Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

288 lines
10 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
class ThinPlateSplineShapeTransformerImpl : public ThinPlateSplineShapeTransformer
{
public:
/* Constructors */
ThinPlateSplineShapeTransformerImpl()
{
regularizationParameter=0;
name_ = "ShapeTransformer.TPS";
tpsComputed=false;
}
ThinPlateSplineShapeTransformerImpl(double _regularizationParameter)
{
regularizationParameter=_regularizationParameter;
name_ = "ShapeTransformer.TPS";
tpsComputed=false;
}
/* Destructor */
~ThinPlateSplineShapeTransformerImpl()
{
}
virtual AlgorithmInfo* info() const { return 0; }
//! the main operators
virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, std::vector<DMatch> &matches);
virtual float applyTransformation(InputArray inPts, OutputArray output=noArray());
virtual void warpImage(InputArray transformingImage, OutputArray output,
int flags, int borderMode, const Scalar& borderValue) const;
//! Setters/Getters
virtual void setRegularizationParameter(double _regularizationParameter) {regularizationParameter=_regularizationParameter;}
virtual double getRegularizationParameter() const {return regularizationParameter;}
//! write/read
virtual void write(FileStorage& fs) const
{
fs << "name" << name_
<< "regularization" << regularizationParameter;
}
virtual void read(const FileNode& fn)
{
CV_Assert( (String)fn["name"] == name_ );
regularizationParameter = (int)fn["regularization"];
}
private:
bool tpsComputed;
double regularizationParameter;
float transformCost;
Mat tpsParameters;
Mat shapeReference;
protected:
String name_;
};
static float distance(Point2f p, Point2f q)
{
Point2f diff = p - q;
float norma = diff.x*diff.x + diff.y*diff.y;// - 2*diff.x*diff.y;
if (norma<0) norma=0;
//else norma = std::sqrt(norma);
norma = norma*std::log(norma+FLT_EPSILON);
return norma;
}
static Point2f _applyTransformation(const Mat &shapeRef, const Point2f point, const Mat &tpsParameters)
{
Point2f out;
for (int i=0; i<2; i++)
{
float a1=tpsParameters.at<float>(tpsParameters.rows-3,i);
float ax=tpsParameters.at<float>(tpsParameters.rows-2,i);
float ay=tpsParameters.at<float>(tpsParameters.rows-1,i);
float affine=a1+ax*point.x+ay*point.y;
float nonrigid=0;
for (int j=0; j<shapeRef.rows; j++)
{
nonrigid+=tpsParameters.at<float>(j,i)*
distance(Point2f(shapeRef.at<float>(j,0),shapeRef.at<float>(j,1)),
point);
}
if (i==0)
{
out.x=affine+nonrigid;
}
if (i==1)
{
out.y=affine+nonrigid;
}
}
return out;
}
/* public methods */
void ThinPlateSplineShapeTransformerImpl::warpImage(InputArray transformingImage, OutputArray output,
int flags, int borderMode, const Scalar& borderValue) const
{
CV_Assert(tpsComputed==true);
Mat theinput = transformingImage.getMat();
Mat mapX(theinput.rows, theinput.cols, CV_32FC1);
Mat mapY(theinput.rows, theinput.cols, CV_32FC1);
for (int row = 0; row < theinput.rows; row++)
{
for (int col = 0; col < theinput.cols; col++)
{
Point2f pt = _applyTransformation(shapeReference, Point2f(float(col), float(row)), tpsParameters);
mapX.at<float>(row, col) = pt.x;
mapY.at<float>(row, col) = pt.y;
}
}
remap(transformingImage, output, mapX, mapY, flags, borderMode, borderValue);
}
float ThinPlateSplineShapeTransformerImpl::applyTransformation(InputArray inPts, OutputArray outPts)
{
CV_Assert(tpsComputed);
Mat pts1 = inPts.getMat();
CV_Assert((pts1.channels()==2) && (pts1.cols>0));
//Apply transformation in the complete set of points
// Ensambling output //
if (outPts.needed())
{
outPts.create(1,pts1.cols, CV_32FC2);
Mat outMat = outPts.getMat();
for (int i=0; i<pts1.cols; i++)
{
Point2f pt=pts1.at<Point2f>(0,i);
outMat.at<Point2f>(0,i)=_applyTransformation(shapeReference, pt, tpsParameters);
}
}
return transformCost;
}
void ThinPlateSplineShapeTransformerImpl::estimateTransformation(InputArray _pts1, InputArray _pts2,
std::vector<DMatch>& _matches )
{
Mat pts1 = _pts1.getMat();
Mat pts2 = _pts2.getMat();
CV_Assert((pts1.channels()==2) && (pts1.cols>0) && (pts2.channels()==2) && (pts2.cols>0));
CV_Assert(_matches.size()>1);
if (pts1.type() != CV_32F)
pts1.convertTo(pts1, CV_32F);
if (pts2.type() != CV_32F)
pts2.convertTo(pts2, CV_32F);
// Use only valid matchings //
std::vector<DMatch> matches;
for (size_t i=0; i<_matches.size(); i++)
{
if (_matches[i].queryIdx<pts1.cols &&
_matches[i].trainIdx<pts2.cols)
{
matches.push_back(_matches[i]);
}
}
// Organizing the correspondent points in matrix style //
Mat shape1((int)matches.size(),2,CV_32F); // transforming shape
Mat shape2((int)matches.size(),2,CV_32F); // target shape
for (int i=0, end = (int)matches.size(); i<end; i++)
{
Point2f pt1=pts1.at<Point2f>(0,matches[i].queryIdx);
shape1.at<float>(i,0) = pt1.x;
shape1.at<float>(i,1) = pt1.y;
Point2f pt2=pts2.at<Point2f>(0,matches[i].trainIdx);
shape2.at<float>(i,0) = pt2.x;
shape2.at<float>(i,1) = pt2.y;
}
shape1.copyTo(shapeReference);
// Building the matrices for solving the L*(w|a)=(v|0) problem with L={[K|P];[P'|0]}
//Building K and P (Neede to buil L)
Mat matK((int)matches.size(),(int)matches.size(),CV_32F);
Mat matP((int)matches.size(),3,CV_32F);
for (int i=0, end=(int)matches.size(); i<end; i++)
{
for (int j=0; j<end; j++)
{
if (i==j)
{
matK.at<float>(i,j)=float(regularizationParameter);
}
else
{
matK.at<float>(i,j) = distance(Point2f(shape1.at<float>(i,0),shape1.at<float>(i,1)),
Point2f(shape1.at<float>(j,0),shape1.at<float>(j,1)));
}
}
matP.at<float>(i,0) = 1;
matP.at<float>(i,1) = shape1.at<float>(i,0);
matP.at<float>(i,2) = shape1.at<float>(i,1);
}
//Building L
Mat matL=Mat::zeros((int)matches.size()+3,(int)matches.size()+3,CV_32F);
Mat matLroi(matL, Rect(0,0,(int)matches.size(),(int)matches.size())); //roi for K
matK.copyTo(matLroi);
matLroi = Mat(matL,Rect((int)matches.size(),0,3,(int)matches.size())); //roi for P
matP.copyTo(matLroi);
Mat matPt;
transpose(matP,matPt);
matLroi = Mat(matL,Rect(0,(int)matches.size(),(int)matches.size(),3)); //roi for P'
matPt.copyTo(matLroi);
//Building B (v|0)
Mat matB = Mat::zeros((int)matches.size()+3,2,CV_32F);
for (int i=0, end = (int)matches.size(); i<end; i++)
{
matB.at<float>(i,0) = shape2.at<float>(i,0); //x's
matB.at<float>(i,1) = shape2.at<float>(i,1); //y's
}
//Obtaining transformation params (w|a)
solve(matL, matB, tpsParameters, DECOMP_LU);
//tpsParameters = matL.inv()*matB;
//Setting transform Cost and Shape reference
Mat w(tpsParameters, Rect(0,0,2,tpsParameters.rows-3));
Mat Q=w.t()*matK*w;
transformCost=fabs(Q.at<float>(0,0)*Q.at<float>(1,1));//fabs(mean(Q.diag(0))[0]);//std::max(Q.at<float>(0,0),Q.at<float>(1,1));
tpsComputed=true;
}
Ptr <ThinPlateSplineShapeTransformer> createThinPlateSplineShapeTransformer(double regularizationParameter)
{
return Ptr<ThinPlateSplineShapeTransformer>( new ThinPlateSplineShapeTransformerImpl(regularizationParameter) );
}
} // cv