mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
769 lines
24 KiB
769 lines
24 KiB
/* |
|
* jdcolor.c |
|
* |
|
* Copyright (C) 1991-1997, Thomas G. Lane. |
|
* Modified 2011-2023 by Guido Vollbeding. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains output colorspace conversion routines. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
|
|
|
|
#if RANGE_BITS < 2 |
|
/* Deliberate syntax err */ |
|
Sorry, this code requires 2 or more range extension bits. |
|
#endif |
|
|
|
|
|
/* Private subobject */ |
|
|
|
typedef struct { |
|
struct jpeg_color_deconverter pub; /* public fields */ |
|
|
|
/* Private state for YCbCr->RGB and BG_YCC->RGB conversion */ |
|
int * Cr_r_tab; /* => table for Cr to R conversion */ |
|
int * Cb_b_tab; /* => table for Cb to B conversion */ |
|
INT32 * Cr_g_tab; /* => table for Cr to G conversion */ |
|
INT32 * Cb_g_tab; /* => table for Cb to G conversion */ |
|
|
|
/* Private state for RGB->Y conversion */ |
|
INT32 * R_y_tab; /* => table for R to Y conversion */ |
|
INT32 * G_y_tab; /* => table for G to Y conversion */ |
|
INT32 * B_y_tab; /* => table for B to Y conversion */ |
|
} my_color_deconverter; |
|
|
|
typedef my_color_deconverter * my_cconvert_ptr; |
|
|
|
|
|
/*************** YCbCr -> RGB conversion: most common case **************/ |
|
/*************** BG_YCC -> RGB conversion: less common case **************/ |
|
/*************** RGB -> Y conversion: less common case **************/ |
|
|
|
/* |
|
* YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011), |
|
* previously known as Recommendation CCIR 601-1, except that Cb and Cr |
|
* are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. |
|
* sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999. |
|
* sYCC (standard luma-chroma-chroma color space with extended gamut) |
|
* is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F. |
|
* bg-sRGB and bg-sYCC (big gamut standard color spaces) |
|
* are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G. |
|
* Note that the derived conversion coefficients given in some of these |
|
* documents are imprecise. The general conversion equations are |
|
* |
|
* R = Y + K * (1 - Kr) * Cr |
|
* G = Y - K * (Kb * (1 - Kb) * Cb + Kr * (1 - Kr) * Cr) / (1 - Kr - Kb) |
|
* B = Y + K * (1 - Kb) * Cb |
|
* |
|
* Y = Kr * R + (1 - Kr - Kb) * G + Kb * B |
|
* |
|
* With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993 |
|
* from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC, |
|
* the conversion equations to be implemented are therefore |
|
* |
|
* R = Y + 1.402 * Cr |
|
* G = Y - 0.344136286 * Cb - 0.714136286 * Cr |
|
* B = Y + 1.772 * Cb |
|
* |
|
* Y = 0.299 * R + 0.587 * G + 0.114 * B |
|
* |
|
* where Cb and Cr represent the incoming values less CENTERJSAMPLE. |
|
* For bg-sYCC, with K = 4, the equations are |
|
* |
|
* R = Y + 2.804 * Cr |
|
* G = Y - 0.688272572 * Cb - 1.428272572 * Cr |
|
* B = Y + 3.544 * Cb |
|
* |
|
* To avoid floating-point arithmetic, we represent the fractional constants |
|
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide |
|
* the products by 2^16, with appropriate rounding, to get the correct answer. |
|
* Notice that Y, being an integral input, does not contribute any fraction |
|
* so it need not participate in the rounding. |
|
* |
|
* For even more speed, we avoid doing any multiplications in the inner loop |
|
* by precalculating the constants times Cb and Cr for all possible values. |
|
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); |
|
* for 9-bit to 12-bit samples it is still acceptable. It's not very |
|
* reasonable for 16-bit samples, but if you want lossless storage |
|
* you shouldn't be changing colorspace anyway. |
|
* The Cr=>R and Cb=>B values can be rounded to integers in advance; |
|
* the values for the G calculation are left scaled up, |
|
* since we must add them together before rounding. |
|
*/ |
|
|
|
#define SCALEBITS 16 /* speediest right-shift on some machines */ |
|
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) |
|
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) |
|
|
|
|
|
/* |
|
* Initialize tables for YCbCr->RGB and BG_YCC->RGB colorspace conversion. |
|
*/ |
|
|
|
LOCAL(void) |
|
build_ycc_rgb_table (j_decompress_ptr cinfo) |
|
/* Normal case, sYCC */ |
|
{ |
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
|
int i; |
|
INT32 x; |
|
SHIFT_TEMPS |
|
|
|
cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); |
|
cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); |
|
cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
|
cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
|
|
|
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { |
|
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ |
|
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ |
|
/* Cr=>R value is nearest int to 1.402 * x */ |
|
cconvert->Cr_r_tab[i] = (int) DESCALE(FIX(1.402) * x, SCALEBITS); |
|
/* Cb=>B value is nearest int to 1.772 * x */ |
|
cconvert->Cb_b_tab[i] = (int) DESCALE(FIX(1.772) * x, SCALEBITS); |
|
/* Cr=>G value is scaled-up -0.714136286 * x */ |
|
cconvert->Cr_g_tab[i] = (- FIX(0.714136286)) * x; |
|
/* Cb=>G value is scaled-up -0.344136286 * x */ |
|
/* We also add in ONE_HALF so that need not do it in inner loop */ |
|
cconvert->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF; |
|
} |
|
} |
|
|
|
|
|
LOCAL(void) |
|
build_bg_ycc_rgb_table (j_decompress_ptr cinfo) |
|
/* Wide gamut case, bg-sYCC */ |
|
{ |
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
|
int i; |
|
INT32 x; |
|
SHIFT_TEMPS |
|
|
|
cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); |
|
cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); |
|
cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
|
cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
|
|
|
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { |
|
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ |
|
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ |
|
/* Cr=>R value is nearest int to 2.804 * x */ |
|
cconvert->Cr_r_tab[i] = (int) DESCALE(FIX(2.804) * x, SCALEBITS); |
|
/* Cb=>B value is nearest int to 3.544 * x */ |
|
cconvert->Cb_b_tab[i] = (int) DESCALE(FIX(3.544) * x, SCALEBITS); |
|
/* Cr=>G value is scaled-up -1.428272572 * x */ |
|
cconvert->Cr_g_tab[i] = (- FIX(1.428272572)) * x; |
|
/* Cb=>G value is scaled-up -0.688272572 * x */ |
|
/* We also add in ONE_HALF so that need not do it in inner loop */ |
|
cconvert->Cb_g_tab[i] = (- FIX(0.688272572)) * x + ONE_HALF; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Convert some rows of samples to the output colorspace. |
|
* |
|
* Note that we change from noninterleaved, one-plane-per-component format |
|
* to interleaved-pixel format. The output buffer is therefore three times |
|
* as wide as the input buffer. |
|
* |
|
* A starting row offset is provided only for the input buffer. The caller |
|
* can easily adjust the passed output_buf value to accommodate any row |
|
* offset required on that side. |
|
*/ |
|
|
|
METHODDEF(void) |
|
ycc_rgb_convert (j_decompress_ptr cinfo, |
|
JSAMPIMAGE input_buf, JDIMENSION input_row, |
|
JSAMPARRAY output_buf, int num_rows) |
|
{ |
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
|
register int y, cb, cr; |
|
register JSAMPROW outptr; |
|
register JSAMPROW inptr0, inptr1, inptr2; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->output_width; |
|
/* copy these pointers into registers if possible */ |
|
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
|
register int * Crrtab = cconvert->Cr_r_tab; |
|
register int * Cbbtab = cconvert->Cb_b_tab; |
|
register INT32 * Crgtab = cconvert->Cr_g_tab; |
|
register INT32 * Cbgtab = cconvert->Cb_g_tab; |
|
SHIFT_TEMPS |
|
|
|
while (--num_rows >= 0) { |
|
inptr0 = input_buf[0][input_row]; |
|
inptr1 = input_buf[1][input_row]; |
|
inptr2 = input_buf[2][input_row]; |
|
input_row++; |
|
outptr = *output_buf++; |
|
for (col = 0; col < num_cols; col++) { |
|
y = GETJSAMPLE(inptr0[col]); |
|
cb = GETJSAMPLE(inptr1[col]); |
|
cr = GETJSAMPLE(inptr2[col]); |
|
/* Range-limiting is essential due to noise introduced by DCT losses, |
|
* for extended gamut (sYCC) and wide gamut (bg-sYCC) encodings. |
|
*/ |
|
outptr[RGB_RED] = range_limit[y + Crrtab[cr]]; |
|
outptr[RGB_GREEN] = range_limit[y + |
|
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
|
SCALEBITS))]; |
|
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]]; |
|
outptr += RGB_PIXELSIZE; |
|
} |
|
} |
|
} |
|
|
|
|
|
/**************** Cases other than YCC -> RGB ****************/ |
|
|
|
|
|
/* |
|
* Initialize for RGB->grayscale colorspace conversion. |
|
*/ |
|
|
|
LOCAL(void) |
|
build_rgb_y_table (j_decompress_ptr cinfo) |
|
{ |
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
|
INT32 i; |
|
|
|
cconvert->R_y_tab = (INT32 *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
|
cconvert->G_y_tab = (INT32 *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
|
cconvert->B_y_tab = (INT32 *) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); |
|
|
|
for (i = 0; i <= MAXJSAMPLE; i++) { |
|
cconvert->R_y_tab[i] = FIX(0.299) * i; |
|
cconvert->G_y_tab[i] = FIX(0.587) * i; |
|
cconvert->B_y_tab[i] = FIX(0.114) * i + ONE_HALF; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Convert RGB to grayscale. |
|
*/ |
|
|
|
METHODDEF(void) |
|
rgb_gray_convert (j_decompress_ptr cinfo, |
|
JSAMPIMAGE input_buf, JDIMENSION input_row, |
|
JSAMPARRAY output_buf, int num_rows) |
|
{ |
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
|
register INT32 y; |
|
register INT32 * Rytab = cconvert->R_y_tab; |
|
register INT32 * Gytab = cconvert->G_y_tab; |
|
register INT32 * Bytab = cconvert->B_y_tab; |
|
register JSAMPROW outptr; |
|
register JSAMPROW inptr0, inptr1, inptr2; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->output_width; |
|
|
|
while (--num_rows >= 0) { |
|
inptr0 = input_buf[0][input_row]; |
|
inptr1 = input_buf[1][input_row]; |
|
inptr2 = input_buf[2][input_row]; |
|
input_row++; |
|
outptr = *output_buf++; |
|
for (col = 0; col < num_cols; col++) { |
|
y = Rytab[GETJSAMPLE(inptr0[col])]; |
|
y += Gytab[GETJSAMPLE(inptr1[col])]; |
|
y += Bytab[GETJSAMPLE(inptr2[col])]; |
|
outptr[col] = (JSAMPLE) (y >> SCALEBITS); |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Convert some rows of samples to the output colorspace. |
|
* [R-G,G,B-G] to [R,G,B] conversion with modulo calculation |
|
* (inverse color transform). |
|
* This can be seen as an adaption of the general YCbCr->RGB |
|
* conversion equation with Kr = Kb = 0, while replacing the |
|
* normalization by modulo calculation. |
|
*/ |
|
|
|
METHODDEF(void) |
|
rgb1_rgb_convert (j_decompress_ptr cinfo, |
|
JSAMPIMAGE input_buf, JDIMENSION input_row, |
|
JSAMPARRAY output_buf, int num_rows) |
|
{ |
|
register int r, g, b; |
|
register JSAMPROW outptr; |
|
register JSAMPROW inptr0, inptr1, inptr2; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->output_width; |
|
|
|
while (--num_rows >= 0) { |
|
inptr0 = input_buf[0][input_row]; |
|
inptr1 = input_buf[1][input_row]; |
|
inptr2 = input_buf[2][input_row]; |
|
input_row++; |
|
outptr = *output_buf++; |
|
for (col = 0; col < num_cols; col++) { |
|
r = GETJSAMPLE(inptr0[col]); |
|
g = GETJSAMPLE(inptr1[col]); |
|
b = GETJSAMPLE(inptr2[col]); |
|
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD |
|
* (modulo) operator is equivalent to the bitmask operator AND. |
|
*/ |
|
outptr[RGB_RED] = (JSAMPLE) ((r + g - CENTERJSAMPLE) & MAXJSAMPLE); |
|
outptr[RGB_GREEN] = (JSAMPLE) g; |
|
outptr[RGB_BLUE] = (JSAMPLE) ((b + g - CENTERJSAMPLE) & MAXJSAMPLE); |
|
outptr += RGB_PIXELSIZE; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* [R-G,G,B-G] to grayscale conversion with modulo calculation |
|
* (inverse color transform). |
|
*/ |
|
|
|
METHODDEF(void) |
|
rgb1_gray_convert (j_decompress_ptr cinfo, |
|
JSAMPIMAGE input_buf, JDIMENSION input_row, |
|
JSAMPARRAY output_buf, int num_rows) |
|
{ |
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
|
register int r, g, b; |
|
register INT32 y; |
|
register INT32 * Rytab = cconvert->R_y_tab; |
|
register INT32 * Gytab = cconvert->G_y_tab; |
|
register INT32 * Bytab = cconvert->B_y_tab; |
|
register JSAMPROW outptr; |
|
register JSAMPROW inptr0, inptr1, inptr2; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->output_width; |
|
|
|
while (--num_rows >= 0) { |
|
inptr0 = input_buf[0][input_row]; |
|
inptr1 = input_buf[1][input_row]; |
|
inptr2 = input_buf[2][input_row]; |
|
input_row++; |
|
outptr = *output_buf++; |
|
for (col = 0; col < num_cols; col++) { |
|
r = GETJSAMPLE(inptr0[col]); |
|
g = GETJSAMPLE(inptr1[col]); |
|
b = GETJSAMPLE(inptr2[col]); |
|
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD |
|
* (modulo) operator is equivalent to the bitmask operator AND. |
|
*/ |
|
y = Rytab[(r + g - CENTERJSAMPLE) & MAXJSAMPLE]; |
|
y += Gytab[g]; |
|
y += Bytab[(b + g - CENTERJSAMPLE) & MAXJSAMPLE]; |
|
outptr[col] = (JSAMPLE) (y >> SCALEBITS); |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Convert some rows of samples to the output colorspace. |
|
* No colorspace change, but conversion from separate-planes |
|
* to interleaved representation. |
|
*/ |
|
|
|
METHODDEF(void) |
|
rgb_convert (j_decompress_ptr cinfo, |
|
JSAMPIMAGE input_buf, JDIMENSION input_row, |
|
JSAMPARRAY output_buf, int num_rows) |
|
{ |
|
register JSAMPROW outptr; |
|
register JSAMPROW inptr0, inptr1, inptr2; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->output_width; |
|
|
|
while (--num_rows >= 0) { |
|
inptr0 = input_buf[0][input_row]; |
|
inptr1 = input_buf[1][input_row]; |
|
inptr2 = input_buf[2][input_row]; |
|
input_row++; |
|
outptr = *output_buf++; |
|
for (col = 0; col < num_cols; col++) { |
|
/* We can dispense with GETJSAMPLE() here */ |
|
outptr[RGB_RED] = inptr0[col]; |
|
outptr[RGB_GREEN] = inptr1[col]; |
|
outptr[RGB_BLUE] = inptr2[col]; |
|
outptr += RGB_PIXELSIZE; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Color conversion for no colorspace change: just copy the data, |
|
* converting from separate-planes to interleaved representation. |
|
* Note: Omit uninteresting components in output buffer. |
|
*/ |
|
|
|
METHODDEF(void) |
|
null_convert (j_decompress_ptr cinfo, |
|
JSAMPIMAGE input_buf, JDIMENSION input_row, |
|
JSAMPARRAY output_buf, int num_rows) |
|
{ |
|
register JSAMPROW outptr; |
|
register JSAMPROW inptr; |
|
register JDIMENSION count; |
|
register int out_comps = cinfo->out_color_components; |
|
JDIMENSION num_cols = cinfo->output_width; |
|
JSAMPROW startptr; |
|
int ci; |
|
jpeg_component_info *compptr; |
|
|
|
while (--num_rows >= 0) { |
|
/* It seems fastest to make a separate pass for each component. */ |
|
startptr = *output_buf++; |
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
if (! compptr->component_needed) |
|
continue; /* skip uninteresting component */ |
|
inptr = input_buf[ci][input_row]; |
|
outptr = startptr++; |
|
for (count = num_cols; count > 0; count--) { |
|
*outptr = *inptr++; /* don't need GETJSAMPLE() here */ |
|
outptr += out_comps; |
|
} |
|
} |
|
input_row++; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Color conversion for grayscale: just copy the data. |
|
* This also works for YCC -> grayscale conversion, in which |
|
* we just copy the Y (luminance) component and ignore chrominance. |
|
*/ |
|
|
|
METHODDEF(void) |
|
grayscale_convert (j_decompress_ptr cinfo, |
|
JSAMPIMAGE input_buf, JDIMENSION input_row, |
|
JSAMPARRAY output_buf, int num_rows) |
|
{ |
|
jcopy_sample_rows(input_buf[0] + input_row, output_buf, |
|
num_rows, cinfo->output_width); |
|
} |
|
|
|
|
|
/* |
|
* Convert grayscale to RGB: just duplicate the graylevel three times. |
|
* This is provided to support applications that don't want to cope |
|
* with grayscale as a separate case. |
|
*/ |
|
|
|
METHODDEF(void) |
|
gray_rgb_convert (j_decompress_ptr cinfo, |
|
JSAMPIMAGE input_buf, JDIMENSION input_row, |
|
JSAMPARRAY output_buf, int num_rows) |
|
{ |
|
register JSAMPROW outptr; |
|
register JSAMPROW inptr; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->output_width; |
|
|
|
while (--num_rows >= 0) { |
|
inptr = input_buf[0][input_row++]; |
|
outptr = *output_buf++; |
|
for (col = 0; col < num_cols; col++) { |
|
/* We can dispense with GETJSAMPLE() here */ |
|
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col]; |
|
outptr += RGB_PIXELSIZE; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Convert some rows of samples to the output colorspace. |
|
* This version handles Adobe-style YCCK->CMYK conversion, |
|
* where we convert YCbCr to R=1-C, G=1-M, and B=1-Y using the |
|
* same conversion as above, while passing K (black) unchanged. |
|
* We assume build_ycc_rgb_table has been called. |
|
*/ |
|
|
|
METHODDEF(void) |
|
ycck_cmyk_convert (j_decompress_ptr cinfo, |
|
JSAMPIMAGE input_buf, JDIMENSION input_row, |
|
JSAMPARRAY output_buf, int num_rows) |
|
{ |
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
|
register int y, cb, cr; |
|
register JSAMPROW outptr; |
|
register JSAMPROW inptr0, inptr1, inptr2, inptr3; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->output_width; |
|
/* copy these pointers into registers if possible */ |
|
register JSAMPLE * range_limit = cinfo->sample_range_limit; |
|
register int * Crrtab = cconvert->Cr_r_tab; |
|
register int * Cbbtab = cconvert->Cb_b_tab; |
|
register INT32 * Crgtab = cconvert->Cr_g_tab; |
|
register INT32 * Cbgtab = cconvert->Cb_g_tab; |
|
SHIFT_TEMPS |
|
|
|
while (--num_rows >= 0) { |
|
inptr0 = input_buf[0][input_row]; |
|
inptr1 = input_buf[1][input_row]; |
|
inptr2 = input_buf[2][input_row]; |
|
inptr3 = input_buf[3][input_row]; |
|
input_row++; |
|
outptr = *output_buf++; |
|
for (col = 0; col < num_cols; col++) { |
|
y = GETJSAMPLE(inptr0[col]); |
|
cb = GETJSAMPLE(inptr1[col]); |
|
cr = GETJSAMPLE(inptr2[col]); |
|
/* Range-limiting is essential due to noise introduced by DCT losses, |
|
* and for extended gamut encodings (sYCC). |
|
*/ |
|
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */ |
|
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */ |
|
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], |
|
SCALEBITS)))]; |
|
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */ |
|
/* K passes through unchanged */ |
|
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */ |
|
outptr += 4; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Convert CMYK to YK part of YCCK for colorless output. |
|
* We assume build_rgb_y_table has been called. |
|
*/ |
|
|
|
METHODDEF(void) |
|
cmyk_yk_convert (j_decompress_ptr cinfo, |
|
JSAMPIMAGE input_buf, JDIMENSION input_row, |
|
JSAMPARRAY output_buf, int num_rows) |
|
{ |
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
|
register INT32 y; |
|
register INT32 * Rytab = cconvert->R_y_tab; |
|
register INT32 * Gytab = cconvert->G_y_tab; |
|
register INT32 * Bytab = cconvert->B_y_tab; |
|
register JSAMPROW outptr; |
|
register JSAMPROW inptr0, inptr1, inptr2, inptr3; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->output_width; |
|
|
|
while (--num_rows >= 0) { |
|
inptr0 = input_buf[0][input_row]; |
|
inptr1 = input_buf[1][input_row]; |
|
inptr2 = input_buf[2][input_row]; |
|
inptr3 = input_buf[3][input_row]; |
|
input_row++; |
|
outptr = *output_buf++; |
|
for (col = 0; col < num_cols; col++) { |
|
y = Rytab[MAXJSAMPLE - GETJSAMPLE(inptr0[col])]; |
|
y += Gytab[MAXJSAMPLE - GETJSAMPLE(inptr1[col])]; |
|
y += Bytab[MAXJSAMPLE - GETJSAMPLE(inptr2[col])]; |
|
outptr[0] = (JSAMPLE) (y >> SCALEBITS); |
|
/* K passes through unchanged */ |
|
outptr[1] = inptr3[col]; /* don't need GETJSAMPLE here */ |
|
outptr += 2; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Empty method for start_pass. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_pass_dcolor (j_decompress_ptr cinfo) |
|
{ |
|
/* no work needed */ |
|
} |
|
|
|
|
|
/* |
|
* Module initialization routine for output colorspace conversion. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_color_deconverter (j_decompress_ptr cinfo) |
|
{ |
|
my_cconvert_ptr cconvert; |
|
int ci, i; |
|
|
|
cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_deconverter)); |
|
cinfo->cconvert = &cconvert->pub; |
|
cconvert->pub.start_pass = start_pass_dcolor; |
|
|
|
/* Make sure num_components agrees with jpeg_color_space */ |
|
switch (cinfo->jpeg_color_space) { |
|
case JCS_GRAYSCALE: |
|
if (cinfo->num_components != 1) |
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
|
break; |
|
|
|
case JCS_RGB: |
|
case JCS_YCbCr: |
|
case JCS_BG_RGB: |
|
case JCS_BG_YCC: |
|
if (cinfo->num_components != 3) |
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
|
break; |
|
|
|
case JCS_CMYK: |
|
case JCS_YCCK: |
|
if (cinfo->num_components != 4) |
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
|
break; |
|
|
|
default: /* JCS_UNKNOWN can be anything */ |
|
if (cinfo->num_components < 1) |
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
|
} |
|
|
|
/* Support color transform only for RGB colorspaces */ |
|
if (cinfo->color_transform && |
|
cinfo->jpeg_color_space != JCS_RGB && |
|
cinfo->jpeg_color_space != JCS_BG_RGB) |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
|
|
/* Set out_color_components and conversion method based on requested space. |
|
* Also adjust the component_needed flags for any unused components, |
|
* so that earlier pipeline stages can avoid useless computation. |
|
*/ |
|
|
|
switch (cinfo->out_color_space) { |
|
case JCS_GRAYSCALE: |
|
cinfo->out_color_components = 1; |
|
switch (cinfo->jpeg_color_space) { |
|
case JCS_GRAYSCALE: |
|
case JCS_YCbCr: |
|
case JCS_BG_YCC: |
|
cconvert->pub.color_convert = grayscale_convert; |
|
/* For color->grayscale conversion, only the Y (0) component is needed */ |
|
for (ci = 1; ci < cinfo->num_components; ci++) |
|
cinfo->comp_info[ci].component_needed = FALSE; |
|
break; |
|
case JCS_RGB: |
|
switch (cinfo->color_transform) { |
|
case JCT_NONE: |
|
cconvert->pub.color_convert = rgb_gray_convert; |
|
break; |
|
case JCT_SUBTRACT_GREEN: |
|
cconvert->pub.color_convert = rgb1_gray_convert; |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
} |
|
build_rgb_y_table(cinfo); |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
} |
|
break; |
|
|
|
case JCS_RGB: |
|
cinfo->out_color_components = RGB_PIXELSIZE; |
|
switch (cinfo->jpeg_color_space) { |
|
case JCS_GRAYSCALE: |
|
cconvert->pub.color_convert = gray_rgb_convert; |
|
break; |
|
case JCS_YCbCr: |
|
cconvert->pub.color_convert = ycc_rgb_convert; |
|
build_ycc_rgb_table(cinfo); |
|
break; |
|
case JCS_BG_YCC: |
|
cconvert->pub.color_convert = ycc_rgb_convert; |
|
build_bg_ycc_rgb_table(cinfo); |
|
break; |
|
case JCS_RGB: |
|
switch (cinfo->color_transform) { |
|
case JCT_NONE: |
|
cconvert->pub.color_convert = rgb_convert; |
|
break; |
|
case JCT_SUBTRACT_GREEN: |
|
cconvert->pub.color_convert = rgb1_rgb_convert; |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
} |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
} |
|
break; |
|
|
|
case JCS_BG_RGB: |
|
if (cinfo->jpeg_color_space != JCS_BG_RGB) |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
cinfo->out_color_components = RGB_PIXELSIZE; |
|
switch (cinfo->color_transform) { |
|
case JCT_NONE: |
|
cconvert->pub.color_convert = rgb_convert; |
|
break; |
|
case JCT_SUBTRACT_GREEN: |
|
cconvert->pub.color_convert = rgb1_rgb_convert; |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
} |
|
break; |
|
|
|
case JCS_CMYK: |
|
if (cinfo->jpeg_color_space != JCS_YCCK) |
|
goto def_label; |
|
cinfo->out_color_components = 4; |
|
cconvert->pub.color_convert = ycck_cmyk_convert; |
|
build_ycc_rgb_table(cinfo); |
|
break; |
|
|
|
case JCS_YCCK: |
|
if (cinfo->jpeg_color_space != JCS_CMYK || |
|
/* Support only YK part of YCCK for colorless output */ |
|
! cinfo->comp_info[0].component_needed || |
|
cinfo->comp_info[1].component_needed || |
|
cinfo->comp_info[2].component_needed || |
|
! cinfo->comp_info[3].component_needed) |
|
goto def_label; |
|
cinfo->out_color_components = 2; |
|
/* Need all components on input side */ |
|
cinfo->comp_info[1].component_needed = TRUE; |
|
cinfo->comp_info[2].component_needed = TRUE; |
|
cconvert->pub.color_convert = cmyk_yk_convert; |
|
build_rgb_y_table(cinfo); |
|
break; |
|
|
|
default: def_label: /* permit null conversion to same output space */ |
|
if (cinfo->out_color_space != cinfo->jpeg_color_space) |
|
/* unsupported non-null conversion */ |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
i = 0; |
|
for (ci = 0; ci < cinfo->num_components; ci++) |
|
if (cinfo->comp_info[ci].component_needed) |
|
i++; /* count output color components */ |
|
cinfo->out_color_components = i; |
|
cconvert->pub.color_convert = null_convert; |
|
} |
|
|
|
if (cinfo->quantize_colors) |
|
cinfo->output_components = 1; /* single colormapped output component */ |
|
else |
|
cinfo->output_components = cinfo->out_color_components; |
|
}
|
|
|