mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1421 lines
52 KiB
1421 lines
52 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); } |
|
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, HoughLinesBuf&, float, float, int, bool, int) { throw_nogpu(); } |
|
void cv::gpu::HoughLinesDownload(const GpuMat&, OutputArray, OutputArray) { throw_nogpu(); } |
|
|
|
void cv::gpu::HoughLinesP(const GpuMat&, GpuMat&, HoughLinesBuf&, float, float, int, int, int) { throw_nogpu(); } |
|
|
|
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, int, float, float, int, int, int, int, int) { throw_nogpu(); } |
|
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, HoughCirclesBuf&, int, float, float, int, int, int, int, int) { throw_nogpu(); } |
|
void cv::gpu::HoughCirclesDownload(const GpuMat&, OutputArray) { throw_nogpu(); } |
|
|
|
Ptr<GeneralizedHough_GPU> cv::gpu::GeneralizedHough_GPU::create(int) { throw_nogpu(); return Ptr<GeneralizedHough_GPU>(); } |
|
cv::gpu::GeneralizedHough_GPU::~GeneralizedHough_GPU() {} |
|
void cv::gpu::GeneralizedHough_GPU::setTemplate(const GpuMat&, int, Point) { throw_nogpu(); } |
|
void cv::gpu::GeneralizedHough_GPU::setTemplate(const GpuMat&, const GpuMat&, const GpuMat&, Point) { throw_nogpu(); } |
|
void cv::gpu::GeneralizedHough_GPU::detect(const GpuMat&, GpuMat&, int) { throw_nogpu(); } |
|
void cv::gpu::GeneralizedHough_GPU::detect(const GpuMat&, const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::GeneralizedHough_GPU::download(const GpuMat&, OutputArray, OutputArray) { throw_nogpu(); } |
|
void cv::gpu::GeneralizedHough_GPU::release() {} |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace hough |
|
{ |
|
int buildPointList_gpu(PtrStepSzb src, unsigned int* list); |
|
} |
|
}}} |
|
|
|
////////////////////////////////////////////////////////// |
|
// HoughLines |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace hough |
|
{ |
|
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20); |
|
int linesGetResult_gpu(PtrStepSzi accum, float2* out, int* votes, int maxSize, float rho, float theta, int threshold, bool doSort); |
|
} |
|
}}} |
|
|
|
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines) |
|
{ |
|
HoughLinesBuf buf; |
|
HoughLines(src, lines, buf, rho, theta, threshold, doSort, maxLines); |
|
} |
|
|
|
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort, int maxLines) |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
CV_Assert(src.type() == CV_8UC1); |
|
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max()); |
|
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max()); |
|
|
|
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.list); |
|
unsigned int* srcPoints = buf.list.ptr<unsigned int>(); |
|
|
|
const int pointsCount = buildPointList_gpu(src, srcPoints); |
|
if (pointsCount == 0) |
|
{ |
|
lines.release(); |
|
return; |
|
} |
|
|
|
const int numangle = cvRound(CV_PI / theta); |
|
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); |
|
CV_Assert(numangle > 0 && numrho > 0); |
|
|
|
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, buf.accum); |
|
buf.accum.setTo(Scalar::all(0)); |
|
|
|
DeviceInfo devInfo; |
|
linesAccum_gpu(srcPoints, pointsCount, buf.accum, rho, theta, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20)); |
|
|
|
ensureSizeIsEnough(2, maxLines, CV_32FC2, lines); |
|
|
|
int linesCount = linesGetResult_gpu(buf.accum, lines.ptr<float2>(0), lines.ptr<int>(1), maxLines, rho, theta, threshold, doSort); |
|
if (linesCount > 0) |
|
lines.cols = linesCount; |
|
else |
|
lines.release(); |
|
} |
|
|
|
void cv::gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines_, OutputArray h_votes_) |
|
{ |
|
if (d_lines.empty()) |
|
{ |
|
h_lines_.release(); |
|
if (h_votes_.needed()) |
|
h_votes_.release(); |
|
return; |
|
} |
|
|
|
CV_Assert(d_lines.rows == 2 && d_lines.type() == CV_32FC2); |
|
|
|
h_lines_.create(1, d_lines.cols, CV_32FC2); |
|
Mat h_lines = h_lines_.getMat(); |
|
d_lines.row(0).download(h_lines); |
|
|
|
if (h_votes_.needed()) |
|
{ |
|
h_votes_.create(1, d_lines.cols, CV_32SC1); |
|
Mat h_votes = h_votes_.getMat(); |
|
GpuMat d_votes(1, d_lines.cols, CV_32SC1, const_cast<int*>(d_lines.ptr<int>(1))); |
|
d_votes.download(h_votes); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////// |
|
// HoughLinesP |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace hough |
|
{ |
|
int houghLinesProbabilistic_gpu(PtrStepSzb mask, PtrStepSzi accum, int4* out, int maxSize, float rho, float theta, int lineGap, int lineLength); |
|
} |
|
}}} |
|
|
|
void cv::gpu::HoughLinesP(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines) |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
CV_Assert( src.type() == CV_8UC1 ); |
|
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() ); |
|
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() ); |
|
|
|
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.list); |
|
unsigned int* srcPoints = buf.list.ptr<unsigned int>(); |
|
|
|
const int pointsCount = buildPointList_gpu(src, srcPoints); |
|
if (pointsCount == 0) |
|
{ |
|
lines.release(); |
|
return; |
|
} |
|
|
|
const int numangle = cvRound(CV_PI / theta); |
|
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); |
|
CV_Assert( numangle > 0 && numrho > 0 ); |
|
|
|
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, buf.accum); |
|
buf.accum.setTo(Scalar::all(0)); |
|
|
|
DeviceInfo devInfo; |
|
linesAccum_gpu(srcPoints, pointsCount, buf.accum, rho, theta, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20)); |
|
|
|
ensureSizeIsEnough(1, maxLines, CV_32SC4, lines); |
|
|
|
int linesCount = houghLinesProbabilistic_gpu(src, buf.accum, lines.ptr<int4>(), maxLines, rho, theta, maxLineGap, minLineLength); |
|
|
|
if (linesCount > 0) |
|
lines.cols = linesCount; |
|
else |
|
lines.release(); |
|
} |
|
|
|
////////////////////////////////////////////////////////// |
|
// HoughCircles |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace hough |
|
{ |
|
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, PtrStepSzi accum, int minRadius, int maxRadius, float idp); |
|
int buildCentersList_gpu(PtrStepSzi accum, unsigned int* centers, int threshold); |
|
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count, |
|
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20); |
|
} |
|
}}} |
|
|
|
void cv::gpu::HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles) |
|
{ |
|
HoughCirclesBuf buf; |
|
HoughCircles(src, circles, buf, method, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles); |
|
} |
|
|
|
void cv::gpu::HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, |
|
float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles) |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
CV_Assert(src.type() == CV_8UC1); |
|
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max()); |
|
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max()); |
|
CV_Assert(method == CV_HOUGH_GRADIENT); |
|
CV_Assert(dp > 0); |
|
CV_Assert(minRadius > 0 && maxRadius > minRadius); |
|
CV_Assert(cannyThreshold > 0); |
|
CV_Assert(votesThreshold > 0); |
|
CV_Assert(maxCircles > 0); |
|
|
|
const float idp = 1.0f / dp; |
|
|
|
cv::gpu::Canny(src, buf.cannyBuf, buf.edges, std::max(cannyThreshold / 2, 1), cannyThreshold); |
|
|
|
ensureSizeIsEnough(2, src.size().area(), CV_32SC1, buf.list); |
|
unsigned int* srcPoints = buf.list.ptr<unsigned int>(0); |
|
unsigned int* centers = buf.list.ptr<unsigned int>(1); |
|
|
|
const int pointsCount = buildPointList_gpu(buf.edges, srcPoints); |
|
if (pointsCount == 0) |
|
{ |
|
circles.release(); |
|
return; |
|
} |
|
|
|
ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, buf.accum); |
|
buf.accum.setTo(Scalar::all(0)); |
|
|
|
circlesAccumCenters_gpu(srcPoints, pointsCount, buf.cannyBuf.dx, buf.cannyBuf.dy, buf.accum, minRadius, maxRadius, idp); |
|
|
|
int centersCount = buildCentersList_gpu(buf.accum, centers, votesThreshold); |
|
if (centersCount == 0) |
|
{ |
|
circles.release(); |
|
return; |
|
} |
|
|
|
if (minDist > 1) |
|
{ |
|
cv::AutoBuffer<ushort2> oldBuf_(centersCount); |
|
cv::AutoBuffer<ushort2> newBuf_(centersCount); |
|
int newCount = 0; |
|
|
|
ushort2* oldBuf = oldBuf_; |
|
ushort2* newBuf = newBuf_; |
|
|
|
cudaSafeCall( cudaMemcpy(oldBuf, centers, centersCount * sizeof(ushort2), cudaMemcpyDeviceToHost) ); |
|
|
|
const int cellSize = cvRound(minDist); |
|
const int gridWidth = (src.cols + cellSize - 1) / cellSize; |
|
const int gridHeight = (src.rows + cellSize - 1) / cellSize; |
|
|
|
std::vector< std::vector<ushort2> > grid(gridWidth * gridHeight); |
|
|
|
const float minDist2 = minDist * minDist; |
|
|
|
for (int i = 0; i < centersCount; ++i) |
|
{ |
|
ushort2 p = oldBuf[i]; |
|
|
|
bool good = true; |
|
|
|
int xCell = static_cast<int>(p.x / cellSize); |
|
int yCell = static_cast<int>(p.y / cellSize); |
|
|
|
int x1 = xCell - 1; |
|
int y1 = yCell - 1; |
|
int x2 = xCell + 1; |
|
int y2 = yCell + 1; |
|
|
|
// boundary check |
|
x1 = std::max(0, x1); |
|
y1 = std::max(0, y1); |
|
x2 = std::min(gridWidth - 1, x2); |
|
y2 = std::min(gridHeight - 1, y2); |
|
|
|
for (int yy = y1; yy <= y2; ++yy) |
|
{ |
|
for (int xx = x1; xx <= x2; ++xx) |
|
{ |
|
std::vector<ushort2>& m = grid[yy * gridWidth + xx]; |
|
|
|
for(size_t j = 0; j < m.size(); ++j) |
|
{ |
|
float dx = (float)(p.x - m[j].x); |
|
float dy = (float)(p.y - m[j].y); |
|
|
|
if (dx * dx + dy * dy < minDist2) |
|
{ |
|
good = false; |
|
goto break_out; |
|
} |
|
} |
|
} |
|
} |
|
|
|
break_out: |
|
|
|
if(good) |
|
{ |
|
grid[yCell * gridWidth + xCell].push_back(p); |
|
|
|
newBuf[newCount++] = p; |
|
} |
|
} |
|
|
|
cudaSafeCall( cudaMemcpy(centers, newBuf, newCount * sizeof(unsigned int), cudaMemcpyHostToDevice) ); |
|
centersCount = newCount; |
|
} |
|
|
|
ensureSizeIsEnough(1, maxCircles, CV_32FC3, circles); |
|
|
|
const int circlesCount = circlesAccumRadius_gpu(centers, centersCount, srcPoints, pointsCount, circles.ptr<float3>(), maxCircles, |
|
dp, minRadius, maxRadius, votesThreshold, deviceSupports(FEATURE_SET_COMPUTE_20)); |
|
|
|
if (circlesCount > 0) |
|
circles.cols = circlesCount; |
|
else |
|
circles.release(); |
|
} |
|
|
|
void cv::gpu::HoughCirclesDownload(const GpuMat& d_circles, cv::OutputArray h_circles_) |
|
{ |
|
if (d_circles.empty()) |
|
{ |
|
h_circles_.release(); |
|
return; |
|
} |
|
|
|
CV_Assert(d_circles.rows == 1 && d_circles.type() == CV_32FC3); |
|
|
|
h_circles_.create(1, d_circles.cols, CV_32FC3); |
|
Mat h_circles = h_circles_.getMat(); |
|
d_circles.download(h_circles); |
|
} |
|
|
|
////////////////////////////////////////////////////////// |
|
// GeneralizedHough |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace hough |
|
{ |
|
template <typename T> |
|
int buildEdgePointList_gpu(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList); |
|
void buildRTable_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount, |
|
PtrStepSz<short2> r_table, int* r_sizes, |
|
short2 templCenter, int levels); |
|
|
|
void GHT_Ballard_Pos_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount, |
|
PtrStepSz<short2> r_table, const int* r_sizes, |
|
PtrStepSzi hist, |
|
float dp, int levels); |
|
int GHT_Ballard_Pos_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int maxSize, float dp, int threshold); |
|
|
|
void GHT_Ballard_PosScale_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount, |
|
PtrStepSz<short2> r_table, const int* r_sizes, |
|
PtrStepi hist, int rows, int cols, |
|
float minScale, float scaleStep, int scaleRange, |
|
float dp, int levels); |
|
int GHT_Ballard_PosScale_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int scaleRange, float4* out, int3* votes, int maxSize, |
|
float minScale, float scaleStep, float dp, int threshold); |
|
|
|
void GHT_Ballard_PosRotation_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount, |
|
PtrStepSz<short2> r_table, const int* r_sizes, |
|
PtrStepi hist, int rows, int cols, |
|
float minAngle, float angleStep, int angleRange, |
|
float dp, int levels); |
|
int GHT_Ballard_PosRotation_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int angleRange, float4* out, int3* votes, int maxSize, |
|
float minAngle, float angleStep, float dp, int threshold); |
|
|
|
void GHT_Guil_Full_setTemplFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2); |
|
void GHT_Guil_Full_setImageFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2); |
|
void GHT_Guil_Full_buildTemplFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount, |
|
int* sizes, int maxSize, |
|
float xi, float angleEpsilon, int levels, |
|
float2 center, float maxDist); |
|
void GHT_Guil_Full_buildImageFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount, |
|
int* sizes, int maxSize, |
|
float xi, float angleEpsilon, int levels, |
|
float2 center, float maxDist); |
|
void GHT_Guil_Full_calcOHist_gpu(const int* templSizes, const int* imageSizes, int* OHist, |
|
float minAngle, float maxAngle, float angleStep, int angleRange, |
|
int levels, int tMaxSize); |
|
void GHT_Guil_Full_calcSHist_gpu(const int* templSizes, const int* imageSizes, int* SHist, |
|
float angle, float angleEpsilon, |
|
float minScale, float maxScale, float iScaleStep, int scaleRange, |
|
int levels, int tMaxSize); |
|
void GHT_Guil_Full_calcPHist_gpu(const int* templSizes, const int* imageSizes, PtrStepSzi PHist, |
|
float angle, float angleEpsilon, float scale, |
|
float dp, |
|
int levels, int tMaxSize); |
|
int GHT_Guil_Full_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int curSize, int maxSize, |
|
float angle, int angleVotes, float scale, int scaleVotes, |
|
float dp, int threshold); |
|
} |
|
}}} |
|
|
|
namespace |
|
{ |
|
///////////////////////////////////// |
|
// Common |
|
|
|
template <typename T, class A> void releaseVector(std::vector<T, A>& v) |
|
{ |
|
std::vector<T, A> empty; |
|
empty.swap(v); |
|
} |
|
|
|
class GHT_Pos : public GeneralizedHough_GPU |
|
{ |
|
public: |
|
GHT_Pos(); |
|
|
|
protected: |
|
void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter); |
|
void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions); |
|
void releaseImpl(); |
|
|
|
virtual void processTempl() = 0; |
|
virtual void processImage() = 0; |
|
|
|
void buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy); |
|
void filterMinDist(); |
|
void convertTo(GpuMat& positions); |
|
|
|
int maxSize; |
|
double minDist; |
|
|
|
Size templSize; |
|
Point templCenter; |
|
GpuMat templEdges; |
|
GpuMat templDx; |
|
GpuMat templDy; |
|
|
|
Size imageSize; |
|
GpuMat imageEdges; |
|
GpuMat imageDx; |
|
GpuMat imageDy; |
|
|
|
GpuMat edgePointList; |
|
|
|
GpuMat outBuf; |
|
int posCount; |
|
|
|
std::vector<float4> oldPosBuf; |
|
std::vector<int3> oldVoteBuf; |
|
std::vector<float4> newPosBuf; |
|
std::vector<int3> newVoteBuf; |
|
std::vector<int> indexies; |
|
}; |
|
|
|
GHT_Pos::GHT_Pos() |
|
{ |
|
maxSize = 10000; |
|
minDist = 1.0; |
|
} |
|
|
|
void GHT_Pos::setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter_) |
|
{ |
|
templSize = edges.size(); |
|
templCenter = templCenter_; |
|
|
|
ensureSizeIsEnough(templSize, edges.type(), templEdges); |
|
ensureSizeIsEnough(templSize, dx.type(), templDx); |
|
ensureSizeIsEnough(templSize, dy.type(), templDy); |
|
|
|
edges.copyTo(templEdges); |
|
dx.copyTo(templDx); |
|
dy.copyTo(templDy); |
|
|
|
processTempl(); |
|
} |
|
|
|
void GHT_Pos::detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions) |
|
{ |
|
imageSize = edges.size(); |
|
|
|
ensureSizeIsEnough(imageSize, edges.type(), imageEdges); |
|
ensureSizeIsEnough(imageSize, dx.type(), imageDx); |
|
ensureSizeIsEnough(imageSize, dy.type(), imageDy); |
|
|
|
edges.copyTo(imageEdges); |
|
dx.copyTo(imageDx); |
|
dy.copyTo(imageDy); |
|
|
|
posCount = 0; |
|
|
|
processImage(); |
|
|
|
if (posCount == 0) |
|
positions.release(); |
|
else |
|
{ |
|
if (minDist > 1) |
|
filterMinDist(); |
|
convertTo(positions); |
|
} |
|
} |
|
|
|
void GHT_Pos::releaseImpl() |
|
{ |
|
templSize = Size(); |
|
templCenter = Point(-1, -1); |
|
templEdges.release(); |
|
templDx.release(); |
|
templDy.release(); |
|
|
|
imageSize = Size(); |
|
imageEdges.release(); |
|
imageDx.release(); |
|
imageDy.release(); |
|
|
|
edgePointList.release(); |
|
|
|
outBuf.release(); |
|
posCount = 0; |
|
|
|
releaseVector(oldPosBuf); |
|
releaseVector(oldVoteBuf); |
|
releaseVector(newPosBuf); |
|
releaseVector(newVoteBuf); |
|
releaseVector(indexies); |
|
} |
|
|
|
void GHT_Pos::buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy) |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
typedef int (*func_t)(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList); |
|
static const func_t funcs[] = |
|
{ |
|
0, |
|
0, |
|
0, |
|
buildEdgePointList_gpu<short>, |
|
buildEdgePointList_gpu<int>, |
|
buildEdgePointList_gpu<float>, |
|
0 |
|
}; |
|
|
|
CV_Assert(edges.type() == CV_8UC1); |
|
CV_Assert(dx.size() == edges.size()); |
|
CV_Assert(dy.type() == dx.type() && dy.size() == edges.size()); |
|
|
|
const func_t func = funcs[dx.depth()]; |
|
CV_Assert(func != 0); |
|
|
|
edgePointList.cols = (int) (edgePointList.step / sizeof(int)); |
|
ensureSizeIsEnough(2, edges.size().area(), CV_32SC1, edgePointList); |
|
|
|
edgePointList.cols = func(edges, dx, dy, edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1)); |
|
} |
|
|
|
#define votes_cmp_gt(l1, l2) (aux[l1].x > aux[l2].x) |
|
static CV_IMPLEMENT_QSORT_EX( sortIndexies, int, votes_cmp_gt, const int3* ) |
|
|
|
void GHT_Pos::filterMinDist() |
|
{ |
|
oldPosBuf.resize(posCount); |
|
oldVoteBuf.resize(posCount); |
|
|
|
cudaSafeCall( cudaMemcpy(&oldPosBuf[0], outBuf.ptr(0), posCount * sizeof(float4), cudaMemcpyDeviceToHost) ); |
|
cudaSafeCall( cudaMemcpy(&oldVoteBuf[0], outBuf.ptr(1), posCount * sizeof(int3), cudaMemcpyDeviceToHost) ); |
|
|
|
indexies.resize(posCount); |
|
for (int i = 0; i < posCount; ++i) |
|
indexies[i] = i; |
|
sortIndexies(&indexies[0], posCount, &oldVoteBuf[0]); |
|
|
|
newPosBuf.clear(); |
|
newVoteBuf.clear(); |
|
newPosBuf.reserve(posCount); |
|
newVoteBuf.reserve(posCount); |
|
|
|
const int cellSize = cvRound(minDist); |
|
const int gridWidth = (imageSize.width + cellSize - 1) / cellSize; |
|
const int gridHeight = (imageSize.height + cellSize - 1) / cellSize; |
|
|
|
std::vector< std::vector<Point2f> > grid(gridWidth * gridHeight); |
|
|
|
const double minDist2 = minDist * minDist; |
|
|
|
for (int i = 0; i < posCount; ++i) |
|
{ |
|
const int ind = indexies[i]; |
|
|
|
Point2f p(oldPosBuf[ind].x, oldPosBuf[ind].y); |
|
|
|
bool good = true; |
|
|
|
const int xCell = static_cast<int>(p.x / cellSize); |
|
const int yCell = static_cast<int>(p.y / cellSize); |
|
|
|
int x1 = xCell - 1; |
|
int y1 = yCell - 1; |
|
int x2 = xCell + 1; |
|
int y2 = yCell + 1; |
|
|
|
// boundary check |
|
x1 = std::max(0, x1); |
|
y1 = std::max(0, y1); |
|
x2 = std::min(gridWidth - 1, x2); |
|
y2 = std::min(gridHeight - 1, y2); |
|
|
|
for (int yy = y1; yy <= y2; ++yy) |
|
{ |
|
for (int xx = x1; xx <= x2; ++xx) |
|
{ |
|
const std::vector<Point2f>& m = grid[yy * gridWidth + xx]; |
|
|
|
for(size_t j = 0; j < m.size(); ++j) |
|
{ |
|
const Point2f d = p - m[j]; |
|
|
|
if (d.ddot(d) < minDist2) |
|
{ |
|
good = false; |
|
goto break_out; |
|
} |
|
} |
|
} |
|
} |
|
|
|
break_out: |
|
|
|
if(good) |
|
{ |
|
grid[yCell * gridWidth + xCell].push_back(p); |
|
|
|
newPosBuf.push_back(oldPosBuf[ind]); |
|
newVoteBuf.push_back(oldVoteBuf[ind]); |
|
} |
|
} |
|
|
|
posCount = static_cast<int>(newPosBuf.size()); |
|
cudaSafeCall( cudaMemcpy(outBuf.ptr(0), &newPosBuf[0], posCount * sizeof(float4), cudaMemcpyHostToDevice) ); |
|
cudaSafeCall( cudaMemcpy(outBuf.ptr(1), &newVoteBuf[0], posCount * sizeof(int3), cudaMemcpyHostToDevice) ); |
|
} |
|
|
|
void GHT_Pos::convertTo(GpuMat& positions) |
|
{ |
|
ensureSizeIsEnough(2, posCount, CV_32FC4, positions); |
|
GpuMat(2, posCount, CV_32FC4, outBuf.data, outBuf.step).copyTo(positions); |
|
} |
|
|
|
///////////////////////////////////// |
|
// POSITION Ballard |
|
|
|
class GHT_Ballard_Pos : public GHT_Pos |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
GHT_Ballard_Pos(); |
|
|
|
protected: |
|
void releaseImpl(); |
|
|
|
void processTempl(); |
|
void processImage(); |
|
|
|
virtual void calcHist(); |
|
virtual void findPosInHist(); |
|
|
|
int levels; |
|
int votesThreshold; |
|
double dp; |
|
|
|
GpuMat r_table; |
|
GpuMat r_sizes; |
|
|
|
GpuMat hist; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(GHT_Ballard_Pos, "GeneralizedHough_GPU.POSITION", |
|
obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0, |
|
"Maximal size of inner buffers."); |
|
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0, |
|
"Minimum distance between the centers of the detected objects."); |
|
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0, |
|
"R-Table levels."); |
|
obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0, |
|
"The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected."); |
|
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0, |
|
"Inverse ratio of the accumulator resolution to the image resolution.")); |
|
|
|
GHT_Ballard_Pos::GHT_Ballard_Pos() |
|
{ |
|
levels = 360; |
|
votesThreshold = 100; |
|
dp = 1.0; |
|
} |
|
|
|
void GHT_Ballard_Pos::releaseImpl() |
|
{ |
|
GHT_Pos::releaseImpl(); |
|
|
|
r_table.release(); |
|
r_sizes.release(); |
|
|
|
hist.release(); |
|
} |
|
|
|
void GHT_Ballard_Pos::processTempl() |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
CV_Assert(levels > 0); |
|
|
|
buildEdgePointList(templEdges, templDx, templDy); |
|
|
|
ensureSizeIsEnough(levels + 1, maxSize, CV_16SC2, r_table); |
|
ensureSizeIsEnough(1, levels + 1, CV_32SC1, r_sizes); |
|
r_sizes.setTo(Scalar::all(0)); |
|
|
|
if (edgePointList.cols > 0) |
|
{ |
|
buildRTable_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols, |
|
r_table, r_sizes.ptr<int>(), make_short2(templCenter.x, templCenter.y), levels); |
|
min(r_sizes, maxSize, r_sizes); |
|
} |
|
} |
|
|
|
void GHT_Ballard_Pos::processImage() |
|
{ |
|
calcHist(); |
|
findPosInHist(); |
|
} |
|
|
|
void GHT_Ballard_Pos::calcHist() |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
CV_Assert(levels > 0 && r_table.rows == (levels + 1) && r_sizes.cols == (levels + 1)); |
|
CV_Assert(dp > 0.0); |
|
|
|
const double idp = 1.0 / dp; |
|
|
|
buildEdgePointList(imageEdges, imageDx, imageDy); |
|
|
|
ensureSizeIsEnough(cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2, CV_32SC1, hist); |
|
hist.setTo(Scalar::all(0)); |
|
|
|
if (edgePointList.cols > 0) |
|
{ |
|
GHT_Ballard_Pos_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols, |
|
r_table, r_sizes.ptr<int>(), |
|
hist, |
|
(float)dp, levels); |
|
} |
|
} |
|
|
|
void GHT_Ballard_Pos::findPosInHist() |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
CV_Assert(votesThreshold > 0); |
|
|
|
ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf); |
|
|
|
posCount = GHT_Ballard_Pos_findPosInHist_gpu(hist, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, (float)dp, votesThreshold); |
|
} |
|
|
|
///////////////////////////////////// |
|
// POSITION & SCALE |
|
|
|
class GHT_Ballard_PosScale : public GHT_Ballard_Pos |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
GHT_Ballard_PosScale(); |
|
|
|
protected: |
|
void calcHist(); |
|
void findPosInHist(); |
|
|
|
double minScale; |
|
double maxScale; |
|
double scaleStep; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(GHT_Ballard_PosScale, "GeneralizedHough_GPU.POSITION_SCALE", |
|
obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0, |
|
"Maximal size of inner buffers."); |
|
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0, |
|
"Minimum distance between the centers of the detected objects."); |
|
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0, |
|
"R-Table levels."); |
|
obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0, |
|
"The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected."); |
|
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0, |
|
"Inverse ratio of the accumulator resolution to the image resolution."); |
|
obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0, |
|
"Minimal scale to detect."); |
|
obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0, |
|
"Maximal scale to detect."); |
|
obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0, |
|
"Scale step.")); |
|
|
|
GHT_Ballard_PosScale::GHT_Ballard_PosScale() |
|
{ |
|
minScale = 0.5; |
|
maxScale = 2.0; |
|
scaleStep = 0.05; |
|
} |
|
|
|
void GHT_Ballard_PosScale::calcHist() |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
CV_Assert(levels > 0 && r_table.rows == (levels + 1) && r_sizes.cols == (levels + 1)); |
|
CV_Assert(dp > 0.0); |
|
CV_Assert(minScale > 0.0 && minScale < maxScale); |
|
CV_Assert(scaleStep > 0.0); |
|
|
|
const double idp = 1.0 / dp; |
|
const int scaleRange = cvCeil((maxScale - minScale) / scaleStep); |
|
const int rows = cvCeil(imageSize.height * idp); |
|
const int cols = cvCeil(imageSize.width * idp); |
|
|
|
buildEdgePointList(imageEdges, imageDx, imageDy); |
|
|
|
ensureSizeIsEnough((scaleRange + 2) * (rows + 2), cols + 2, CV_32SC1, hist); |
|
hist.setTo(Scalar::all(0)); |
|
|
|
if (edgePointList.cols > 0) |
|
{ |
|
GHT_Ballard_PosScale_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols, |
|
r_table, r_sizes.ptr<int>(), |
|
hist, rows, cols, |
|
(float)minScale, (float)scaleStep, scaleRange, (float)dp, levels); |
|
} |
|
} |
|
|
|
void GHT_Ballard_PosScale::findPosInHist() |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
CV_Assert(votesThreshold > 0); |
|
|
|
const double idp = 1.0 / dp; |
|
const int scaleRange = cvCeil((maxScale - minScale) / scaleStep); |
|
const int rows = cvCeil(imageSize.height * idp); |
|
const int cols = cvCeil(imageSize.width * idp); |
|
|
|
ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf); |
|
|
|
posCount = GHT_Ballard_PosScale_findPosInHist_gpu(hist, rows, cols, scaleRange, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, (float)minScale, (float)scaleStep, (float)dp, votesThreshold); |
|
} |
|
|
|
///////////////////////////////////// |
|
// POSITION & Rotation |
|
|
|
class GHT_Ballard_PosRotation : public GHT_Ballard_Pos |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
GHT_Ballard_PosRotation(); |
|
|
|
protected: |
|
void calcHist(); |
|
void findPosInHist(); |
|
|
|
double minAngle; |
|
double maxAngle; |
|
double angleStep; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(GHT_Ballard_PosRotation, "GeneralizedHough_GPU.POSITION_ROTATION", |
|
obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0, |
|
"Maximal size of inner buffers."); |
|
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0, |
|
"Minimum distance between the centers of the detected objects."); |
|
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0, |
|
"R-Table levels."); |
|
obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0, |
|
"The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected."); |
|
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0, |
|
"Inverse ratio of the accumulator resolution to the image resolution."); |
|
obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0, |
|
"Minimal rotation angle to detect in degrees."); |
|
obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0, |
|
"Maximal rotation angle to detect in degrees."); |
|
obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0, |
|
"Angle step in degrees.")); |
|
|
|
GHT_Ballard_PosRotation::GHT_Ballard_PosRotation() |
|
{ |
|
minAngle = 0.0; |
|
maxAngle = 360.0; |
|
angleStep = 1.0; |
|
} |
|
|
|
void GHT_Ballard_PosRotation::calcHist() |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
CV_Assert(levels > 0 && r_table.rows == (levels + 1) && r_sizes.cols == (levels + 1)); |
|
CV_Assert(dp > 0.0); |
|
CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0); |
|
CV_Assert(angleStep > 0.0 && angleStep < 360.0); |
|
|
|
const double idp = 1.0 / dp; |
|
const int angleRange = cvCeil((maxAngle - minAngle) / angleStep); |
|
const int rows = cvCeil(imageSize.height * idp); |
|
const int cols = cvCeil(imageSize.width * idp); |
|
|
|
buildEdgePointList(imageEdges, imageDx, imageDy); |
|
|
|
ensureSizeIsEnough((angleRange + 2) * (rows + 2), cols + 2, CV_32SC1, hist); |
|
hist.setTo(Scalar::all(0)); |
|
|
|
if (edgePointList.cols > 0) |
|
{ |
|
GHT_Ballard_PosRotation_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols, |
|
r_table, r_sizes.ptr<int>(), |
|
hist, rows, cols, |
|
(float)minAngle, (float)angleStep, angleRange, (float)dp, levels); |
|
} |
|
} |
|
|
|
void GHT_Ballard_PosRotation::findPosInHist() |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
CV_Assert(votesThreshold > 0); |
|
|
|
const double idp = 1.0 / dp; |
|
const int angleRange = cvCeil((maxAngle - minAngle) / angleStep); |
|
const int rows = cvCeil(imageSize.height * idp); |
|
const int cols = cvCeil(imageSize.width * idp); |
|
|
|
ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf); |
|
|
|
posCount = GHT_Ballard_PosRotation_findPosInHist_gpu(hist, rows, cols, angleRange, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, (float)minAngle, (float)angleStep, (float)dp, votesThreshold); |
|
} |
|
|
|
///////////////////////////////////////// |
|
// POSITION & SCALE & ROTATION |
|
|
|
double toRad(double a) |
|
{ |
|
return a * CV_PI / 180.0; |
|
} |
|
|
|
double clampAngle(double a) |
|
{ |
|
double res = a; |
|
|
|
while (res > 360.0) |
|
res -= 360.0; |
|
while (res < 0) |
|
res += 360.0; |
|
|
|
return res; |
|
} |
|
|
|
bool angleEq(double a, double b, double eps = 1.0) |
|
{ |
|
return (fabs(clampAngle(a - b)) <= eps); |
|
} |
|
|
|
class GHT_Guil_Full : public GHT_Pos |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
GHT_Guil_Full(); |
|
|
|
protected: |
|
void releaseImpl(); |
|
|
|
void processTempl(); |
|
void processImage(); |
|
|
|
struct Feature |
|
{ |
|
GpuMat p1_pos; |
|
GpuMat p1_theta; |
|
GpuMat p2_pos; |
|
|
|
GpuMat d12; |
|
|
|
GpuMat r1; |
|
GpuMat r2; |
|
|
|
GpuMat sizes; |
|
int maxSize; |
|
|
|
void create(int levels, int maxCapacity, bool isTempl); |
|
void release(); |
|
}; |
|
|
|
typedef void (*set_func_t)(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2); |
|
typedef void (*build_func_t)(const unsigned int* coordList, const float* thetaList, int pointsCount, |
|
int* sizes, int maxSize, |
|
float xi, float angleEpsilon, int levels, |
|
float2 center, float maxDist); |
|
|
|
void buildFeatureList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Feature& features, |
|
set_func_t set_func, build_func_t build_func, bool isTempl, Point2d center = Point2d()); |
|
|
|
void calcOrientation(); |
|
void calcScale(double angle); |
|
void calcPosition(double angle, int angleVotes, double scale, int scaleVotes); |
|
|
|
double xi; |
|
int levels; |
|
double angleEpsilon; |
|
|
|
double minAngle; |
|
double maxAngle; |
|
double angleStep; |
|
int angleThresh; |
|
|
|
double minScale; |
|
double maxScale; |
|
double scaleStep; |
|
int scaleThresh; |
|
|
|
double dp; |
|
int posThresh; |
|
|
|
Feature templFeatures; |
|
Feature imageFeatures; |
|
|
|
std::vector< std::pair<double, int> > angles; |
|
std::vector< std::pair<double, int> > scales; |
|
|
|
GpuMat hist; |
|
std::vector<int> h_buf; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(GHT_Guil_Full, "GeneralizedHough_GPU.POSITION_SCALE_ROTATION", |
|
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0, |
|
"Minimum distance between the centers of the detected objects."); |
|
obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0, |
|
"Maximal size of inner buffers."); |
|
obj.info()->addParam(obj, "xi", obj.xi, false, 0, 0, |
|
"Angle difference in degrees between two points in feature."); |
|
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0, |
|
"Feature table levels."); |
|
obj.info()->addParam(obj, "angleEpsilon", obj.angleEpsilon, false, 0, 0, |
|
"Maximal difference between angles that treated as equal."); |
|
obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0, |
|
"Minimal rotation angle to detect in degrees."); |
|
obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0, |
|
"Maximal rotation angle to detect in degrees."); |
|
obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0, |
|
"Angle step in degrees."); |
|
obj.info()->addParam(obj, "angleThresh", obj.angleThresh, false, 0, 0, |
|
"Angle threshold."); |
|
obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0, |
|
"Minimal scale to detect."); |
|
obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0, |
|
"Maximal scale to detect."); |
|
obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0, |
|
"Scale step."); |
|
obj.info()->addParam(obj, "scaleThresh", obj.scaleThresh, false, 0, 0, |
|
"Scale threshold."); |
|
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0, |
|
"Inverse ratio of the accumulator resolution to the image resolution."); |
|
obj.info()->addParam(obj, "posThresh", obj.posThresh, false, 0, 0, |
|
"Position threshold.")); |
|
|
|
GHT_Guil_Full::GHT_Guil_Full() |
|
{ |
|
maxSize = 1000; |
|
xi = 90.0; |
|
levels = 360; |
|
angleEpsilon = 1.0; |
|
|
|
minAngle = 0.0; |
|
maxAngle = 360.0; |
|
angleStep = 1.0; |
|
angleThresh = 15000; |
|
|
|
minScale = 0.5; |
|
maxScale = 2.0; |
|
scaleStep = 0.05; |
|
scaleThresh = 1000; |
|
|
|
dp = 1.0; |
|
posThresh = 100; |
|
} |
|
|
|
void GHT_Guil_Full::releaseImpl() |
|
{ |
|
GHT_Pos::releaseImpl(); |
|
|
|
templFeatures.release(); |
|
imageFeatures.release(); |
|
|
|
releaseVector(angles); |
|
releaseVector(scales); |
|
|
|
hist.release(); |
|
releaseVector(h_buf); |
|
} |
|
|
|
void GHT_Guil_Full::processTempl() |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
buildFeatureList(templEdges, templDx, templDy, templFeatures, |
|
GHT_Guil_Full_setTemplFeatures, GHT_Guil_Full_buildTemplFeatureList_gpu, |
|
true, templCenter); |
|
|
|
h_buf.resize(templFeatures.sizes.cols); |
|
cudaSafeCall( cudaMemcpy(&h_buf[0], templFeatures.sizes.data, h_buf.size() * sizeof(int), cudaMemcpyDeviceToHost) ); |
|
templFeatures.maxSize = *max_element(h_buf.begin(), h_buf.end()); |
|
} |
|
|
|
void GHT_Guil_Full::processImage() |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
CV_Assert(levels > 0); |
|
CV_Assert(templFeatures.sizes.cols == levels + 1); |
|
CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0); |
|
CV_Assert(angleStep > 0.0 && angleStep < 360.0); |
|
CV_Assert(angleThresh > 0); |
|
CV_Assert(minScale > 0.0 && minScale < maxScale); |
|
CV_Assert(scaleStep > 0.0); |
|
CV_Assert(scaleThresh > 0); |
|
CV_Assert(dp > 0.0); |
|
CV_Assert(posThresh > 0); |
|
|
|
const double iAngleStep = 1.0 / angleStep; |
|
const int angleRange = cvCeil((maxAngle - minAngle) * iAngleStep); |
|
|
|
const double iScaleStep = 1.0 / scaleStep; |
|
const int scaleRange = cvCeil((maxScale - minScale) * iScaleStep); |
|
|
|
const double idp = 1.0 / dp; |
|
const int histRows = cvCeil(imageSize.height * idp); |
|
const int histCols = cvCeil(imageSize.width * idp); |
|
|
|
ensureSizeIsEnough(histRows + 2, std::max(angleRange + 1, std::max(scaleRange + 1, histCols + 2)), CV_32SC1, hist); |
|
h_buf.resize(std::max(angleRange + 1, scaleRange + 1)); |
|
|
|
ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf); |
|
|
|
buildFeatureList(imageEdges, imageDx, imageDy, imageFeatures, |
|
GHT_Guil_Full_setImageFeatures, GHT_Guil_Full_buildImageFeatureList_gpu, |
|
false); |
|
|
|
calcOrientation(); |
|
|
|
for (size_t i = 0; i < angles.size(); ++i) |
|
{ |
|
const double angle = angles[i].first; |
|
const int angleVotes = angles[i].second; |
|
|
|
calcScale(angle); |
|
|
|
for (size_t j = 0; j < scales.size(); ++j) |
|
{ |
|
const double scale = scales[j].first; |
|
const int scaleVotes = scales[j].second; |
|
|
|
calcPosition(angle, angleVotes, scale, scaleVotes); |
|
} |
|
} |
|
} |
|
|
|
void GHT_Guil_Full::Feature::create(int levels, int maxCapacity, bool isTempl) |
|
{ |
|
if (!isTempl) |
|
{ |
|
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, p1_pos); |
|
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, p2_pos); |
|
} |
|
|
|
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC1, p1_theta); |
|
|
|
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC1, d12); |
|
|
|
if (isTempl) |
|
{ |
|
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, r1); |
|
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, r2); |
|
} |
|
|
|
ensureSizeIsEnough(1, levels + 1, CV_32SC1, sizes); |
|
sizes.setTo(Scalar::all(0)); |
|
|
|
maxSize = 0; |
|
} |
|
|
|
void GHT_Guil_Full::Feature::release() |
|
{ |
|
p1_pos.release(); |
|
p1_theta.release(); |
|
p2_pos.release(); |
|
|
|
d12.release(); |
|
|
|
r1.release(); |
|
r2.release(); |
|
|
|
sizes.release(); |
|
|
|
maxSize = 0; |
|
} |
|
|
|
void GHT_Guil_Full::buildFeatureList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Feature& features, |
|
set_func_t set_func, build_func_t build_func, bool isTempl, Point2d center) |
|
{ |
|
CV_Assert(levels > 0); |
|
|
|
const double maxDist = sqrt((double) templSize.width * templSize.width + templSize.height * templSize.height) * maxScale; |
|
|
|
features.create(levels, maxSize, isTempl); |
|
set_func(features.p1_pos, features.p1_theta, features.p2_pos, features.d12, features.r1, features.r2); |
|
|
|
buildEdgePointList(edges, dx, dy); |
|
|
|
if (edgePointList.cols > 0) |
|
{ |
|
build_func(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols, |
|
features.sizes.ptr<int>(), maxSize, (float)xi, (float)angleEpsilon, levels, make_float2((float)center.x, (float)center.y), (float)maxDist); |
|
} |
|
} |
|
|
|
void GHT_Guil_Full::calcOrientation() |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
const double iAngleStep = 1.0 / angleStep; |
|
const int angleRange = cvCeil((maxAngle - minAngle) * iAngleStep); |
|
|
|
hist.setTo(Scalar::all(0)); |
|
GHT_Guil_Full_calcOHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0), |
|
hist.ptr<int>(), (float)minAngle, (float)maxAngle, (float)angleStep, angleRange, levels, templFeatures.maxSize); |
|
cudaSafeCall( cudaMemcpy(&h_buf[0], hist.data, h_buf.size() * sizeof(int), cudaMemcpyDeviceToHost) ); |
|
|
|
angles.clear(); |
|
|
|
for (int n = 0; n < angleRange; ++n) |
|
{ |
|
if (h_buf[n] >= angleThresh) |
|
{ |
|
const double angle = minAngle + n * angleStep; |
|
angles.push_back(std::make_pair(angle, h_buf[n])); |
|
} |
|
} |
|
} |
|
|
|
void GHT_Guil_Full::calcScale(double angle) |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
const double iScaleStep = 1.0 / scaleStep; |
|
const int scaleRange = cvCeil((maxScale - minScale) * iScaleStep); |
|
|
|
hist.setTo(Scalar::all(0)); |
|
GHT_Guil_Full_calcSHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0), |
|
hist.ptr<int>(), (float)angle, (float)angleEpsilon, (float)minScale, (float)maxScale, (float)iScaleStep, scaleRange, levels, templFeatures.maxSize); |
|
cudaSafeCall( cudaMemcpy(&h_buf[0], hist.data, h_buf.size() * sizeof(int), cudaMemcpyDeviceToHost) ); |
|
|
|
scales.clear(); |
|
|
|
for (int s = 0; s < scaleRange; ++s) |
|
{ |
|
if (h_buf[s] >= scaleThresh) |
|
{ |
|
const double scale = minScale + s * scaleStep; |
|
scales.push_back(std::make_pair(scale, h_buf[s])); |
|
} |
|
} |
|
} |
|
|
|
void GHT_Guil_Full::calcPosition(double angle, int angleVotes, double scale, int scaleVotes) |
|
{ |
|
using namespace cv::gpu::device::hough; |
|
|
|
hist.setTo(Scalar::all(0)); |
|
GHT_Guil_Full_calcPHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0), |
|
hist,(float) (float)angle, (float)angleEpsilon, (float)scale, (float)dp, levels, templFeatures.maxSize); |
|
|
|
posCount = GHT_Guil_Full_findPosInHist_gpu(hist, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), |
|
posCount, maxSize, (float)angle, angleVotes, (float)scale, scaleVotes, (float)dp, posThresh); |
|
} |
|
} |
|
|
|
Ptr<GeneralizedHough_GPU> cv::gpu::GeneralizedHough_GPU::create(int method) |
|
{ |
|
switch (method) |
|
{ |
|
case GHT_POSITION: |
|
CV_Assert( !GHT_Ballard_Pos_info_auto.name().empty() ); |
|
return new GHT_Ballard_Pos(); |
|
|
|
case (GHT_POSITION | GHT_SCALE): |
|
CV_Assert( !GHT_Ballard_PosScale_info_auto.name().empty() ); |
|
return new GHT_Ballard_PosScale(); |
|
|
|
case (GHT_POSITION | GHT_ROTATION): |
|
CV_Assert( !GHT_Ballard_PosRotation_info_auto.name().empty() ); |
|
return new GHT_Ballard_PosRotation(); |
|
|
|
case (GHT_POSITION | GHT_SCALE | GHT_ROTATION): |
|
CV_Assert( !GHT_Guil_Full_info_auto.name().empty() ); |
|
return new GHT_Guil_Full(); |
|
} |
|
|
|
CV_Error(CV_StsBadArg, "Unsupported method"); |
|
return Ptr<GeneralizedHough_GPU>(); |
|
} |
|
|
|
cv::gpu::GeneralizedHough_GPU::~GeneralizedHough_GPU() |
|
{ |
|
} |
|
|
|
void cv::gpu::GeneralizedHough_GPU::setTemplate(const GpuMat& templ, int cannyThreshold, Point templCenter) |
|
{ |
|
CV_Assert(templ.type() == CV_8UC1); |
|
CV_Assert(cannyThreshold > 0); |
|
|
|
ensureSizeIsEnough(templ.size(), CV_8UC1, edges_); |
|
Canny(templ, cannyBuf_, edges_, cannyThreshold / 2, cannyThreshold); |
|
|
|
if (templCenter == Point(-1, -1)) |
|
templCenter = Point(templ.cols / 2, templ.rows / 2); |
|
|
|
setTemplateImpl(edges_, cannyBuf_.dx, cannyBuf_.dy, templCenter); |
|
} |
|
|
|
void cv::gpu::GeneralizedHough_GPU::setTemplate(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter) |
|
{ |
|
if (templCenter == Point(-1, -1)) |
|
templCenter = Point(edges.cols / 2, edges.rows / 2); |
|
|
|
setTemplateImpl(edges, dx, dy, templCenter); |
|
} |
|
|
|
void cv::gpu::GeneralizedHough_GPU::detect(const GpuMat& image, GpuMat& positions, int cannyThreshold) |
|
{ |
|
CV_Assert(image.type() == CV_8UC1); |
|
CV_Assert(cannyThreshold > 0); |
|
|
|
ensureSizeIsEnough(image.size(), CV_8UC1, edges_); |
|
Canny(image, cannyBuf_, edges_, cannyThreshold / 2, cannyThreshold); |
|
|
|
detectImpl(edges_, cannyBuf_.dx, cannyBuf_.dy, positions); |
|
} |
|
|
|
void cv::gpu::GeneralizedHough_GPU::detect(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions) |
|
{ |
|
detectImpl(edges, dx, dy, positions); |
|
} |
|
|
|
void cv::gpu::GeneralizedHough_GPU::download(const GpuMat& d_positions, OutputArray h_positions_, OutputArray h_votes_) |
|
{ |
|
if (d_positions.empty()) |
|
{ |
|
h_positions_.release(); |
|
if (h_votes_.needed()) |
|
h_votes_.release(); |
|
return; |
|
} |
|
|
|
CV_Assert(d_positions.rows == 2 && d_positions.type() == CV_32FC4); |
|
|
|
h_positions_.create(1, d_positions.cols, CV_32FC4); |
|
Mat h_positions = h_positions_.getMat(); |
|
d_positions.row(0).download(h_positions); |
|
|
|
if (h_votes_.needed()) |
|
{ |
|
h_votes_.create(1, d_positions.cols, CV_32SC3); |
|
Mat h_votes = h_votes_.getMat(); |
|
GpuMat d_votes(1, d_positions.cols, CV_32SC3, const_cast<int3*>(d_positions.ptr<int3>(1))); |
|
d_votes.download(h_votes); |
|
} |
|
} |
|
|
|
void cv::gpu::GeneralizedHough_GPU::release() |
|
{ |
|
edges_.release(); |
|
cannyBuf_.release(); |
|
releaseImpl(); |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|