mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
6.1 KiB
170 lines
6.1 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
using cv::ml::SVM; |
|
using cv::ml::TrainData; |
|
|
|
//-------------------------------------------------------------------------------------------- |
|
class CV_SVMTrainAutoTest : public cvtest::BaseTest { |
|
public: |
|
CV_SVMTrainAutoTest() {} |
|
protected: |
|
virtual void run( int start_from ); |
|
}; |
|
|
|
void CV_SVMTrainAutoTest::run( int /*start_from*/ ) |
|
{ |
|
int datasize = 100; |
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 ); |
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S ); |
|
|
|
RNG rng(0); |
|
for (int i = 0; i < datasize; ++i) |
|
{ |
|
int response = rng.uniform(0, 2); // Random from {0, 1}. |
|
samples.at<float>( i, 0 ) = rng.uniform(0.f, 0.5f) + response * 0.5f; |
|
samples.at<float>( i, 1 ) = rng.uniform(0.f, 0.5f) + response * 0.5f; |
|
responses.at<int>( i, 0 ) = response; |
|
} |
|
|
|
cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses ); |
|
cv::Ptr<SVM> svm = SVM::create(); |
|
svm->trainAuto( data, 10 ); // 2-fold cross validation. |
|
|
|
float test_data0[2] = {0.25f, 0.25f}; |
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 ); |
|
float result0 = svm->predict( test_point0 ); |
|
float test_data1[2] = {0.75f, 0.75f}; |
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 ); |
|
float result1 = svm->predict( test_point1 ); |
|
|
|
if ( fabs( result0 - 0 ) > 0.001 || fabs( result1 - 1 ) > 0.001 ) |
|
{ |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
} |
|
} |
|
|
|
TEST(ML_SVM, trainauto) { CV_SVMTrainAutoTest test; test.safe_run(); } |
|
|
|
|
|
TEST(ML_SVM, trainAuto_regression_5369) |
|
{ |
|
int datasize = 100; |
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 ); |
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S ); |
|
|
|
RNG rng(0); // fixed! |
|
for (int i = 0; i < datasize; ++i) |
|
{ |
|
int response = rng.uniform(0, 2); // Random from {0, 1}. |
|
samples.at<float>( i, 0 ) = 0; |
|
samples.at<float>( i, 1 ) = (0.5f - response) * rng.uniform(0.f, 1.2f) + response; |
|
responses.at<int>( i, 0 ) = response; |
|
} |
|
|
|
cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses ); |
|
cv::Ptr<SVM> svm = SVM::create(); |
|
svm->trainAuto( data, 10 ); // 2-fold cross validation. |
|
|
|
float test_data0[2] = {0.25f, 0.25f}; |
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 ); |
|
float result0 = svm->predict( test_point0 ); |
|
float test_data1[2] = {0.75f, 0.75f}; |
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 ); |
|
float result1 = svm->predict( test_point1 ); |
|
|
|
EXPECT_EQ(0., result0); |
|
EXPECT_EQ(1., result1); |
|
} |
|
|
|
class CV_SVMGetSupportVectorsTest : public cvtest::BaseTest { |
|
public: |
|
CV_SVMGetSupportVectorsTest() {} |
|
protected: |
|
virtual void run( int startFrom ); |
|
}; |
|
void CV_SVMGetSupportVectorsTest::run(int /*startFrom*/ ) |
|
{ |
|
int code = cvtest::TS::OK; |
|
|
|
// Set up training data |
|
int labels[4] = {1, -1, -1, -1}; |
|
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} }; |
|
Mat trainingDataMat(4, 2, CV_32FC1, trainingData); |
|
Mat labelsMat(4, 1, CV_32SC1, labels); |
|
|
|
Ptr<SVM> svm = SVM::create(); |
|
svm->setType(SVM::C_SVC); |
|
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6)); |
|
|
|
|
|
// Test retrieval of SVs and compressed SVs on linear SVM |
|
svm->setKernel(SVM::LINEAR); |
|
svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat); |
|
|
|
Mat sv = svm->getSupportVectors(); |
|
CV_Assert(sv.rows == 1); // by default compressed SV returned |
|
sv = svm->getUncompressedSupportVectors(); |
|
CV_Assert(sv.rows == 3); |
|
|
|
|
|
// Test retrieval of SVs and compressed SVs on non-linear SVM |
|
svm->setKernel(SVM::POLY); |
|
svm->setDegree(2); |
|
svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat); |
|
|
|
sv = svm->getSupportVectors(); |
|
CV_Assert(sv.rows == 3); |
|
sv = svm->getUncompressedSupportVectors(); |
|
CV_Assert(sv.rows == 0); // inapplicable for non-linear SVMs |
|
|
|
|
|
ts->set_failed_test_info(code); |
|
} |
|
|
|
|
|
TEST(ML_SVM, getSupportVectors) { CV_SVMGetSupportVectorsTest test; test.safe_run(); } |
|
|
|
}} // namespace
|
|
|