mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
75 lines
2.1 KiB
75 lines
2.1 KiB
#!/usr/bin/env python |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 |
|
|
|
# local modules |
|
from common import splitfn |
|
|
|
# built-in modules |
|
import os |
|
|
|
|
|
USAGE = ''' |
|
USAGE: calib.py [--save <filename>] [--debug <output path>] [--square_size] [<image mask>] |
|
''' |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
import sys |
|
import getopt |
|
from glob import glob |
|
|
|
args, img_mask = getopt.getopt(sys.argv[1:], '', ['save=', 'debug=', 'square_size=']) |
|
args = dict(args) |
|
try: |
|
img_mask = img_mask[0] |
|
except: |
|
img_mask = '../data/left*.jpg' |
|
|
|
img_names = glob(img_mask) |
|
debug_dir = args.get('--debug') |
|
square_size = float(args.get('--square_size', 1.0)) |
|
|
|
pattern_size = (9, 6) |
|
pattern_points = np.zeros( (np.prod(pattern_size), 3), np.float32 ) |
|
pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2) |
|
pattern_points *= square_size |
|
|
|
obj_points = [] |
|
img_points = [] |
|
h, w = 0, 0 |
|
for fn in img_names: |
|
print('processing %s...' % fn,) |
|
img = cv2.imread(fn, 0) |
|
if img is None: |
|
print("Failed to load", fn) |
|
continue |
|
|
|
h, w = img.shape[:2] |
|
found, corners = cv2.findChessboardCorners(img, pattern_size) |
|
if found: |
|
term = ( cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1 ) |
|
cv2.cornerSubPix(img, corners, (5, 5), (-1, -1), term) |
|
if debug_dir: |
|
vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
cv2.drawChessboardCorners(vis, pattern_size, corners, found) |
|
path, name, ext = splitfn(fn) |
|
cv2.imwrite('%s/%s_chess.bmp' % (debug_dir, name), vis) |
|
if not found: |
|
print('chessboard not found') |
|
continue |
|
img_points.append(corners.reshape(-1, 2)) |
|
obj_points.append(pattern_points) |
|
|
|
print('ok') |
|
|
|
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h), None, None) |
|
print("RMS:", rms) |
|
print("camera matrix:\n", camera_matrix) |
|
print("distortion coefficients: ", dist_coefs.ravel()) |
|
cv2.destroyAllWindows()
|
|
|