mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1332 lines
42 KiB
1332 lines
42 KiB
/* |
|
* Copyright (C) 2010 The Android Open Source Project |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
*/ |
|
|
|
/* ChangeLog for this library: |
|
* |
|
* NDK r10e?: Add MIPS MSA feature. |
|
* |
|
* NDK r10: Support for 64-bit CPUs (Intel, ARM & MIPS). |
|
* |
|
* NDK r8d: Add android_setCpu(). |
|
* |
|
* NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16, |
|
* VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt. |
|
* |
|
* Rewrite the code to parse /proc/self/auxv instead of |
|
* the "Features" field in /proc/cpuinfo. |
|
* |
|
* Dynamically allocate the buffer that hold the content |
|
* of /proc/cpuinfo to deal with newer hardware. |
|
* |
|
* NDK r7c: Fix CPU count computation. The old method only reported the |
|
* number of _active_ CPUs when the library was initialized, |
|
* which could be less than the real total. |
|
* |
|
* NDK r5: Handle buggy kernels which report a CPU Architecture number of 7 |
|
* for an ARMv6 CPU (see below). |
|
* |
|
* Handle kernels that only report 'neon', and not 'vfpv3' |
|
* (VFPv3 is mandated by the ARM architecture is Neon is implemented) |
|
* |
|
* Handle kernels that only report 'vfpv3d16', and not 'vfpv3' |
|
* |
|
* Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in |
|
* android_getCpuFamily(). |
|
* |
|
* NDK r4: Initial release |
|
*/ |
|
|
|
#include "cpu-features.h" |
|
|
|
#include <dlfcn.h> |
|
#include <errno.h> |
|
#include <fcntl.h> |
|
#include <pthread.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <sys/system_properties.h> |
|
#include <unistd.h> |
|
|
|
static pthread_once_t g_once; |
|
static int g_inited; |
|
static AndroidCpuFamily g_cpuFamily; |
|
static uint64_t g_cpuFeatures; |
|
static int g_cpuCount; |
|
|
|
#ifdef __arm__ |
|
static uint32_t g_cpuIdArm; |
|
#endif |
|
|
|
static const int android_cpufeatures_debug = 0; |
|
|
|
#define D(...) \ |
|
do { \ |
|
if (android_cpufeatures_debug) { \ |
|
printf(__VA_ARGS__); fflush(stdout); \ |
|
} \ |
|
} while (0) |
|
|
|
#ifdef __i386__ |
|
static __inline__ void x86_cpuid(int func, int values[4]) |
|
{ |
|
int a, b, c, d; |
|
/* We need to preserve ebx since we're compiling PIC code */ |
|
/* this means we can't use "=b" for the second output register */ |
|
__asm__ __volatile__ ( \ |
|
"push %%ebx\n" |
|
"cpuid\n" \ |
|
"mov %%ebx, %1\n" |
|
"pop %%ebx\n" |
|
: "=a" (a), "=r" (b), "=c" (c), "=d" (d) \ |
|
: "a" (func) \ |
|
); |
|
values[0] = a; |
|
values[1] = b; |
|
values[2] = c; |
|
values[3] = d; |
|
} |
|
#elif defined(__x86_64__) |
|
static __inline__ void x86_cpuid(int func, int values[4]) |
|
{ |
|
int64_t a, b, c, d; |
|
/* We need to preserve ebx since we're compiling PIC code */ |
|
/* this means we can't use "=b" for the second output register */ |
|
__asm__ __volatile__ ( \ |
|
"push %%rbx\n" |
|
"cpuid\n" \ |
|
"mov %%rbx, %1\n" |
|
"pop %%rbx\n" |
|
: "=a" (a), "=r" (b), "=c" (c), "=d" (d) \ |
|
: "a" (func) \ |
|
); |
|
values[0] = a; |
|
values[1] = b; |
|
values[2] = c; |
|
values[3] = d; |
|
} |
|
#endif |
|
|
|
/* Get the size of a file by reading it until the end. This is needed |
|
* because files under /proc do not always return a valid size when |
|
* using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed. |
|
*/ |
|
static int |
|
get_file_size(const char* pathname) |
|
{ |
|
|
|
int fd, result = 0; |
|
char buffer[256]; |
|
|
|
fd = open(pathname, O_RDONLY); |
|
if (fd < 0) { |
|
D("Can't open %s: %s\n", pathname, strerror(errno)); |
|
return -1; |
|
} |
|
|
|
for (;;) { |
|
int ret = read(fd, buffer, sizeof buffer); |
|
if (ret < 0) { |
|
if (errno == EINTR) |
|
continue; |
|
D("Error while reading %s: %s\n", pathname, strerror(errno)); |
|
break; |
|
} |
|
if (ret == 0) |
|
break; |
|
|
|
result += ret; |
|
} |
|
close(fd); |
|
return result; |
|
} |
|
|
|
/* Read the content of /proc/cpuinfo into a user-provided buffer. |
|
* Return the length of the data, or -1 on error. Does *not* |
|
* zero-terminate the content. Will not read more |
|
* than 'buffsize' bytes. |
|
*/ |
|
static int |
|
read_file(const char* pathname, char* buffer, size_t buffsize) |
|
{ |
|
int fd, count; |
|
|
|
fd = open(pathname, O_RDONLY); |
|
if (fd < 0) { |
|
D("Could not open %s: %s\n", pathname, strerror(errno)); |
|
return -1; |
|
} |
|
count = 0; |
|
while (count < (int)buffsize) { |
|
int ret = read(fd, buffer + count, buffsize - count); |
|
if (ret < 0) { |
|
if (errno == EINTR) |
|
continue; |
|
D("Error while reading from %s: %s\n", pathname, strerror(errno)); |
|
if (count == 0) |
|
count = -1; |
|
break; |
|
} |
|
if (ret == 0) |
|
break; |
|
count += ret; |
|
} |
|
close(fd); |
|
return count; |
|
} |
|
|
|
#ifdef __arm__ |
|
/* Extract the content of a the first occurence of a given field in |
|
* the content of /proc/cpuinfo and return it as a heap-allocated |
|
* string that must be freed by the caller. |
|
* |
|
* Return NULL if not found |
|
*/ |
|
static char* |
|
extract_cpuinfo_field(const char* buffer, int buflen, const char* field) |
|
{ |
|
int fieldlen = strlen(field); |
|
const char* bufend = buffer + buflen; |
|
char* result = NULL; |
|
int len; |
|
const char *p, *q; |
|
|
|
/* Look for first field occurence, and ensures it starts the line. */ |
|
p = buffer; |
|
for (;;) { |
|
p = memmem(p, bufend-p, field, fieldlen); |
|
if (p == NULL) |
|
goto EXIT; |
|
|
|
if (p == buffer || p[-1] == '\n') |
|
break; |
|
|
|
p += fieldlen; |
|
} |
|
|
|
/* Skip to the first column followed by a space */ |
|
p += fieldlen; |
|
p = memchr(p, ':', bufend-p); |
|
if (p == NULL || p[1] != ' ') |
|
goto EXIT; |
|
|
|
/* Find the end of the line */ |
|
p += 2; |
|
q = memchr(p, '\n', bufend-p); |
|
if (q == NULL) |
|
q = bufend; |
|
|
|
/* Copy the line into a heap-allocated buffer */ |
|
len = q-p; |
|
result = malloc(len+1); |
|
if (result == NULL) |
|
goto EXIT; |
|
|
|
memcpy(result, p, len); |
|
result[len] = '\0'; |
|
|
|
EXIT: |
|
return result; |
|
} |
|
|
|
/* Checks that a space-separated list of items contains one given 'item'. |
|
* Returns 1 if found, 0 otherwise. |
|
*/ |
|
static int |
|
has_list_item(const char* list, const char* item) |
|
{ |
|
const char* p = list; |
|
int itemlen = strlen(item); |
|
|
|
if (list == NULL) |
|
return 0; |
|
|
|
while (*p) { |
|
const char* q; |
|
|
|
/* skip spaces */ |
|
while (*p == ' ' || *p == '\t') |
|
p++; |
|
|
|
/* find end of current list item */ |
|
q = p; |
|
while (*q && *q != ' ' && *q != '\t') |
|
q++; |
|
|
|
if (itemlen == q-p && !memcmp(p, item, itemlen)) |
|
return 1; |
|
|
|
/* skip to next item */ |
|
p = q; |
|
} |
|
return 0; |
|
} |
|
#endif /* __arm__ */ |
|
|
|
/* Parse a number starting from 'input', but not going further |
|
* than 'limit'. Return the value into '*result'. |
|
* |
|
* NOTE: Does not skip over leading spaces, or deal with sign characters. |
|
* NOTE: Ignores overflows. |
|
* |
|
* The function returns NULL in case of error (bad format), or the new |
|
* position after the decimal number in case of success (which will always |
|
* be <= 'limit'). |
|
*/ |
|
static const char* |
|
parse_number(const char* input, const char* limit, int base, int* result) |
|
{ |
|
const char* p = input; |
|
int val = 0; |
|
while (p < limit) { |
|
int d = (*p - '0'); |
|
if ((unsigned)d >= 10U) { |
|
d = (*p - 'a'); |
|
if ((unsigned)d >= 6U) |
|
d = (*p - 'A'); |
|
if ((unsigned)d >= 6U) |
|
break; |
|
d += 10; |
|
} |
|
if (d >= base) |
|
break; |
|
val = val*base + d; |
|
p++; |
|
} |
|
if (p == input) |
|
return NULL; |
|
|
|
*result = val; |
|
return p; |
|
} |
|
|
|
static const char* |
|
parse_decimal(const char* input, const char* limit, int* result) |
|
{ |
|
return parse_number(input, limit, 10, result); |
|
} |
|
|
|
#ifdef __arm__ |
|
static const char* |
|
parse_hexadecimal(const char* input, const char* limit, int* result) |
|
{ |
|
return parse_number(input, limit, 16, result); |
|
} |
|
#endif /* __arm__ */ |
|
|
|
/* This small data type is used to represent a CPU list / mask, as read |
|
* from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt |
|
* |
|
* For now, we don't expect more than 32 cores on mobile devices, so keep |
|
* everything simple. |
|
*/ |
|
typedef struct { |
|
uint32_t mask; |
|
} CpuList; |
|
|
|
static __inline__ void |
|
cpulist_init(CpuList* list) { |
|
list->mask = 0; |
|
} |
|
|
|
static __inline__ void |
|
cpulist_and(CpuList* list1, CpuList* list2) { |
|
list1->mask &= list2->mask; |
|
} |
|
|
|
static __inline__ void |
|
cpulist_set(CpuList* list, int index) { |
|
if ((unsigned)index < 32) { |
|
list->mask |= (uint32_t)(1U << index); |
|
} |
|
} |
|
|
|
static __inline__ int |
|
cpulist_count(CpuList* list) { |
|
return __builtin_popcount(list->mask); |
|
} |
|
|
|
/* Parse a textual list of cpus and store the result inside a CpuList object. |
|
* Input format is the following: |
|
* - comma-separated list of items (no spaces) |
|
* - each item is either a single decimal number (cpu index), or a range made |
|
* of two numbers separated by a single dash (-). Ranges are inclusive. |
|
* |
|
* Examples: 0 |
|
* 2,4-127,128-143 |
|
* 0-1 |
|
*/ |
|
static void |
|
cpulist_parse(CpuList* list, const char* line, int line_len) |
|
{ |
|
const char* p = line; |
|
const char* end = p + line_len; |
|
const char* q; |
|
|
|
/* NOTE: the input line coming from sysfs typically contains a |
|
* trailing newline, so take care of it in the code below |
|
*/ |
|
while (p < end && *p != '\n') |
|
{ |
|
int val, start_value, end_value; |
|
|
|
/* Find the end of current item, and put it into 'q' */ |
|
q = memchr(p, ',', end-p); |
|
if (q == NULL) { |
|
q = end; |
|
} |
|
|
|
/* Get first value */ |
|
p = parse_decimal(p, q, &start_value); |
|
if (p == NULL) |
|
goto BAD_FORMAT; |
|
|
|
end_value = start_value; |
|
|
|
/* If we're not at the end of the item, expect a dash and |
|
* and integer; extract end value. |
|
*/ |
|
if (p < q && *p == '-') { |
|
p = parse_decimal(p+1, q, &end_value); |
|
if (p == NULL) |
|
goto BAD_FORMAT; |
|
} |
|
|
|
/* Set bits CPU list bits */ |
|
for (val = start_value; val <= end_value; val++) { |
|
cpulist_set(list, val); |
|
} |
|
|
|
/* Jump to next item */ |
|
p = q; |
|
if (p < end) |
|
p++; |
|
} |
|
|
|
BAD_FORMAT: |
|
; |
|
} |
|
|
|
/* Read a CPU list from one sysfs file */ |
|
static void |
|
cpulist_read_from(CpuList* list, const char* filename) |
|
{ |
|
char file[64]; |
|
int filelen; |
|
|
|
cpulist_init(list); |
|
|
|
filelen = read_file(filename, file, sizeof file); |
|
if (filelen < 0) { |
|
D("Could not read %s: %s\n", filename, strerror(errno)); |
|
return; |
|
} |
|
|
|
cpulist_parse(list, file, filelen); |
|
} |
|
#if defined(__aarch64__) |
|
// see <uapi/asm/hwcap.h> kernel header |
|
#define HWCAP_FP (1 << 0) |
|
#define HWCAP_ASIMD (1 << 1) |
|
#define HWCAP_AES (1 << 3) |
|
#define HWCAP_PMULL (1 << 4) |
|
#define HWCAP_SHA1 (1 << 5) |
|
#define HWCAP_SHA2 (1 << 6) |
|
#define HWCAP_CRC32 (1 << 7) |
|
#endif |
|
|
|
#if defined(__arm__) |
|
|
|
// See <asm/hwcap.h> kernel header. |
|
#define HWCAP_VFP (1 << 6) |
|
#define HWCAP_IWMMXT (1 << 9) |
|
#define HWCAP_NEON (1 << 12) |
|
#define HWCAP_VFPv3 (1 << 13) |
|
#define HWCAP_VFPv3D16 (1 << 14) |
|
#define HWCAP_VFPv4 (1 << 16) |
|
#define HWCAP_IDIVA (1 << 17) |
|
#define HWCAP_IDIVT (1 << 18) |
|
|
|
// see <uapi/asm/hwcap.h> kernel header |
|
#define HWCAP2_AES (1 << 0) |
|
#define HWCAP2_PMULL (1 << 1) |
|
#define HWCAP2_SHA1 (1 << 2) |
|
#define HWCAP2_SHA2 (1 << 3) |
|
#define HWCAP2_CRC32 (1 << 4) |
|
|
|
// This is the list of 32-bit ARMv7 optional features that are _always_ |
|
// supported by ARMv8 CPUs, as mandated by the ARM Architecture Reference |
|
// Manual. |
|
#define HWCAP_SET_FOR_ARMV8 \ |
|
( HWCAP_VFP | \ |
|
HWCAP_NEON | \ |
|
HWCAP_VFPv3 | \ |
|
HWCAP_VFPv4 | \ |
|
HWCAP_IDIVA | \ |
|
HWCAP_IDIVT ) |
|
#endif |
|
|
|
#if defined(__mips__) |
|
// see <uapi/asm/hwcap.h> kernel header |
|
#define HWCAP_MIPS_R6 (1 << 0) |
|
#define HWCAP_MIPS_MSA (1 << 1) |
|
#endif |
|
|
|
#if defined(__arm__) || defined(__aarch64__) || defined(__mips__) |
|
|
|
#define AT_HWCAP 16 |
|
#define AT_HWCAP2 26 |
|
|
|
// Probe the system's C library for a 'getauxval' function and call it if |
|
// it exits, or return 0 for failure. This function is available since API |
|
// level 20. |
|
// |
|
// This code does *NOT* check for '__ANDROID_API__ >= 20' to support the |
|
// edge case where some NDK developers use headers for a platform that is |
|
// newer than the one really targetted by their application. |
|
// This is typically done to use newer native APIs only when running on more |
|
// recent Android versions, and requires careful symbol management. |
|
// |
|
// Note that getauxval() can't really be re-implemented here, because |
|
// its implementation does not parse /proc/self/auxv. Instead it depends |
|
// on values that are passed by the kernel at process-init time to the |
|
// C runtime initialization layer. |
|
#if 1 |
|
// OpenCV calls CPU features check during library initialization stage |
|
// (under other dlopen() call). |
|
// Unfortunatelly, calling dlopen() recursively is not supported on some old |
|
// Android versions. Android fix is here: |
|
// - https://android-review.googlesource.com/#/c/32951/ |
|
// - GitHub mirror: https://github.com/android/platform_bionic/commit/e19d702b8e330cef87e0983733c427b5f7842144 |
|
__attribute__((weak)) unsigned long getauxval(unsigned long); // Lets linker to handle this symbol |
|
static uint32_t |
|
get_elf_hwcap_from_getauxval(int hwcap_type) { |
|
uint32_t ret = 0; |
|
if(getauxval != 0) { |
|
ret = (uint32_t)getauxval(hwcap_type); |
|
} else { |
|
D("getauxval() is not available\n"); |
|
} |
|
return ret; |
|
} |
|
#else |
|
static uint32_t |
|
get_elf_hwcap_from_getauxval(int hwcap_type) { |
|
typedef unsigned long getauxval_func_t(unsigned long); |
|
|
|
dlerror(); |
|
void* libc_handle = dlopen("libc.so", RTLD_NOW); |
|
if (!libc_handle) { |
|
D("Could not dlopen() C library: %s\n", dlerror()); |
|
return 0; |
|
} |
|
|
|
uint32_t ret = 0; |
|
getauxval_func_t* func = (getauxval_func_t*) |
|
dlsym(libc_handle, "getauxval"); |
|
if (!func) { |
|
D("Could not find getauxval() in C library\n"); |
|
} else { |
|
// Note: getauxval() returns 0 on failure. Doesn't touch errno. |
|
ret = (uint32_t)(*func)(hwcap_type); |
|
} |
|
dlclose(libc_handle); |
|
return ret; |
|
} |
|
#endif |
|
#endif |
|
|
|
#if defined(__arm__) |
|
// Parse /proc/self/auxv to extract the ELF HW capabilities bitmap for the |
|
// current CPU. Note that this file is not accessible from regular |
|
// application processes on some Android platform releases. |
|
// On success, return new ELF hwcaps, or 0 on failure. |
|
static uint32_t |
|
get_elf_hwcap_from_proc_self_auxv(void) { |
|
const char filepath[] = "/proc/self/auxv"; |
|
int fd = TEMP_FAILURE_RETRY(open(filepath, O_RDONLY)); |
|
if (fd < 0) { |
|
D("Could not open %s: %s\n", filepath, strerror(errno)); |
|
return 0; |
|
} |
|
|
|
struct { uint32_t tag; uint32_t value; } entry; |
|
|
|
uint32_t result = 0; |
|
for (;;) { |
|
int ret = TEMP_FAILURE_RETRY(read(fd, (char*)&entry, sizeof entry)); |
|
if (ret < 0) { |
|
D("Error while reading %s: %s\n", filepath, strerror(errno)); |
|
break; |
|
} |
|
// Detect end of list. |
|
if (ret == 0 || (entry.tag == 0 && entry.value == 0)) |
|
break; |
|
if (entry.tag == AT_HWCAP) { |
|
result = entry.value; |
|
break; |
|
} |
|
} |
|
close(fd); |
|
return result; |
|
} |
|
|
|
/* Compute the ELF HWCAP flags from the content of /proc/cpuinfo. |
|
* This works by parsing the 'Features' line, which lists which optional |
|
* features the device's CPU supports, on top of its reference |
|
* architecture. |
|
*/ |
|
static uint32_t |
|
get_elf_hwcap_from_proc_cpuinfo(const char* cpuinfo, int cpuinfo_len) { |
|
uint32_t hwcaps = 0; |
|
long architecture = 0; |
|
char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture"); |
|
if (cpuArch) { |
|
architecture = strtol(cpuArch, NULL, 10); |
|
free(cpuArch); |
|
|
|
if (architecture >= 8L) { |
|
// This is a 32-bit ARM binary running on a 64-bit ARM64 kernel. |
|
// The 'Features' line only lists the optional features that the |
|
// device's CPU supports, compared to its reference architecture |
|
// which are of no use for this process. |
|
D("Faking 32-bit ARM HWCaps on ARMv%ld CPU\n", architecture); |
|
return HWCAP_SET_FOR_ARMV8; |
|
} |
|
} |
|
|
|
char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features"); |
|
if (cpuFeatures != NULL) { |
|
D("Found cpuFeatures = '%s'\n", cpuFeatures); |
|
|
|
if (has_list_item(cpuFeatures, "vfp")) |
|
hwcaps |= HWCAP_VFP; |
|
if (has_list_item(cpuFeatures, "vfpv3")) |
|
hwcaps |= HWCAP_VFPv3; |
|
if (has_list_item(cpuFeatures, "vfpv3d16")) |
|
hwcaps |= HWCAP_VFPv3D16; |
|
if (has_list_item(cpuFeatures, "vfpv4")) |
|
hwcaps |= HWCAP_VFPv4; |
|
if (has_list_item(cpuFeatures, "neon")) |
|
hwcaps |= HWCAP_NEON; |
|
if (has_list_item(cpuFeatures, "idiva")) |
|
hwcaps |= HWCAP_IDIVA; |
|
if (has_list_item(cpuFeatures, "idivt")) |
|
hwcaps |= HWCAP_IDIVT; |
|
if (has_list_item(cpuFeatures, "idiv")) |
|
hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT; |
|
if (has_list_item(cpuFeatures, "iwmmxt")) |
|
hwcaps |= HWCAP_IWMMXT; |
|
|
|
free(cpuFeatures); |
|
} |
|
return hwcaps; |
|
} |
|
#endif /* __arm__ */ |
|
|
|
/* Return the number of cpus present on a given device. |
|
* |
|
* To handle all weird kernel configurations, we need to compute the |
|
* intersection of the 'present' and 'possible' CPU lists and count |
|
* the result. |
|
*/ |
|
static int |
|
get_cpu_count(void) |
|
{ |
|
CpuList cpus_present[1]; |
|
CpuList cpus_possible[1]; |
|
|
|
cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present"); |
|
cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible"); |
|
|
|
/* Compute the intersection of both sets to get the actual number of |
|
* CPU cores that can be used on this device by the kernel. |
|
*/ |
|
cpulist_and(cpus_present, cpus_possible); |
|
|
|
return cpulist_count(cpus_present); |
|
} |
|
|
|
static void |
|
android_cpuInitFamily(void) |
|
{ |
|
#if defined(__arm__) |
|
g_cpuFamily = ANDROID_CPU_FAMILY_ARM; |
|
#elif defined(__i386__) |
|
g_cpuFamily = ANDROID_CPU_FAMILY_X86; |
|
#elif defined(__mips64) |
|
/* Needs to be before __mips__ since the compiler defines both */ |
|
g_cpuFamily = ANDROID_CPU_FAMILY_MIPS64; |
|
#elif defined(__mips__) |
|
g_cpuFamily = ANDROID_CPU_FAMILY_MIPS; |
|
#elif defined(__aarch64__) |
|
g_cpuFamily = ANDROID_CPU_FAMILY_ARM64; |
|
#elif defined(__x86_64__) |
|
g_cpuFamily = ANDROID_CPU_FAMILY_X86_64; |
|
#else |
|
g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN; |
|
#endif |
|
} |
|
|
|
static void |
|
android_cpuInit(void) |
|
{ |
|
char* cpuinfo = NULL; |
|
int cpuinfo_len; |
|
|
|
android_cpuInitFamily(); |
|
|
|
g_cpuFeatures = 0; |
|
g_cpuCount = 1; |
|
g_inited = 1; |
|
|
|
cpuinfo_len = get_file_size("/proc/cpuinfo"); |
|
if (cpuinfo_len < 0) { |
|
D("cpuinfo_len cannot be computed!"); |
|
return; |
|
} |
|
cpuinfo = malloc(cpuinfo_len); |
|
if (cpuinfo == NULL) { |
|
D("cpuinfo buffer could not be allocated"); |
|
return; |
|
} |
|
cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len); |
|
D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len, |
|
cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo); |
|
|
|
if (cpuinfo_len < 0) /* should not happen */ { |
|
free(cpuinfo); |
|
return; |
|
} |
|
|
|
/* Count the CPU cores, the value may be 0 for single-core CPUs */ |
|
g_cpuCount = get_cpu_count(); |
|
if (g_cpuCount == 0) { |
|
g_cpuCount = 1; |
|
} |
|
|
|
D("found cpuCount = %d\n", g_cpuCount); |
|
|
|
#ifdef __arm__ |
|
{ |
|
/* Extract architecture from the "CPU Architecture" field. |
|
* The list is well-known, unlike the the output of |
|
* the 'Processor' field which can vary greatly. |
|
* |
|
* See the definition of the 'proc_arch' array in |
|
* $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in |
|
* same file. |
|
*/ |
|
char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture"); |
|
|
|
if (cpuArch != NULL) { |
|
char* end; |
|
long archNumber; |
|
int hasARMv7 = 0; |
|
|
|
D("found cpuArch = '%s'\n", cpuArch); |
|
|
|
/* read the initial decimal number, ignore the rest */ |
|
archNumber = strtol(cpuArch, &end, 10); |
|
|
|
/* Note that ARMv8 is upwards compatible with ARMv7. */ |
|
if (end > cpuArch && archNumber >= 7) { |
|
hasARMv7 = 1; |
|
} |
|
|
|
/* Unfortunately, it seems that certain ARMv6-based CPUs |
|
* report an incorrect architecture number of 7! |
|
* |
|
* See http://code.google.com/p/android/issues/detail?id=10812 |
|
* |
|
* We try to correct this by looking at the 'elf_format' |
|
* field reported by the 'Processor' field, which is of the |
|
* form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for |
|
* an ARMv6-one. |
|
*/ |
|
if (hasARMv7) { |
|
char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len, |
|
"Processor"); |
|
if (cpuProc != NULL) { |
|
D("found cpuProc = '%s'\n", cpuProc); |
|
if (has_list_item(cpuProc, "(v6l)")) { |
|
D("CPU processor and architecture mismatch!!\n"); |
|
hasARMv7 = 0; |
|
} |
|
free(cpuProc); |
|
} |
|
} |
|
|
|
if (hasARMv7) { |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7; |
|
} |
|
|
|
/* The LDREX / STREX instructions are available from ARMv6 */ |
|
if (archNumber >= 6) { |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX; |
|
} |
|
|
|
free(cpuArch); |
|
} |
|
|
|
/* Extract the list of CPU features from ELF hwcaps */ |
|
uint32_t hwcaps = 0; |
|
hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP); |
|
if (!hwcaps) { |
|
D("Parsing /proc/self/auxv to extract ELF hwcaps!\n"); |
|
hwcaps = get_elf_hwcap_from_proc_self_auxv(); |
|
} |
|
if (!hwcaps) { |
|
// Parsing /proc/self/auxv will fail from regular application |
|
// processes on some Android platform versions, when this happens |
|
// parse proc/cpuinfo instead. |
|
D("Parsing /proc/cpuinfo to extract ELF hwcaps!\n"); |
|
hwcaps = get_elf_hwcap_from_proc_cpuinfo(cpuinfo, cpuinfo_len); |
|
} |
|
|
|
if (hwcaps != 0) { |
|
int has_vfp = (hwcaps & HWCAP_VFP); |
|
int has_vfpv3 = (hwcaps & HWCAP_VFPv3); |
|
int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16); |
|
int has_vfpv4 = (hwcaps & HWCAP_VFPv4); |
|
int has_neon = (hwcaps & HWCAP_NEON); |
|
int has_idiva = (hwcaps & HWCAP_IDIVA); |
|
int has_idivt = (hwcaps & HWCAP_IDIVT); |
|
int has_iwmmxt = (hwcaps & HWCAP_IWMMXT); |
|
|
|
// The kernel does a poor job at ensuring consistency when |
|
// describing CPU features. So lots of guessing is needed. |
|
|
|
// 'vfpv4' implies VFPv3|VFP_FMA|FP16 |
|
if (has_vfpv4) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 | |
|
ANDROID_CPU_ARM_FEATURE_VFP_FP16 | |
|
ANDROID_CPU_ARM_FEATURE_VFP_FMA; |
|
|
|
// 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC, |
|
// a value of 'vfpv3' doesn't necessarily mean that the D32 |
|
// feature is present, so be conservative. All CPUs in the |
|
// field that support D32 also support NEON, so this should |
|
// not be a problem in practice. |
|
if (has_vfpv3 || has_vfpv3d16) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3; |
|
|
|
// 'vfp' is super ambiguous. Depending on the kernel, it can |
|
// either mean VFPv2 or VFPv3. Make it depend on ARMv7. |
|
if (has_vfp) { |
|
if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3; |
|
else |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2; |
|
} |
|
|
|
// Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA |
|
if (has_neon) { |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 | |
|
ANDROID_CPU_ARM_FEATURE_NEON | |
|
ANDROID_CPU_ARM_FEATURE_VFP_D32; |
|
if (has_vfpv4) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA; |
|
} |
|
|
|
// VFPv3 implies VFPv2 and ARMv7 |
|
if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 | |
|
ANDROID_CPU_ARM_FEATURE_ARMv7; |
|
|
|
if (has_idiva) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM; |
|
if (has_idivt) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2; |
|
|
|
if (has_iwmmxt) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt; |
|
} |
|
|
|
/* Extract the list of CPU features from ELF hwcaps2 */ |
|
uint32_t hwcaps2 = 0; |
|
hwcaps2 = get_elf_hwcap_from_getauxval(AT_HWCAP2); |
|
if (hwcaps2 != 0) { |
|
int has_aes = (hwcaps2 & HWCAP2_AES); |
|
int has_pmull = (hwcaps2 & HWCAP2_PMULL); |
|
int has_sha1 = (hwcaps2 & HWCAP2_SHA1); |
|
int has_sha2 = (hwcaps2 & HWCAP2_SHA2); |
|
int has_crc32 = (hwcaps2 & HWCAP2_CRC32); |
|
|
|
if (has_aes) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_AES; |
|
if (has_pmull) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_PMULL; |
|
if (has_sha1) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA1; |
|
if (has_sha2) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA2; |
|
if (has_crc32) |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_CRC32; |
|
} |
|
/* Extract the cpuid value from various fields */ |
|
// The CPUID value is broken up in several entries in /proc/cpuinfo. |
|
// This table is used to rebuild it from the entries. |
|
static const struct CpuIdEntry { |
|
const char* field; |
|
char format; |
|
char bit_lshift; |
|
char bit_length; |
|
} cpu_id_entries[] = { |
|
{ "CPU implementer", 'x', 24, 8 }, |
|
{ "CPU variant", 'x', 20, 4 }, |
|
{ "CPU part", 'x', 4, 12 }, |
|
{ "CPU revision", 'd', 0, 4 }, |
|
}; |
|
size_t i; |
|
D("Parsing /proc/cpuinfo to recover CPUID\n"); |
|
for (i = 0; |
|
i < sizeof(cpu_id_entries)/sizeof(cpu_id_entries[0]); |
|
++i) { |
|
const struct CpuIdEntry* entry = &cpu_id_entries[i]; |
|
char* value = extract_cpuinfo_field(cpuinfo, |
|
cpuinfo_len, |
|
entry->field); |
|
if (value == NULL) |
|
continue; |
|
|
|
D("field=%s value='%s'\n", entry->field, value); |
|
char* value_end = value + strlen(value); |
|
int val = 0; |
|
const char* start = value; |
|
const char* p; |
|
if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) { |
|
start += 2; |
|
p = parse_hexadecimal(start, value_end, &val); |
|
} else if (entry->format == 'x') |
|
p = parse_hexadecimal(value, value_end, &val); |
|
else |
|
p = parse_decimal(value, value_end, &val); |
|
|
|
if (p > (const char*)start) { |
|
val &= ((1 << entry->bit_length)-1); |
|
val <<= entry->bit_lshift; |
|
g_cpuIdArm |= (uint32_t) val; |
|
} |
|
|
|
free(value); |
|
} |
|
|
|
// Handle kernel configuration bugs that prevent the correct |
|
// reporting of CPU features. |
|
static const struct CpuFix { |
|
uint32_t cpuid; |
|
uint64_t or_flags; |
|
} cpu_fixes[] = { |
|
/* The Nexus 4 (Qualcomm Krait) kernel configuration |
|
* forgets to report IDIV support. */ |
|
{ 0x510006f2, ANDROID_CPU_ARM_FEATURE_IDIV_ARM | |
|
ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 }, |
|
{ 0x510006f3, ANDROID_CPU_ARM_FEATURE_IDIV_ARM | |
|
ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 }, |
|
}; |
|
size_t n; |
|
for (n = 0; n < sizeof(cpu_fixes)/sizeof(cpu_fixes[0]); ++n) { |
|
const struct CpuFix* entry = &cpu_fixes[n]; |
|
|
|
if (g_cpuIdArm == entry->cpuid) |
|
g_cpuFeatures |= entry->or_flags; |
|
} |
|
|
|
// Special case: The emulator-specific Android 4.2 kernel fails |
|
// to report support for the 32-bit ARM IDIV instruction. |
|
// Technically, this is a feature of the virtual CPU implemented |
|
// by the emulator. Note that it could also support Thumb IDIV |
|
// in the future, and this will have to be slightly updated. |
|
char* hardware = extract_cpuinfo_field(cpuinfo, |
|
cpuinfo_len, |
|
"Hardware"); |
|
if (hardware) { |
|
if (!strcmp(hardware, "Goldfish") && |
|
g_cpuIdArm == 0x4100c080 && |
|
(g_cpuFamily & ANDROID_CPU_ARM_FEATURE_ARMv7) != 0) { |
|
g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM; |
|
} |
|
free(hardware); |
|
} |
|
} |
|
#endif /* __arm__ */ |
|
#ifdef __aarch64__ |
|
{ |
|
/* Extract the list of CPU features from ELF hwcaps */ |
|
uint32_t hwcaps = 0; |
|
hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP); |
|
if (hwcaps != 0) { |
|
int has_fp = (hwcaps & HWCAP_FP); |
|
int has_asimd = (hwcaps & HWCAP_ASIMD); |
|
int has_aes = (hwcaps & HWCAP_AES); |
|
int has_pmull = (hwcaps & HWCAP_PMULL); |
|
int has_sha1 = (hwcaps & HWCAP_SHA1); |
|
int has_sha2 = (hwcaps & HWCAP_SHA2); |
|
int has_crc32 = (hwcaps & HWCAP_CRC32); |
|
|
|
if(has_fp == 0) { |
|
D("ERROR: Floating-point unit missing, but is required by Android on AArch64 CPUs\n"); |
|
} |
|
if(has_asimd == 0) { |
|
D("ERROR: ASIMD unit missing, but is required by Android on AArch64 CPUs\n"); |
|
} |
|
|
|
if (has_fp) |
|
g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_FP; |
|
if (has_asimd) |
|
g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_ASIMD; |
|
if (has_aes) |
|
g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_AES; |
|
if (has_pmull) |
|
g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_PMULL; |
|
if (has_sha1) |
|
g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA1; |
|
if (has_sha2) |
|
g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA2; |
|
if (has_crc32) |
|
g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_CRC32; |
|
} |
|
} |
|
#endif /* __aarch64__ */ |
|
|
|
#if defined(__i386__) || defined(__x86_64__) |
|
int regs[4]; |
|
|
|
/* According to http://en.wikipedia.org/wiki/CPUID */ |
|
#define VENDOR_INTEL_b 0x756e6547 |
|
#define VENDOR_INTEL_c 0x6c65746e |
|
#define VENDOR_INTEL_d 0x49656e69 |
|
|
|
x86_cpuid(0, regs); |
|
int vendorIsIntel = (regs[1] == VENDOR_INTEL_b && |
|
regs[2] == VENDOR_INTEL_c && |
|
regs[3] == VENDOR_INTEL_d); |
|
|
|
x86_cpuid(1, regs); |
|
if ((regs[2] & (1 << 9)) != 0) { |
|
g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3; |
|
} |
|
if ((regs[2] & (1 << 23)) != 0) { |
|
g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT; |
|
} |
|
if ((regs[2] & (1 << 19)) != 0) { |
|
g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSE4_1; |
|
} |
|
if ((regs[2] & (1 << 20)) != 0) { |
|
g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSE4_2; |
|
} |
|
if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) { |
|
g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE; |
|
} |
|
if ((regs[2] & (1 << 25)) != 0) { |
|
g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_AES_NI; |
|
} |
|
if ((regs[2] & (1 << 28)) != 0) { |
|
g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_AVX; |
|
} |
|
if ((regs[2] & (1 << 30)) != 0) { |
|
g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_RDRAND; |
|
} |
|
|
|
x86_cpuid(7, regs); |
|
if ((regs[1] & (1 << 5)) != 0) { |
|
g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_AVX2; |
|
} |
|
if ((regs[1] & (1 << 29)) != 0) { |
|
g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SHA_NI; |
|
} |
|
|
|
|
|
#endif |
|
#if defined( __mips__) |
|
{ /* MIPS and MIPS64 */ |
|
/* Extract the list of CPU features from ELF hwcaps */ |
|
uint32_t hwcaps = 0; |
|
hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP); |
|
if (hwcaps != 0) { |
|
int has_r6 = (hwcaps & HWCAP_MIPS_R6); |
|
int has_msa = (hwcaps & HWCAP_MIPS_MSA); |
|
if (has_r6) |
|
g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_R6; |
|
if (has_msa) |
|
g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_MSA; |
|
} |
|
} |
|
#endif /* __mips__ */ |
|
|
|
free(cpuinfo); |
|
} |
|
|
|
|
|
AndroidCpuFamily |
|
android_getCpuFamily(void) |
|
{ |
|
pthread_once(&g_once, android_cpuInit); |
|
return g_cpuFamily; |
|
} |
|
|
|
|
|
uint64_t |
|
android_getCpuFeatures(void) |
|
{ |
|
pthread_once(&g_once, android_cpuInit); |
|
return g_cpuFeatures; |
|
} |
|
|
|
|
|
int |
|
android_getCpuCount(void) |
|
{ |
|
pthread_once(&g_once, android_cpuInit); |
|
return g_cpuCount; |
|
} |
|
|
|
static void |
|
android_cpuInitDummy(void) |
|
{ |
|
g_inited = 1; |
|
} |
|
|
|
int |
|
android_setCpu(int cpu_count, uint64_t cpu_features) |
|
{ |
|
/* Fail if the library was already initialized. */ |
|
if (g_inited) |
|
return 0; |
|
|
|
android_cpuInitFamily(); |
|
g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count); |
|
g_cpuFeatures = cpu_features; |
|
pthread_once(&g_once, android_cpuInitDummy); |
|
|
|
return 1; |
|
} |
|
|
|
#ifdef __arm__ |
|
uint32_t |
|
android_getCpuIdArm(void) |
|
{ |
|
pthread_once(&g_once, android_cpuInit); |
|
return g_cpuIdArm; |
|
} |
|
|
|
int |
|
android_setCpuArm(int cpu_count, uint64_t cpu_features, uint32_t cpu_id) |
|
{ |
|
if (!android_setCpu(cpu_count, cpu_features)) |
|
return 0; |
|
|
|
g_cpuIdArm = cpu_id; |
|
return 1; |
|
} |
|
#endif /* __arm__ */ |
|
|
|
/* |
|
* Technical note: Making sense of ARM's FPU architecture versions. |
|
* |
|
* FPA was ARM's first attempt at an FPU architecture. There is no Android |
|
* device that actually uses it since this technology was already obsolete |
|
* when the project started. If you see references to FPA instructions |
|
* somewhere, you can be sure that this doesn't apply to Android at all. |
|
* |
|
* FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of |
|
* new versions / additions to it. ARM considers this obsolete right now, |
|
* and no known Android device implements it either. |
|
* |
|
* VFPv2 added a few instructions to VFPv1, and is an *optional* extension |
|
* supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device |
|
* supporting the 'armeabi' ABI doesn't necessarily support these. |
|
* |
|
* VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used |
|
* on ARMv7-A CPUs which implement a FPU. Note that it is also mandated |
|
* by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means |
|
* that it provides 16 double-precision FPU registers (d0-d15) and 32 |
|
* single-precision ones (s0-s31) which happen to be mapped to the same |
|
* register banks. |
|
* |
|
* VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16 |
|
* additional double precision registers (d16-d31). Note that there are |
|
* still only 32 single precision registers. |
|
* |
|
* VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision |
|
* registers. It is only used on ARMv7-M (i.e. on micro-controllers) which |
|
* are not supported by Android. Note that it is not compatible with VFPv2. |
|
* |
|
* NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32 |
|
* depending on context. For example GCC uses it for VFPv3-D32, but |
|
* the Linux kernel code uses it for VFPv3-D16 (especially in |
|
* /proc/cpuinfo). Always try to use the full designation when |
|
* possible. |
|
* |
|
* NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides |
|
* instructions to perform parallel computations on vectors of 8, 16, |
|
* 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all |
|
* NEON registers are also mapped to the same register banks. |
|
* |
|
* VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to |
|
* perform fused multiply-accumulate on VFP registers, as well as |
|
* half-precision (16-bit) conversion operations. |
|
* |
|
* VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision |
|
* registers. |
|
* |
|
* VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused |
|
* multiply-accumulate instructions that work on the NEON registers. |
|
* |
|
* NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32 |
|
* depending on context. |
|
* |
|
* The following information was determined by scanning the binutils-2.22 |
|
* sources: |
|
* |
|
* Basic VFP instruction subsets: |
|
* |
|
* #define FPU_VFP_EXT_V1xD 0x08000000 // Base VFP instruction set. |
|
* #define FPU_VFP_EXT_V1 0x04000000 // Double-precision insns. |
|
* #define FPU_VFP_EXT_V2 0x02000000 // ARM10E VFPr1. |
|
* #define FPU_VFP_EXT_V3xD 0x01000000 // VFPv3 single-precision. |
|
* #define FPU_VFP_EXT_V3 0x00800000 // VFPv3 double-precision. |
|
* #define FPU_NEON_EXT_V1 0x00400000 // Neon (SIMD) insns. |
|
* #define FPU_VFP_EXT_D32 0x00200000 // Registers D16-D31. |
|
* #define FPU_VFP_EXT_FP16 0x00100000 // Half-precision extensions. |
|
* #define FPU_NEON_EXT_FMA 0x00080000 // Neon fused multiply-add |
|
* #define FPU_VFP_EXT_FMA 0x00040000 // VFP fused multiply-add |
|
* |
|
* FPU types (excluding NEON) |
|
* |
|
* FPU_VFP_V1xD (EXT_V1xD) |
|
* | |
|
* +--------------------------+ |
|
* | | |
|
* FPU_VFP_V1 (+EXT_V1) FPU_VFP_V3xD (+EXT_V2+EXT_V3xD) |
|
* | | |
|
* | | |
|
* FPU_VFP_V2 (+EXT_V2) FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA) |
|
* | |
|
* FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3) |
|
* | |
|
* +--------------------------+ |
|
* | | |
|
* FPU_VFP_V3 (+EXT_D32) FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA) |
|
* | | |
|
* | FPU_VFP_V4 (+EXT_D32) |
|
* | |
|
* FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA) |
|
* |
|
* VFP architectures: |
|
* |
|
* ARCH_VFP_V1xD (EXT_V1xD) |
|
* | |
|
* +------------------+ |
|
* | | |
|
* | ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD) |
|
* | | |
|
* | ARCH_VFP_V3xD_FP16 (+EXT_FP16) |
|
* | | |
|
* | ARCH_VFP_V4_SP_D16 (+EXT_FMA) |
|
* | |
|
* ARCH_VFP_V1 (+EXT_V1) |
|
* | |
|
* ARCH_VFP_V2 (+EXT_V2) |
|
* | |
|
* ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3) |
|
* | |
|
* +-------------------+ |
|
* | | |
|
* | ARCH_VFP_V3D16_FP16 (+EXT_FP16) |
|
* | |
|
* +-------------------+ |
|
* | | |
|
* | ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA) |
|
* | | |
|
* | ARCH_VFP_V4 (+EXT_D32) |
|
* | | |
|
* | ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA) |
|
* | |
|
* ARCH_VFP_V3 (+EXT_D32) |
|
* | |
|
* +-------------------+ |
|
* | | |
|
* | ARCH_VFP_V3_FP16 (+EXT_FP16) |
|
* | |
|
* ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON) |
|
* | |
|
* ARCH_NEON_FP16 (+EXT_FP16) |
|
* |
|
* -fpu=<name> values and their correspondance with FPU architectures above: |
|
* |
|
* {"vfp", FPU_ARCH_VFP_V2}, |
|
* {"vfp9", FPU_ARCH_VFP_V2}, |
|
* {"vfp3", FPU_ARCH_VFP_V3}, // For backwards compatbility. |
|
* {"vfp10", FPU_ARCH_VFP_V2}, |
|
* {"vfp10-r0", FPU_ARCH_VFP_V1}, |
|
* {"vfpxd", FPU_ARCH_VFP_V1xD}, |
|
* {"vfpv2", FPU_ARCH_VFP_V2}, |
|
* {"vfpv3", FPU_ARCH_VFP_V3}, |
|
* {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16}, |
|
* {"vfpv3-d16", FPU_ARCH_VFP_V3D16}, |
|
* {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16}, |
|
* {"vfpv3xd", FPU_ARCH_VFP_V3xD}, |
|
* {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16}, |
|
* {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1}, |
|
* {"neon-fp16", FPU_ARCH_NEON_FP16}, |
|
* {"vfpv4", FPU_ARCH_VFP_V4}, |
|
* {"vfpv4-d16", FPU_ARCH_VFP_V4D16}, |
|
* {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16}, |
|
* {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4}, |
|
* |
|
* |
|
* Simplified diagram that only includes FPUs supported by Android: |
|
* Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI, |
|
* all others are optional and must be probed at runtime. |
|
* |
|
* ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3) |
|
* | |
|
* +-------------------+ |
|
* | | |
|
* | ARCH_VFP_V3D16_FP16 (+EXT_FP16) |
|
* | |
|
* +-------------------+ |
|
* | | |
|
* | ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA) |
|
* | | |
|
* | ARCH_VFP_V4 (+EXT_D32) |
|
* | | |
|
* | ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA) |
|
* | |
|
* ARCH_VFP_V3 (+EXT_D32) |
|
* | |
|
* +-------------------+ |
|
* | | |
|
* | ARCH_VFP_V3_FP16 (+EXT_FP16) |
|
* | |
|
* ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON) |
|
* | |
|
* ARCH_NEON_FP16 (+EXT_FP16) |
|
* |
|
*/
|
|
|