mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
5.2 KiB
160 lines
5.2 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and / or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#if !defined(ANDROID) |
|
|
|
#include <test_precomp.hpp> |
|
#include <string> |
|
#include <fstream> |
|
#include <vector> |
|
|
|
using namespace std; |
|
|
|
namespace { |
|
|
|
using namespace cv::softcascade; |
|
|
|
typedef vector<string> svector; |
|
class ScaledDataset : public Dataset |
|
{ |
|
public: |
|
ScaledDataset(const string& path, const int octave); |
|
|
|
virtual cv::Mat get(SampleType type, int idx) const; |
|
virtual int available(SampleType type) const; |
|
virtual ~ScaledDataset(); |
|
|
|
private: |
|
svector pos; |
|
svector neg; |
|
}; |
|
|
|
ScaledDataset::ScaledDataset(const string& path, const int oct) |
|
{ |
|
cv::glob(path + cv::format("/octave_%d/*.png", oct), pos); |
|
cv::glob(path + "/*.png", neg); |
|
|
|
// Check: files not empty |
|
CV_Assert(pos.size() != size_t(0)); |
|
CV_Assert(neg.size() != size_t(0)); |
|
} |
|
|
|
cv::Mat ScaledDataset::get(SampleType type, int idx) const |
|
{ |
|
const std::string& src = (type == POSITIVE)? pos[idx]: neg[idx]; |
|
return cv::imread(src); |
|
} |
|
|
|
int ScaledDataset::available(SampleType type) const |
|
{ |
|
return (int)((type == POSITIVE)? pos.size():neg.size()); |
|
} |
|
|
|
ScaledDataset::~ScaledDataset(){} |
|
|
|
} |
|
|
|
TEST(SoftCascade, training) |
|
{ |
|
// // 2. check and open output file |
|
string outXmlPath = cv::tempfile(".xml"); |
|
cv::FileStorage fso(outXmlPath, cv::FileStorage::WRITE); |
|
|
|
ASSERT_TRUE(fso.isOpened()); |
|
|
|
std::vector<int> octaves; |
|
{ |
|
octaves.push_back(-1); |
|
octaves.push_back(0); |
|
} |
|
|
|
fso << "regression-cascade" |
|
<< "{" |
|
<< "stageType" << "BOOST" |
|
<< "featureType" << "ICF" |
|
<< "octavesNum" << 2 |
|
<< "width" << 64 |
|
<< "height" << 128 |
|
<< "shrinkage" << 4 |
|
<< "octaves" << "["; |
|
|
|
for (std::vector<int>::const_iterator it = octaves.begin(); it != octaves.end(); ++it) |
|
{ |
|
int nfeatures = 100; |
|
int shrinkage = 4; |
|
float octave = powf(2.f, (float)(*it)); |
|
cv::Size model = cv::Size( cvRound(64 * octave) / shrinkage, cvRound(128 * octave) / shrinkage ); |
|
|
|
cv::Ptr<FeaturePool> pool = FeaturePool::create(model, nfeatures, 10); |
|
nfeatures = pool->size(); |
|
int npositives = 10; |
|
int nnegatives = 20; |
|
|
|
cv::Rect boundingBox = cv::Rect( cvRound(20 * octave), cvRound(20 * octave), |
|
cvRound(64 * octave), cvRound(128 * octave)); |
|
|
|
cv::Ptr<ChannelFeatureBuilder> builder = ChannelFeatureBuilder::create("HOG6MagLuv"); |
|
cv::Ptr<Octave> boost = Octave::create(boundingBox, npositives, nnegatives, *it, shrinkage, builder); |
|
|
|
std::string path = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/sample_training_set"; |
|
ScaledDataset dataset(path, *it); |
|
|
|
if (boost->train(&dataset, pool, 3, 2)) |
|
{ |
|
cv::Mat thresholds; |
|
boost->setRejectThresholds(thresholds); |
|
boost->write(fso, pool, thresholds); |
|
} |
|
} |
|
|
|
fso << "]" << "}"; |
|
fso.release(); |
|
|
|
|
|
cv::FileStorage actual(outXmlPath, cv::FileStorage::READ); |
|
cv::FileNode root = actual.getFirstTopLevelNode(); |
|
|
|
cv::FileNode fn = root["octaves"]; |
|
ASSERT_FALSE(fn.empty()); |
|
} |
|
|
|
#endif |