mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
496 lines
15 KiB
496 lines
15 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
using namespace cvtest; |
|
using namespace testing; |
|
|
|
//#define DUMP |
|
|
|
#define OPTICAL_FLOW_DUMP_FILE "opticalflow/opticalflow_gold.bin" |
|
#define OPTICAL_FLOW_DUMP_FILE_CC20 "opticalflow/opticalflow_gold_cc20.bin" |
|
#define INTERPOLATE_FRAMES_DUMP_FILE "opticalflow/interpolate_frames_gold.bin" |
|
#define INTERPOLATE_FRAMES_DUMP_FILE_CC20 "opticalflow/interpolate_frames_gold_cc20.bin" |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// BroxOpticalFlow |
|
|
|
struct BroxOpticalFlow : TestWithParam<cv::gpu::DeviceInfo> |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
cv::Mat frame0; |
|
cv::Mat frame1; |
|
|
|
cv::Mat u_gold; |
|
cv::Mat v_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GetParam(); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
frame0 = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
frame0.convertTo(frame0, CV_32F, 1.0 / 255.0); |
|
|
|
frame1 = readImage("opticalflow/frame1.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
frame1.convertTo(frame1, CV_32F, 1.0 / 255.0); |
|
|
|
#ifndef DUMP |
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path()); |
|
if (devInfo.majorVersion() >= 2) |
|
fname += OPTICAL_FLOW_DUMP_FILE_CC20; |
|
else |
|
fname += OPTICAL_FLOW_DUMP_FILE; |
|
|
|
std::ifstream f(fname.c_str(), std::ios_base::binary); |
|
|
|
int rows, cols; |
|
|
|
f.read((char*)&rows, sizeof(rows)); |
|
f.read((char*)&cols, sizeof(cols)); |
|
|
|
u_gold.create(rows, cols, CV_32FC1); |
|
|
|
for (int i = 0; i < u_gold.rows; ++i) |
|
f.read((char*)u_gold.ptr(i), u_gold.cols * sizeof(float)); |
|
|
|
v_gold.create(rows, cols, CV_32FC1); |
|
|
|
for (int i = 0; i < v_gold.rows; ++i) |
|
f.read((char*)v_gold.ptr(i), v_gold.cols * sizeof(float)); |
|
|
|
#endif |
|
} |
|
}; |
|
|
|
TEST_P(BroxOpticalFlow, Regression) |
|
{ |
|
cv::Mat u; |
|
cv::Mat v; |
|
|
|
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, |
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
cv::gpu::GpuMat d_u; |
|
cv::gpu::GpuMat d_v; |
|
|
|
d_flow(cv::gpu::GpuMat(frame0), cv::gpu::GpuMat(frame1), d_u, d_v); |
|
|
|
d_u.download(u); |
|
d_v.download(v); |
|
|
|
#ifndef DUMP |
|
|
|
EXPECT_MAT_NEAR(u_gold, u, 0); |
|
EXPECT_MAT_NEAR(v_gold, v, 0); |
|
|
|
#else |
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path()); |
|
if (devInfo.majorVersion() >= 2) |
|
fname += OPTICAL_FLOW_DUMP_FILE_CC20; |
|
else |
|
fname += OPTICAL_FLOW_DUMP_FILE; |
|
|
|
std::ofstream f(fname.c_str(), std::ios_base::binary); |
|
|
|
f.write((char*)&u.rows, sizeof(u.rows)); |
|
f.write((char*)&u.cols, sizeof(u.cols)); |
|
|
|
for (int i = 0; i < u.rows; ++i) |
|
f.write((char*)u.ptr(i), u.cols * sizeof(float)); |
|
|
|
for (int i = 0; i < v.rows; ++i) |
|
f.write((char*)v.ptr(i), v.cols * sizeof(float)); |
|
|
|
#endif |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, BroxOpticalFlow, ALL_DEVICES); |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// InterpolateFrames |
|
|
|
struct InterpolateFrames : TestWithParam<cv::gpu::DeviceInfo> |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
cv::Mat frame0; |
|
cv::Mat frame1; |
|
|
|
cv::Mat newFrame_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GetParam(); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
frame0 = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); |
|
frame0.convertTo(frame0, CV_32F, 1.0 / 255.0); |
|
|
|
frame1 = readImage("opticalflow/frame1.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1.empty()); |
|
frame1.convertTo(frame1, CV_32F, 1.0 / 255.0); |
|
|
|
#ifndef DUMP |
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path()); |
|
if (devInfo.majorVersion() >= 2) |
|
fname += INTERPOLATE_FRAMES_DUMP_FILE_CC20; |
|
else |
|
fname += INTERPOLATE_FRAMES_DUMP_FILE; |
|
|
|
std::ifstream f(fname.c_str(), std::ios_base::binary); |
|
|
|
int rows, cols; |
|
|
|
f.read((char*)&rows, sizeof(rows)); |
|
f.read((char*)&cols, sizeof(cols)); |
|
|
|
newFrame_gold.create(rows, cols, CV_32FC1); |
|
|
|
for (int i = 0; i < newFrame_gold.rows; ++i) |
|
f.read((char*)newFrame_gold.ptr(i), newFrame_gold.cols * sizeof(float)); |
|
|
|
#endif |
|
} |
|
}; |
|
|
|
TEST_P(InterpolateFrames, Regression) |
|
{ |
|
cv::Mat newFrame; |
|
|
|
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, |
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
cv::gpu::GpuMat d_frame0(frame0); |
|
cv::gpu::GpuMat d_frame1(frame1); |
|
|
|
cv::gpu::GpuMat d_fu; |
|
cv::gpu::GpuMat d_fv; |
|
cv::gpu::GpuMat d_bu; |
|
cv::gpu::GpuMat d_bv; |
|
|
|
d_flow(d_frame0, d_frame1, d_fu, d_fv); |
|
d_flow(d_frame1, d_frame0, d_bu, d_bv); |
|
|
|
cv::gpu::GpuMat d_newFrame; |
|
cv::gpu::GpuMat d_buf; |
|
|
|
cv::gpu::interpolateFrames(d_frame0, d_frame1, d_fu, d_fv, d_bu, d_bv, 0.5f, d_newFrame, d_buf); |
|
|
|
d_newFrame.download(newFrame); |
|
|
|
#ifndef DUMP |
|
|
|
EXPECT_MAT_NEAR(newFrame_gold, newFrame, 1e-3); |
|
|
|
#else |
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path()); |
|
if (devInfo.majorVersion() >= 2) |
|
fname += INTERPOLATE_FRAMES_DUMP_FILE_CC20; |
|
else |
|
fname += INTERPOLATE_FRAMES_DUMP_FILE; |
|
|
|
std::ofstream f(fname.c_str(), std::ios_base::binary); |
|
|
|
f.write((char*)&newFrame.rows, sizeof(newFrame.rows)); |
|
f.write((char*)&newFrame.cols, sizeof(newFrame.cols)); |
|
|
|
for (int i = 0; i < newFrame.rows; ++i) |
|
f.write((char*)newFrame.ptr(i), newFrame.cols * sizeof(float)); |
|
|
|
#endif |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, InterpolateFrames, ALL_DEVICES); |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// GoodFeaturesToTrack |
|
|
|
PARAM_TEST_CASE(GoodFeaturesToTrack, cv::gpu::DeviceInfo, double) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
cv::Mat image; |
|
|
|
int maxCorners; |
|
double qualityLevel; |
|
double minDistance; |
|
|
|
std::vector<cv::Point2f> pts_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
minDistance = GET_PARAM(1); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
image = readImage("opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
maxCorners = 1000; |
|
qualityLevel= 0.01; |
|
|
|
cv::goodFeaturesToTrack(image, pts_gold, maxCorners, qualityLevel, minDistance); |
|
} |
|
}; |
|
|
|
TEST_P(GoodFeaturesToTrack, Accuracy) |
|
{ |
|
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(maxCorners, qualityLevel, minDistance); |
|
|
|
cv::gpu::GpuMat d_pts; |
|
|
|
detector(loadMat(image), d_pts); |
|
|
|
std::vector<cv::Point2f> pts(d_pts.cols); |
|
cv::Mat pts_mat(1, d_pts.cols, CV_32FC2, (void*)&pts[0]); |
|
d_pts.download(pts_mat); |
|
|
|
ASSERT_EQ(pts_gold.size(), pts.size()); |
|
|
|
size_t mistmatch = 0; |
|
|
|
for (size_t i = 0; i < pts.size(); ++i) |
|
{ |
|
cv::Point2i a = pts_gold[i]; |
|
cv::Point2i b = pts[i]; |
|
|
|
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1; |
|
|
|
if (!eq) |
|
++mistmatch; |
|
} |
|
|
|
double bad_ratio = static_cast<double>(mistmatch) / pts.size(); |
|
|
|
ASSERT_LE(bad_ratio, 0.01); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, GoodFeaturesToTrack, Combine(ALL_DEVICES, Values(0.0, 3.0))); |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// PyrLKOpticalFlow |
|
|
|
PARAM_TEST_CASE(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, bool) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
cv::Mat frame0; |
|
cv::Mat frame1; |
|
|
|
std::vector<cv::Point2f> pts; |
|
|
|
std::vector<cv::Point2f> nextPts_gold; |
|
std::vector<unsigned char> status_gold; |
|
std::vector<float> err_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
bool useGray = GET_PARAM(1); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
frame0 = readImage("opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
ASSERT_FALSE(frame0.empty()); |
|
|
|
frame1 = readImage("opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
ASSERT_FALSE(frame1.empty()); |
|
|
|
cv::Mat gray_frame; |
|
if (useGray) |
|
gray_frame = frame0; |
|
else |
|
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); |
|
|
|
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0); |
|
|
|
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold, cv::Size(21, 21), 3, |
|
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, 0.01), 0.5); |
|
} |
|
}; |
|
|
|
TEST_P(PyrLKOpticalFlowSparse, Accuracy) |
|
{ |
|
cv::gpu::PyrLKOpticalFlow d_pyrLK; |
|
|
|
cv::gpu::GpuMat d_pts; |
|
cv::Mat pts_mat(1, pts.size(), CV_32FC2, (void*)&pts[0]); |
|
d_pts.upload(pts_mat); |
|
|
|
cv::gpu::GpuMat d_nextPts; |
|
cv::gpu::GpuMat d_status; |
|
cv::gpu::GpuMat d_err; |
|
|
|
d_pyrLK.sparse(loadMat(frame0), loadMat(frame1), d_pts, d_nextPts, d_status, &d_err); |
|
|
|
std::vector<cv::Point2f> nextPts(d_nextPts.cols); |
|
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]); |
|
d_nextPts.download(nextPts_mat); |
|
|
|
std::vector<unsigned char> status(d_status.cols); |
|
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*)&status[0]); |
|
d_status.download(status_mat); |
|
|
|
std::vector<float> err(d_err.cols); |
|
cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]); |
|
d_err.download(err_mat); |
|
|
|
ASSERT_EQ(nextPts_gold.size(), nextPts.size()); |
|
ASSERT_EQ(status_gold.size(), status.size()); |
|
ASSERT_EQ(err_gold.size(), err.size()); |
|
|
|
size_t mistmatch = 0; |
|
|
|
for (size_t i = 0; i < nextPts.size(); ++i) |
|
{ |
|
if (status[i] != status_gold[i]) |
|
{ |
|
++mistmatch; |
|
continue; |
|
} |
|
|
|
if (status[i]) |
|
{ |
|
cv::Point2i a = nextPts[i]; |
|
cv::Point2i b = nextPts_gold[i]; |
|
|
|
bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1; |
|
float errdiff = std::abs(err[i] - err_gold[i]); |
|
|
|
if (!eq || errdiff > 1e-1) |
|
++mistmatch; |
|
} |
|
} |
|
|
|
double bad_ratio = static_cast<double>(mistmatch) / nextPts.size(); |
|
|
|
ASSERT_LE(bad_ratio, 0.01); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowSparse, Combine(ALL_DEVICES, Bool())); |
|
|
|
|
|
PARAM_TEST_CASE(FarnebackOpticalFlowTest, cv::gpu::DeviceInfo, double, int, int, bool) |
|
{ |
|
cv::Mat frame0, frame1; |
|
|
|
double pyrScale; |
|
int polyN; |
|
double polySigma; |
|
int flags; |
|
bool useInitFlow; |
|
|
|
virtual void SetUp() |
|
{ |
|
frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); |
|
frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0.empty()); ASSERT_FALSE(frame1.empty()); |
|
|
|
cv::gpu::setDevice(GET_PARAM(0).deviceID()); |
|
|
|
pyrScale = GET_PARAM(1); |
|
polyN = GET_PARAM(2); |
|
polySigma = polyN <= 5 ? 1.1 : 1.5; |
|
flags = GET_PARAM(3); |
|
useInitFlow = GET_PARAM(4); |
|
} |
|
}; |
|
|
|
TEST_P(FarnebackOpticalFlowTest, Accuracy) |
|
{ |
|
using namespace cv; |
|
|
|
gpu::FarnebackOpticalFlow calc; |
|
calc.pyrScale = pyrScale; |
|
calc.polyN = polyN; |
|
calc.polySigma = polySigma; |
|
calc.flags = flags; |
|
|
|
gpu::GpuMat d_flowx, d_flowy; |
|
calc(gpu::GpuMat(frame0), gpu::GpuMat(frame1), d_flowx, d_flowy); |
|
|
|
Mat flow; |
|
if (useInitFlow) |
|
{ |
|
Mat flowxy[] = {(Mat)d_flowx, (Mat)d_flowy}; |
|
merge(flowxy, 2, flow); |
|
} |
|
|
|
if (useInitFlow) |
|
{ |
|
calc.flags |= OPTFLOW_USE_INITIAL_FLOW; |
|
calc(gpu::GpuMat(frame0), gpu::GpuMat(frame1), d_flowx, d_flowy); |
|
} |
|
|
|
calcOpticalFlowFarneback( |
|
frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize, |
|
calc.numIters, calc.polyN, calc.polySigma, calc.flags); |
|
|
|
std::vector<Mat> flowxy; split(flow, flowxy); |
|
/*std::cout << checkSimilarity(flowxy[0], (Mat)d_flowx) << " " |
|
<< checkSimilarity(flowxy[1], (Mat)d_flowy) << std::endl;*/ |
|
EXPECT_LT(checkSimilarity(flowxy[0], (Mat)d_flowx), 0.1); |
|
EXPECT_LT(checkSimilarity(flowxy[1], (Mat)d_flowy), 0.1); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, FarnebackOpticalFlowTest, |
|
Combine(ALL_DEVICES, |
|
Values(0.3, 0.5, 0.8), |
|
Values(5, 7), |
|
Values(0, (int)cv::OPTFLOW_FARNEBACK_GAUSSIAN), |
|
Values(false, true))); |
|
|
|
#endif // HAVE_CUDA
|
|
|