mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
224 lines
7.0 KiB
224 lines
7.0 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { |
|
|
|
CV_AMLTest::CV_AMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName ) |
|
{ |
|
validationFN = "avalidation.xml"; |
|
} |
|
|
|
int CV_AMLTest::run_test_case( int testCaseIdx ) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
int code = cvtest::TS::OK; |
|
code = prepare_test_case( testCaseIdx ); |
|
|
|
if (code == cvtest::TS::OK) |
|
{ |
|
//#define GET_STAT |
|
#ifdef GET_STAT |
|
const char* data_name = ((CvFileNode*)cvGetSeqElem( dataSetNames, testCaseIdx ))->data.str.ptr; |
|
printf("%s, %s ", name, data_name); |
|
const int icount = 100; |
|
float res[icount]; |
|
for (int k = 0; k < icount; k++) |
|
{ |
|
#endif |
|
data->shuffleTrainTest(); |
|
code = train( testCaseIdx ); |
|
#ifdef GET_STAT |
|
float case_result = get_error(); |
|
|
|
res[k] = case_result; |
|
} |
|
float mean = 0, sigma = 0; |
|
for (int k = 0; k < icount; k++) |
|
{ |
|
mean += res[k]; |
|
} |
|
mean = mean /icount; |
|
for (int k = 0; k < icount; k++) |
|
{ |
|
sigma += (res[k] - mean)*(res[k] - mean); |
|
} |
|
sigma = sqrt(sigma/icount); |
|
printf("%f, %f\n", mean, sigma); |
|
#endif |
|
} |
|
return code; |
|
} |
|
|
|
int CV_AMLTest::validate_test_results( int testCaseIdx ) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
int iters; |
|
float mean, sigma; |
|
// read validation params |
|
FileNode resultNode = |
|
validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["result"]; |
|
resultNode["iter_count"] >> iters; |
|
if ( iters > 0) |
|
{ |
|
resultNode["mean"] >> mean; |
|
resultNode["sigma"] >> sigma; |
|
model->save(format("/Users/vp/tmp/dtree/testcase_%02d.cur.yml", testCaseIdx)); |
|
float curErr = get_test_error( testCaseIdx ); |
|
const int coeff = 4; |
|
ts->printf( cvtest::TS::LOG, "Test case = %d; test error = %f; mean error = %f (diff=%f), %d*sigma = %f\n", |
|
testCaseIdx, curErr, mean, abs( curErr - mean), coeff, coeff*sigma ); |
|
if ( abs( curErr - mean) > coeff*sigma ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "abs(%f - %f) > %f - OUT OF RANGE!\n", curErr, mean, coeff*sigma, coeff ); |
|
return cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
else |
|
ts->printf( cvtest::TS::LOG, ".\n" ); |
|
|
|
} |
|
else |
|
{ |
|
ts->printf( cvtest::TS::LOG, "validation info is not suitable" ); |
|
return cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
return cvtest::TS::OK; |
|
} |
|
|
|
namespace { |
|
|
|
TEST(ML_DTree, regression) { CV_AMLTest test( CV_DTREE ); test.safe_run(); } |
|
TEST(ML_Boost, regression) { CV_AMLTest test( CV_BOOST ); test.safe_run(); } |
|
TEST(ML_RTrees, regression) { CV_AMLTest test( CV_RTREES ); test.safe_run(); } |
|
TEST(DISABLED_ML_ERTrees, regression) { CV_AMLTest test( CV_ERTREES ); test.safe_run(); } |
|
|
|
TEST(ML_NBAYES, regression_5911) |
|
{ |
|
int N=12; |
|
Ptr<ml::NormalBayesClassifier> nb = cv::ml::NormalBayesClassifier::create(); |
|
|
|
// data: |
|
Mat_<float> X(N,4); |
|
X << 1,2,3,4, 1,2,3,4, 1,2,3,4, 1,2,3,4, |
|
5,5,5,5, 5,5,5,5, 5,5,5,5, 5,5,5,5, |
|
4,3,2,1, 4,3,2,1, 4,3,2,1, 4,3,2,1; |
|
|
|
// labels: |
|
Mat_<int> Y(N,1); |
|
Y << 0,0,0,0, 1,1,1,1, 2,2,2,2; |
|
nb->train(X, ml::ROW_SAMPLE, Y); |
|
|
|
// single prediction: |
|
Mat R1,P1; |
|
for (int i=0; i<N; i++) |
|
{ |
|
Mat r,p; |
|
nb->predictProb(X.row(i), r, p); |
|
R1.push_back(r); |
|
P1.push_back(p); |
|
} |
|
|
|
// bulk prediction (continuous memory): |
|
Mat R2,P2; |
|
nb->predictProb(X, R2, P2); |
|
|
|
EXPECT_EQ(sum(R1 == R2)[0], 255 * R2.total()); |
|
EXPECT_EQ(sum(P1 == P2)[0], 255 * P2.total()); |
|
|
|
// bulk prediction, with non-continuous memory storage |
|
Mat R3_(N, 1+1, CV_32S), |
|
P3_(N, 3+1, CV_32F); |
|
nb->predictProb(X, R3_.col(0), P3_.colRange(0,3)); |
|
Mat R3 = R3_.col(0).clone(), |
|
P3 = P3_.colRange(0,3).clone(); |
|
|
|
EXPECT_EQ(sum(R1 == R3)[0], 255 * R3.total()); |
|
EXPECT_EQ(sum(P1 == P3)[0], 255 * P3.total()); |
|
} |
|
|
|
TEST(ML_RTrees, getVotes) |
|
{ |
|
int n = 12; |
|
int count, i; |
|
int label_size = 3; |
|
int predicted_class = 0; |
|
int max_votes = -1; |
|
int val; |
|
// RTrees for classification |
|
Ptr<ml::RTrees> rt = cv::ml::RTrees::create(); |
|
|
|
//data |
|
Mat data(n, 4, CV_32F); |
|
randu(data, 0, 10); |
|
|
|
//labels |
|
Mat labels = (Mat_<int>(n,1) << 0,0,0,0, 1,1,1,1, 2,2,2,2); |
|
|
|
rt->train(data, ml::ROW_SAMPLE, labels); |
|
|
|
//run function |
|
Mat test(1, 4, CV_32F); |
|
Mat result; |
|
randu(test, 0, 10); |
|
rt->getVotes(test, result, 0); |
|
|
|
//count vote amount and find highest vote |
|
count = 0; |
|
const int* result_row = result.ptr<int>(1); |
|
for( i = 0; i < label_size; i++ ) |
|
{ |
|
val = result_row[i]; |
|
//predicted_class = max_votes < val? i; |
|
if( max_votes < val ) |
|
{ |
|
max_votes = val; |
|
predicted_class = i; |
|
} |
|
count += val; |
|
} |
|
|
|
EXPECT_EQ(count, (int)rt->getRoots().size()); |
|
EXPECT_EQ(result.at<float>(0, predicted_class), rt->predict(test)); |
|
} |
|
|
|
}} // namespace |
|
/* End of file. */
|
|
|