arr[i+3] = f1; |
|
|
|
if( !--k ) |
|
{ |
|
k = 3; |
|
p -= 12; |
|
} |
|
} |
|
|
|
for( ; i < size.width; i++ ) |
|
{ |
|
temp = RNG_NEXT(temp); |
|
arr[i] = (int)temp*p[i+12] + p[i]; |
|
} |
|
} |
|
|
|
*state = temp; |
|
} |
|
|
|
|
|
static void |
|
Randd_( Mat& _arr, uint64* state, const void* _param ) |
|
{ |
|
uint64 temp = *state; |
|
const double* param = (const double*)_param; |
|
Size size = getContinuousSize(_arr,_arr.channels()); |
|
int64 v = 0; |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
double* arr = (double*)(_arr.data + _arr.step*y); |
|
int i, k = 3; |
|
const double* p = param; |
|
|
|
for( i = 0; i <= size.width - 4; i += 4 ) |
|
{ |
|
double f0, f1; |
|
|
|
temp = RNG_NEXT(temp); |
|
v = (temp >> 32)|(temp << 32); |
|
f0 = v*p[i+12] + p[i]; |
|
temp = RNG_NEXT(temp); |
|
v = (temp >> 32)|(temp << 32); |
|
f1 = v*p[i+13] + p[i+1]; |
|
arr[i] = f0; arr[i+1] = f1; |
|
|
|
temp = RNG_NEXT(temp); |
|
v = (temp >> 32)|(temp << 32); |
|
f0 = v*p[i+14] + p[i+2]; |
|
temp = RNG_NEXT(temp); |
|
v = (temp >> 32)|(temp << 32); |
|
f1 = v*p[i+15] + p[i+3]; |
|
arr[i+2] = f0; arr[i+3] = f1; |
|
|
|
if( !--k ) |
|
{ |
|
k = 3; |
|
p -= 12; |
|
} |
|
} |
|
|
|
for( ; i < size.width; i++ ) |
|
{ |
|
temp = RNG_NEXT(temp); |
|
v = (temp >> 32)|(temp << 32); |
|
arr[i] = v*p[i+12] + p[i]; |
|
} |
|
} |
|
|
|
*state = temp; |
|
} |
|
|
|
|
|
/* |
|
The code below implements the algorithm described in |
|
"The Ziggurat Method for Generating Random Variables" |
|
by Marsaglia and Tsang, Journal of Statistical Software. |
|
*/ |
|
static void |
|
Randn_0_1_32f_C1R( float* arr, int len, uint64* state ) |
|
{ |
|
const float r = 3.442620f; // The start of the right tail |
|
const float rng_flt = 2.3283064365386962890625e-10f; // 2^-32 |
|
static unsigned kn[128]; |
|
static float wn[128], fn[128]; |
|
uint64 temp = *state; |
|
static bool initialized=false; |
|
int i; |
|
|
|
if( !initialized ) |
|
{ |
|
const double m1 = 2147483648.0; |
|
double dn = 3.442619855899, tn = dn, vn = 9.91256303526217e-3; |
|
|
|
// Set up the tables |
|
double q = vn/std::exp(-.5*dn*dn); |
|
kn[0] = (unsigned)((dn/q)*m1); |
|
kn[1] = 0; |
|
|
|
wn[0] = (float)(q/m1); |
|
wn[127] = (float)(dn/m1); |
|
|
|
fn[0] = 1.f; |
|
fn[127] = (float)std::exp(-.5*dn*dn); |
|
|
|
for(i=126;i>=1;i--) |
|
{ |
|
dn = std::sqrt(-2.*std::log(vn/dn+std::exp(-.5*dn*dn))); |
|
kn[i+1] = (unsigned)((dn/tn)*m1); |
|
tn = dn; |
|
fn[i] = (float)std::exp(-.5*dn*dn); |
|
wn[i] = (float)(dn/m1); |
|
} |
|
initialized = true; |
|
} |
|
|
|
for( i = 0; i < len; i++ ) |
|
{ |
|
float x, y; |
|
for(;;) |
|
{ |
|
int hz = (int)temp; |
|
temp = RNG_NEXT(temp); |
|
int iz = hz & 127; |
|
x = hz*wn[iz]; |
|
if( (unsigned)std::abs(hz) < kn[iz] ) |
|
break; |
|
if( iz == 0) // iz==0, handles the base strip |
|
{ |
|
do |
|
{ |
|
x = (unsigned)temp*rng_flt; |
|
temp = RNG_NEXT(temp); |
|
y = (unsigned)temp*rng_flt; |
|
temp = RNG_NEXT(temp); |
|
x = (float)(-std::log(x+FLT_MIN)*0.2904764); |
|
y = (float)-std::log(y+FLT_MIN); |
|
} // .2904764 is 1/r |
|
while( y + y < x*x ); |
|
x = hz > 0 ? r + x : -r - x; |
|
break; |
|
} |
|
// iz > 0, handle the wedges of other strips |
|
y = (unsigned)temp*rng_flt; |
|
temp = RNG_NEXT(temp); |
|
if( fn[iz] + y*(fn[iz - 1] - fn[iz]) < std::exp(-.5*x*x) ) |
|
break; |
|
} |
|
arr[i] = x; |
|
} |
|
*state = temp; |
|
} |
|
|
|
|
|
double RNG::gaussian(double sigma) |
|
{ |
|
float temp; |
|
Randn_0_1_32f_C1R( &temp, 1, &state ); |
|
return temp*sigma; |
|
} |
|
|
|
|
|
template<typename T, typename PT> static void |
|
Randn_( Mat& _arr, uint64* state, const void* _param ) |
|
{ |
|
const int RAND_BUF_SIZE = 96; |
|
float buffer[RAND_BUF_SIZE]; |
|
int pidx[RAND_BUF_SIZE]; |
|
const PT* param = (const PT*)_param; |
|
Size size = getContinuousSize(_arr, _arr.channels()); |
|
|
|
int i, n = std::min(size.width, RAND_BUF_SIZE); |
|
for( i = 0; i < 12; i++ ) |
|
pidx[i] = i; |
|
for( ; i < n; i++ ) |
|
pidx[i] = pidx[i - 12]; |
|
|
|
for( int y = 0; y < size.height; y++ ) |
|
{ |
|
T* arr = (T*)(_arr.data + _arr.step*y); |
|
int len = RAND_BUF_SIZE; |
|
for( i = 0; i < size.width; i += RAND_BUF_SIZE ) |
|
{ |
|
if( i + len > size.width ) |
|
len = size.width - i; |
|
|
|
Randn_0_1_32f_C1R( buffer, len, state ); |
|
|
|
for( int j = 0; j < len; j++ ) |
|
arr[i+j] = saturate_cast<T>(buffer[j]*param[pidx[j]+12] + param[pidx[j]]); |
|
} |
|
} |
|
} |
|
|
|
|
|
typedef void (*RandFunc)(Mat& dst, uint64* state, const void* param); |
|
|
|
void RNG::fill( Mat& mat, int disttype, const Scalar& param1, const Scalar& param2 ) |
|
{ |
|
static RandFunc rngtab[3][8] = |
|
{ |
|
{ |
|
RandBits_<uchar>, |
|
RandBits_<schar>, |
|
RandBits_<ushort>, |
|
RandBits_<short>, |
|
RandBits_<int>, 0, 0, 0}, |
|
|
|
{Randi_<uchar>, |
|
Randi_<schar>, |
|
Randi_<ushort>, |
|
Randi_<short>, |
|
Randi_<int>, |
|
Randf_, Randd_, 0}, |
|
|
|
{Randn_<uchar,float>, |
|
Randn_<schar,float>, |
|
Randn_<ushort,float>, |
|
Randn_<short,float>, |
|
Randn_<int,float>, |
|
Randn_<float,float>, |
|
Randn_<double,double>, 0} |
|
}; |
|
|
|
int depth = mat.depth(), channels = mat.channels(); |
|
double dparam[2][12]; |
|
float fparam[2][12]; |
|
int iparam[2][12]; |
|
void* param = dparam; |
|
int i, fast_int_mode = 0; |
|
RandFunc func = 0; |
|
|
|
CV_Assert( channels <= 4 ); |
|
|
|
if( disttype == UNIFORM ) |
|
{ |
|
if( depth <= CV_32S ) |
|
{ |
|
for( i = 0, fast_int_mode = 1; i < channels; i++ ) |
|
{ |
|
double a = min(param1.val[i], param2.val[i]); |
|
double b = max(param1.val[i], param2.val[i]); |
|
int t0 = iparam[0][i] = cvCeil(a); |
|
int t1 = iparam[1][i] = cvFloor(b); |
|
double diff = b - a; |
|
|
|
fast_int_mode &= diff <= 4294967296. && ((t1-t0) & (t1-t0-1)) == 0; |
|
} |
|
|
|
if( fast_int_mode ) |
|
{ |
|
for( i = 0; i < channels; i++ ) |
|
iparam[1][i] = iparam[1][i] > iparam[0][i] ? iparam[1][i] - iparam[0][i] - 1 : 0; |
|
} |
|
|
|
for( ; i < 12; i++ ) |
|
{ |
|
int t0 = iparam[0][i - channels]; |
|
int t1 = iparam[1][i - channels]; |
|
|
|
iparam[0][i] = t0; |
|
iparam[1][i] = t1; |
|
} |
|
|
|
func = rngtab[!fast_int_mode][depth]; |
|
param = iparam; |
|
} |
|
else |
|
{ |
|
double scale = depth == CV_64F ? |
|
5.4210108624275221700372640043497e-20 : // 2**-64 |
|
2.3283064365386962890625e-10; // 2**-32 |
|
|
|
// for each channel i compute such dparam[0][i] & dparam[1][i], |
|
// so that a signed 32/64-bit integer X is transformed to |
|
// the range [param1.val[i], param2.val[i]) using |
|
// dparam[1][i]*X + dparam[0][i] |
|
for( i = 0; i < channels; i++ ) |
|
{ |
|
double t0 = param1.val[i]; |
|
double t1 = param2.val[i]; |
|
dparam[0][i] = (t1 + t0)*0.5; |
|
dparam[1][i] = (t1 - t0)*scale; |
|
} |
|
|
|
func = rngtab[1][depth]; |
|
param = dparam; |
|
} |
|
} |
|
else if( disttype == CV_RAND_NORMAL ) |
|
{ |
|
for( i = 0; i < channels; i++ ) |
|
{ |
|
double t0 = param1.val[i]; |
|
double t1 = param2.val[i]; |
|
|
|
dparam[0][i] = t0; |
|
dparam[1][i] = t1; |
|
} |
|
|
|
func = rngtab[2][depth]; |
|
param = dparam; |
|
} |
|
else |
|
CV_Error( CV_StsBadArg, "Unknown distribution type" ); |
|
|
|
if( param == dparam ) |
|
{ |
|
for( i = channels; i < 12; i++ ) |
|
{ |
|
double t0 = dparam[0][i - channels]; |
|
double t1 = dparam[1][i - channels]; |
|
|
|
dparam[0][i] = t0; |
|
dparam[1][i] = t1; |
|
} |
|
|
|
if( depth != CV_64F ) |
|
{ |
|
for( i = 0; i < 12; i++ ) |
|
{ |
|
fparam[0][i] = (float)dparam[0][i]; |
|
fparam[1][i] = (float)dparam[1][i]; |
|
} |
|
param = fparam; |
|
} |
|
} |
|
|
|
CV_Assert( func != 0); |
|
|
|
if( mat.dims > 2 ) |
|
{ |
|
const Mat* arrays[] = {&mat, 0}; |
|
Mat planes[1]; |
|
NAryMatIterator it(arrays, planes); |
|
|
|
for( int i = 0; i < it.nplanes; i++, ++it ) |
|
func( it.planes[0], &state, param ); |
|
} |
|
else |
|
func( mat, &state, param ); |
|
} |
|
|
|
#ifdef WIN32 |
|
#ifdef WINCE |
|
# define TLS_OUT_OF_INDEXES ((DWORD)0xFFFFFFFF) |
|
#endif |
|
static DWORD tlsRNGKey = TLS_OUT_OF_INDEXES; |
|
|
|
void deleteThreadRNGData() |
|
{ |
|
if( tlsRNGKey != TLS_OUT_OF_INDEXES ) |
|
delete (RNG*)TlsGetValue( tlsRNGKey ); |
|
} |
|
|
|
RNG& theRNG() |
|
{ |
|
if( tlsRNGKey == TLS_OUT_OF_INDEXES ) |
|
{ |
|
tlsRNGKey = TlsAlloc(); |
|
CV_Assert(tlsRNGKey != TLS_OUT_OF_INDEXES); |
|
} |
|
RNG* rng = (RNG*)TlsGetValue( tlsRNGKey ); |
|
if( !rng ) |
|
{ |
|
rng = new RNG; |
|
TlsSetValue( tlsRNGKey, rng ); |
|
} |
|
return *rng; |
|
} |
|
|
|
#else |
|
|
|
static pthread_key_t tlsRNGKey = 0; |
|
|
|
static void deleteRNG(void* data) |
|
{ |
|
delete (RNG*)data; |
|
} |
|
|
|
RNG& theRNG() |
|
{ |
|
if( !tlsRNGKey ) |
|
{ |
|
int errcode = pthread_key_create(&tlsRNGKey, deleteRNG); |
|
CV_Assert(errcode == 0); |
|
} |
|
RNG* rng = (RNG*)pthread_getspecific(tlsRNGKey); |
|
if( !rng ) |
|
{ |
|
rng = new RNG; |
|
pthread_setspecific(tlsRNGKey, rng); |
|
} |
|
return *rng; |
|
} |
|
|
|
#endif |
|
|
|
void randu(CV_OUT Mat& dst, const Scalar& low, const Scalar& high) |
|
{ |
|
theRNG().fill(dst, RNG::UNIFORM, low, high); |
|
} |
|
|
|
void randn(CV_OUT Mat& dst, const Scalar& mean, const Scalar& stddev) |
|
{ |
|
theRNG().fill(dst, RNG::NORMAL, mean, stddev); |
|
} |
|
|
|
template<typename T> static void |
|
randShuffle_( Mat& _arr, RNG& rng, double iterFactor ) |
|
{ |
|
int sz = _arr.rows*_arr.cols, iters = cvRound(iterFactor*sz); |
|
if( _arr.isContinuous() ) |
|
{ |
|
T* arr = (T*)_arr.data; |
|
for( int i = 0; i < iters; i++ ) |
|
{ |
|
int j = (unsigned)rng % sz, k = (unsigned)rng % sz; |
|
std::swap( arr[j], arr[k] ); |
|
} |
|
} |
|
else |
|
{ |
|
uchar* data = _arr.data; |
|
size_t step = _arr.step; |
|
int cols = _arr.cols; |
|
for( int i = 0; i < iters; i++ ) |
|
{ |
|
int j1 = (unsigned)rng % sz, k1 = (unsigned)rng % sz; |
|
int j0 = j1/cols, k0 = k1/cols; |
|
j1 -= j0*cols; k1 -= k0*cols; |
|
std::swap( ((T*)(data + step*j0))[j1], ((T*)(data + step*k0))[k1] ); |
|
} |
|
} |
|
} |
|
|
|
typedef void (*RandShuffleFunc)( Mat& dst, RNG& rng, double iterFactor ); |
|
|
|
void randShuffle( Mat& dst, double iterFactor, RNG* _rng ) |
|
{ |
|
RandShuffleFunc tab[] = |
|
{ |
|
0, |
|
randShuffle_<uchar>, // 1 |
|
randShuffle_<ushort>, // 2 |
|
randShuffle_<Vec<uchar,3> >, // 3 |
|
randShuffle_<int>, // 4 |
|
0, |
|
randShuffle_<Vec<ushort,3> >, // 6 |
|
0, |
|
randShuffle_<Vec<int,2> >, // 8 |
|
0, 0, 0, |
|
randShuffle_<Vec<int,3> >, // 12 |
|
0, 0, 0, |
|
randShuffle_<Vec<int,4> >, // 16 |
|
0, 0, 0, 0, 0, 0, 0, |
|
randShuffle_<Vec<int,6> >, // 24 |
|
0, 0, 0, 0, 0, 0, 0, |
|
randShuffle_<Vec<int,8> > // 32 |
|
}; |
|
|
|
RNG& rng = _rng ? *_rng : theRNG(); |
|
CV_Assert( dst.elemSize() <= 32 ); |
|
RandShuffleFunc func = tab[dst.elemSize()]; |
|
CV_Assert( func != 0 ); |
|
func( dst, rng, iterFactor ); |
|
} |
|
|
|
} |
|
|
|
CV_IMPL void |
|
cvRandArr( CvRNG* _rng, CvArr* arr, int disttype, CvScalar param1, CvScalar param2 ) |
|
{ |
|
cv::Mat mat = cv::cvarrToMat(arr); |
|
// !!! this will only work for current 64-bit MWC RNG !!! |
|
cv::RNG& rng = _rng ? (cv::RNG&)*_rng : cv::theRNG(); |
|
rng.fill(mat, disttype == CV_RAND_NORMAL ? |
|
cv::RNG::NORMAL : cv::RNG::UNIFORM, param1, param2 ); |
|
} |
|
|
|
CV_IMPL void cvRandShuffle( CvArr* arr, CvRNG* _rng, double iter_factor ) |
|
{ |
|
cv::Mat dst = cv::cvarrToMat(arr); |
|
cv::RNG& rng = _rng ? (cv::RNG&)*_rng : cv::theRNG(); |
|
cv::randShuffle( dst, iter_factor, &rng ); |
|
} |
|
|
|
/* End of file. */
|
|
|