Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1943 lines
71 KiB
1943 lines
71 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_ML_HPP__ |
|
#define __OPENCV_ML_HPP__ |
|
|
|
// disable deprecation warning which appears in VisualStudio 8.0 |
|
#if _MSC_VER >= 1400 |
|
#pragma warning( disable : 4996 ) |
|
#endif |
|
|
|
#ifndef SKIP_INCLUDES |
|
|
|
#include "opencv2/core/core.hpp" |
|
#include <limits.h> |
|
|
|
#if defined WIN32 || defined _WIN32 || defined WIN64 || defined _WIN64 |
|
#include <windows.h> |
|
#endif |
|
|
|
#else // SKIP_INCLUDES |
|
|
|
#if defined WIN32 || defined _WIN32 || defined WIN64 || defined _WIN64 |
|
#define CV_CDECL __cdecl |
|
#define CV_STDCALL __stdcall |
|
#else |
|
#define CV_CDECL |
|
#define CV_STDCALL |
|
#endif |
|
|
|
#ifndef CV_EXTERN_C |
|
#ifdef __cplusplus |
|
#define CV_EXTERN_C extern "C" |
|
#define CV_DEFAULT(val) = val |
|
#else |
|
#define CV_EXTERN_C |
|
#define CV_DEFAULT(val) |
|
#endif |
|
#endif |
|
|
|
#ifndef CV_EXTERN_C_FUNCPTR |
|
#ifdef __cplusplus |
|
#define CV_EXTERN_C_FUNCPTR(x) extern "C" { typedef x; } |
|
#else |
|
#define CV_EXTERN_C_FUNCPTR(x) typedef x |
|
#endif |
|
#endif |
|
|
|
#ifndef CV_INLINE |
|
#if defined __cplusplus |
|
#define CV_INLINE inline |
|
#elif (defined WIN32 || defined _WIN32 || defined WIN64 || defined _WIN64) && !defined __GNUC__ |
|
#define CV_INLINE __inline |
|
#else |
|
#define CV_INLINE static |
|
#endif |
|
#endif /* CV_INLINE */ |
|
|
|
#if (defined WIN32 || defined _WIN32 || defined WIN64 || defined _WIN64) && defined CVAPI_EXPORTS |
|
#define CV_EXPORTS __declspec(dllexport) |
|
#else |
|
#define CV_EXPORTS |
|
#endif |
|
|
|
#ifndef CVAPI |
|
#define CVAPI(rettype) CV_EXTERN_C CV_EXPORTS rettype CV_CDECL |
|
#endif |
|
|
|
#endif // SKIP_INCLUDES |
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
// Apple defines a check() macro somewhere in the debug headers |
|
// that interferes with a method definiton in this header |
|
#undef check |
|
|
|
/****************************************************************************************\ |
|
* Main struct definitions * |
|
\****************************************************************************************/ |
|
|
|
/* log(2*PI) */ |
|
#define CV_LOG2PI (1.8378770664093454835606594728112) |
|
|
|
/* columns of <trainData> matrix are training samples */ |
|
#define CV_COL_SAMPLE 0 |
|
|
|
/* rows of <trainData> matrix are training samples */ |
|
#define CV_ROW_SAMPLE 1 |
|
|
|
#define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE) |
|
|
|
struct CvVectors |
|
{ |
|
int type; |
|
int dims, count; |
|
CvVectors* next; |
|
union |
|
{ |
|
uchar** ptr; |
|
float** fl; |
|
double** db; |
|
} data; |
|
}; |
|
|
|
#if 0 |
|
/* A structure, representing the lattice range of statmodel parameters. |
|
It is used for optimizing statmodel parameters by cross-validation method. |
|
The lattice is logarithmic, so <step> must be greater then 1. */ |
|
typedef struct CvParamLattice |
|
{ |
|
double min_val; |
|
double max_val; |
|
double step; |
|
} |
|
CvParamLattice; |
|
|
|
CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val, |
|
double log_step ) |
|
{ |
|
CvParamLattice pl; |
|
pl.min_val = MIN( min_val, max_val ); |
|
pl.max_val = MAX( min_val, max_val ); |
|
pl.step = MAX( log_step, 1. ); |
|
return pl; |
|
} |
|
|
|
CV_INLINE CvParamLattice cvDefaultParamLattice( void ) |
|
{ |
|
CvParamLattice pl = {0,0,0}; |
|
return pl; |
|
} |
|
#endif |
|
|
|
/* Variable type */ |
|
#define CV_VAR_NUMERICAL 0 |
|
#define CV_VAR_ORDERED 0 |
|
#define CV_VAR_CATEGORICAL 1 |
|
|
|
#define CV_TYPE_NAME_ML_SVM "opencv-ml-svm" |
|
#define CV_TYPE_NAME_ML_KNN "opencv-ml-knn" |
|
#define CV_TYPE_NAME_ML_NBAYES "opencv-ml-bayesian" |
|
#define CV_TYPE_NAME_ML_EM "opencv-ml-em" |
|
#define CV_TYPE_NAME_ML_BOOSTING "opencv-ml-boost-tree" |
|
#define CV_TYPE_NAME_ML_TREE "opencv-ml-tree" |
|
#define CV_TYPE_NAME_ML_ANN_MLP "opencv-ml-ann-mlp" |
|
#define CV_TYPE_NAME_ML_CNN "opencv-ml-cnn" |
|
#define CV_TYPE_NAME_ML_RTREES "opencv-ml-random-trees" |
|
|
|
#define CV_TRAIN_ERROR 0 |
|
#define CV_TEST_ERROR 1 |
|
|
|
class CV_EXPORTS CvStatModel |
|
{ |
|
public: |
|
CvStatModel(); |
|
virtual ~CvStatModel(); |
|
|
|
virtual void clear(); |
|
|
|
virtual void save( const char* filename, const char* name=0 ) const; |
|
virtual void load( const char* filename, const char* name=0 ); |
|
|
|
virtual void write( CvFileStorage* storage, const char* name ) const; |
|
virtual void read( CvFileStorage* storage, CvFileNode* node ); |
|
|
|
protected: |
|
const char* default_model_name; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Normal Bayes Classifier * |
|
\****************************************************************************************/ |
|
|
|
/* The structure, representing the grid range of statmodel parameters. |
|
It is used for optimizing statmodel accuracy by varying model parameters, |
|
the accuracy estimate being computed by cross-validation. |
|
The grid is logarithmic, so <step> must be greater then 1. */ |
|
|
|
class CvMLData; |
|
|
|
struct CV_EXPORTS CvParamGrid |
|
{ |
|
// SVM params type |
|
enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 }; |
|
|
|
CvParamGrid() |
|
{ |
|
min_val = max_val = step = 0; |
|
} |
|
|
|
CvParamGrid( double _min_val, double _max_val, double log_step ) |
|
{ |
|
min_val = _min_val; |
|
max_val = _max_val; |
|
step = log_step; |
|
} |
|
//CvParamGrid( int param_id ); |
|
bool check() const; |
|
|
|
double min_val; |
|
double max_val; |
|
double step; |
|
}; |
|
|
|
class CV_EXPORTS CvNormalBayesClassifier : public CvStatModel |
|
{ |
|
public: |
|
CvNormalBayesClassifier(); |
|
virtual ~CvNormalBayesClassifier(); |
|
|
|
CvNormalBayesClassifier( const CvMat* _train_data, const CvMat* _responses, |
|
const CvMat* _var_idx=0, const CvMat* _sample_idx=0 ); |
|
|
|
virtual bool train( const CvMat* _train_data, const CvMat* _responses, |
|
const CvMat* _var_idx = 0, const CvMat* _sample_idx=0, bool update=false ); |
|
|
|
virtual float predict( const CvMat* _samples, CvMat* results=0 ) const; |
|
virtual void clear(); |
|
|
|
#ifndef SWIG |
|
CvNormalBayesClassifier( const cv::Mat& _train_data, const cv::Mat& _responses, |
|
const cv::Mat& _var_idx=cv::Mat(), const cv::Mat& _sample_idx=cv::Mat() ); |
|
virtual bool train( const cv::Mat& _train_data, const cv::Mat& _responses, |
|
const cv::Mat& _var_idx = cv::Mat(), const cv::Mat& _sample_idx=cv::Mat(), |
|
bool update=false ); |
|
virtual float predict( const cv::Mat& _samples, cv::Mat* results=0 ) const; |
|
#endif |
|
|
|
virtual void write( CvFileStorage* storage, const char* name ) const; |
|
virtual void read( CvFileStorage* storage, CvFileNode* node ); |
|
|
|
protected: |
|
int var_count, var_all; |
|
CvMat* var_idx; |
|
CvMat* cls_labels; |
|
CvMat** count; |
|
CvMat** sum; |
|
CvMat** productsum; |
|
CvMat** avg; |
|
CvMat** inv_eigen_values; |
|
CvMat** cov_rotate_mats; |
|
CvMat* c; |
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* K-Nearest Neighbour Classifier * |
|
\****************************************************************************************/ |
|
|
|
// k Nearest Neighbors |
|
class CV_EXPORTS CvKNearest : public CvStatModel |
|
{ |
|
public: |
|
|
|
CvKNearest(); |
|
virtual ~CvKNearest(); |
|
|
|
CvKNearest( const CvMat* _train_data, const CvMat* _responses, |
|
const CvMat* _sample_idx=0, bool _is_regression=false, int max_k=32 ); |
|
|
|
virtual bool train( const CvMat* _train_data, const CvMat* _responses, |
|
const CvMat* _sample_idx=0, bool is_regression=false, |
|
int _max_k=32, bool _update_base=false ); |
|
|
|
virtual float find_nearest( const CvMat* _samples, int k, CvMat* results=0, |
|
const float** neighbors=0, CvMat* neighbor_responses=0, CvMat* dist=0 ) const; |
|
|
|
#ifndef SWIG |
|
CvKNearest( const cv::Mat& _train_data, const cv::Mat& _responses, |
|
const cv::Mat& _sample_idx=cv::Mat(), bool _is_regression=false, int max_k=32 ); |
|
|
|
virtual bool train( const cv::Mat& _train_data, const cv::Mat& _responses, |
|
const cv::Mat& _sample_idx=cv::Mat(), bool is_regression=false, |
|
int _max_k=32, bool _update_base=false ); |
|
|
|
virtual float find_nearest( const cv::Mat& _samples, int k, cv::Mat* results=0, |
|
const float** neighbors=0, |
|
cv::Mat* neighbor_responses=0, |
|
cv::Mat* dist=0 ) const; |
|
#endif |
|
|
|
virtual void clear(); |
|
int get_max_k() const; |
|
int get_var_count() const; |
|
int get_sample_count() const; |
|
bool is_regression() const; |
|
|
|
protected: |
|
|
|
virtual float write_results( int k, int k1, int start, int end, |
|
const float* neighbor_responses, const float* dist, CvMat* _results, |
|
CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const; |
|
|
|
virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end, |
|
float* neighbor_responses, const float** neighbors, float* dist ) const; |
|
|
|
|
|
int max_k, var_count; |
|
int total; |
|
bool regression; |
|
CvVectors* samples; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Support Vector Machines * |
|
\****************************************************************************************/ |
|
|
|
// SVM training parameters |
|
struct CV_EXPORTS CvSVMParams |
|
{ |
|
CvSVMParams(); |
|
CvSVMParams( int _svm_type, int _kernel_type, |
|
double _degree, double _gamma, double _coef0, |
|
double Cvalue, double _nu, double _p, |
|
CvMat* _class_weights, CvTermCriteria _term_crit ); |
|
|
|
int svm_type; |
|
int kernel_type; |
|
double degree; // for poly |
|
double gamma; // for poly/rbf/sigmoid |
|
double coef0; // for poly/sigmoid |
|
|
|
double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR |
|
double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR |
|
double p; // for CV_SVM_EPS_SVR |
|
CvMat* class_weights; // for CV_SVM_C_SVC |
|
CvTermCriteria term_crit; // termination criteria |
|
}; |
|
|
|
|
|
struct CV_EXPORTS CvSVMKernel |
|
{ |
|
typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results ); |
|
CvSVMKernel(); |
|
CvSVMKernel( const CvSVMParams* _params, Calc _calc_func ); |
|
virtual bool create( const CvSVMParams* _params, Calc _calc_func ); |
|
virtual ~CvSVMKernel(); |
|
|
|
virtual void clear(); |
|
virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results ); |
|
|
|
const CvSVMParams* params; |
|
Calc calc_func; |
|
|
|
virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results, |
|
double alpha, double beta ); |
|
|
|
virtual void calc_linear( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results ); |
|
virtual void calc_rbf( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results ); |
|
virtual void calc_poly( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results ); |
|
virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs, |
|
const float* another, float* results ); |
|
}; |
|
|
|
|
|
struct CvSVMKernelRow |
|
{ |
|
CvSVMKernelRow* prev; |
|
CvSVMKernelRow* next; |
|
float* data; |
|
}; |
|
|
|
|
|
struct CvSVMSolutionInfo |
|
{ |
|
double obj; |
|
double rho; |
|
double upper_bound_p; |
|
double upper_bound_n; |
|
double r; // for Solver_NU |
|
}; |
|
|
|
class CV_EXPORTS CvSVMSolver |
|
{ |
|
public: |
|
typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j ); |
|
typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed ); |
|
typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r ); |
|
|
|
CvSVMSolver(); |
|
|
|
CvSVMSolver( int count, int var_count, const float** samples, schar* y, |
|
int alpha_count, double* alpha, double Cp, double Cn, |
|
CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row, |
|
SelectWorkingSet select_working_set, CalcRho calc_rho ); |
|
virtual bool create( int count, int var_count, const float** samples, schar* y, |
|
int alpha_count, double* alpha, double Cp, double Cn, |
|
CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row, |
|
SelectWorkingSet select_working_set, CalcRho calc_rho ); |
|
virtual ~CvSVMSolver(); |
|
|
|
virtual void clear(); |
|
virtual bool solve_generic( CvSVMSolutionInfo& si ); |
|
|
|
virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y, |
|
double Cp, double Cn, CvMemStorage* storage, |
|
CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si ); |
|
virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y, |
|
CvMemStorage* storage, CvSVMKernel* kernel, |
|
double* alpha, CvSVMSolutionInfo& si ); |
|
virtual bool solve_one_class( int count, int var_count, const float** samples, |
|
CvMemStorage* storage, CvSVMKernel* kernel, |
|
double* alpha, CvSVMSolutionInfo& si ); |
|
|
|
virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y, |
|
CvMemStorage* storage, CvSVMKernel* kernel, |
|
double* alpha, CvSVMSolutionInfo& si ); |
|
|
|
virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y, |
|
CvMemStorage* storage, CvSVMKernel* kernel, |
|
double* alpha, CvSVMSolutionInfo& si ); |
|
|
|
virtual float* get_row_base( int i, bool* _existed ); |
|
virtual float* get_row( int i, float* dst ); |
|
|
|
int sample_count; |
|
int var_count; |
|
int cache_size; |
|
int cache_line_size; |
|
const float** samples; |
|
const CvSVMParams* params; |
|
CvMemStorage* storage; |
|
CvSVMKernelRow lru_list; |
|
CvSVMKernelRow* rows; |
|
|
|
int alpha_count; |
|
|
|
double* G; |
|
double* alpha; |
|
|
|
// -1 - lower bound, 0 - free, 1 - upper bound |
|
schar* alpha_status; |
|
|
|
schar* y; |
|
double* b; |
|
float* buf[2]; |
|
double eps; |
|
int max_iter; |
|
double C[2]; // C[0] == Cn, C[1] == Cp |
|
CvSVMKernel* kernel; |
|
|
|
SelectWorkingSet select_working_set_func; |
|
CalcRho calc_rho_func; |
|
GetRow get_row_func; |
|
|
|
virtual bool select_working_set( int& i, int& j ); |
|
virtual bool select_working_set_nu_svm( int& i, int& j ); |
|
virtual void calc_rho( double& rho, double& r ); |
|
virtual void calc_rho_nu_svm( double& rho, double& r ); |
|
|
|
virtual float* get_row_svc( int i, float* row, float* dst, bool existed ); |
|
virtual float* get_row_one_class( int i, float* row, float* dst, bool existed ); |
|
virtual float* get_row_svr( int i, float* row, float* dst, bool existed ); |
|
}; |
|
|
|
|
|
struct CvSVMDecisionFunc |
|
{ |
|
double rho; |
|
int sv_count; |
|
double* alpha; |
|
int* sv_index; |
|
}; |
|
|
|
|
|
// SVM model |
|
class CV_EXPORTS CvSVM : public CvStatModel |
|
{ |
|
public: |
|
// SVM type |
|
enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 }; |
|
|
|
// SVM kernel type |
|
enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3 }; |
|
|
|
// SVM params type |
|
enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 }; |
|
|
|
CvSVM(); |
|
virtual ~CvSVM(); |
|
|
|
CvSVM( const CvMat* _train_data, const CvMat* _responses, |
|
const CvMat* _var_idx=0, const CvMat* _sample_idx=0, |
|
CvSVMParams _params=CvSVMParams() ); |
|
|
|
virtual bool train( const CvMat* _train_data, const CvMat* _responses, |
|
const CvMat* _var_idx=0, const CvMat* _sample_idx=0, |
|
CvSVMParams _params=CvSVMParams() ); |
|
|
|
virtual bool train_auto( const CvMat* _train_data, const CvMat* _responses, |
|
const CvMat* _var_idx, const CvMat* _sample_idx, CvSVMParams _params, |
|
int k_fold = 10, |
|
CvParamGrid C_grid = get_default_grid(CvSVM::C), |
|
CvParamGrid gamma_grid = get_default_grid(CvSVM::GAMMA), |
|
CvParamGrid p_grid = get_default_grid(CvSVM::P), |
|
CvParamGrid nu_grid = get_default_grid(CvSVM::NU), |
|
CvParamGrid coef_grid = get_default_grid(CvSVM::COEF), |
|
CvParamGrid degree_grid = get_default_grid(CvSVM::DEGREE) ); |
|
|
|
virtual float predict( const CvMat* _sample, bool returnDFVal=false ) const; |
|
|
|
#ifndef SWIG |
|
CvSVM( const cv::Mat& _train_data, const cv::Mat& _responses, |
|
const cv::Mat& _var_idx=cv::Mat(), const cv::Mat& _sample_idx=cv::Mat(), |
|
CvSVMParams _params=CvSVMParams() ); |
|
|
|
virtual bool train( const cv::Mat& _train_data, const cv::Mat& _responses, |
|
const cv::Mat& _var_idx=cv::Mat(), const cv::Mat& _sample_idx=cv::Mat(), |
|
CvSVMParams _params=CvSVMParams() ); |
|
|
|
virtual bool train_auto( const cv::Mat& _train_data, const cv::Mat& _responses, |
|
const cv::Mat& _var_idx, const cv::Mat& _sample_idx, CvSVMParams _params, |
|
int k_fold = 10, |
|
CvParamGrid C_grid = get_default_grid(CvSVM::C), |
|
CvParamGrid gamma_grid = get_default_grid(CvSVM::GAMMA), |
|
CvParamGrid p_grid = get_default_grid(CvSVM::P), |
|
CvParamGrid nu_grid = get_default_grid(CvSVM::NU), |
|
CvParamGrid coef_grid = get_default_grid(CvSVM::COEF), |
|
CvParamGrid degree_grid = get_default_grid(CvSVM::DEGREE) ); |
|
virtual float predict( const cv::Mat& _sample, bool returnDFVal=false ) const; |
|
#endif |
|
|
|
virtual int get_support_vector_count() const; |
|
virtual const float* get_support_vector(int i) const; |
|
virtual CvSVMParams get_params() const { return params; }; |
|
virtual void clear(); |
|
|
|
static CvParamGrid get_default_grid( int param_id ); |
|
|
|
virtual void write( CvFileStorage* storage, const char* name ) const; |
|
virtual void read( CvFileStorage* storage, CvFileNode* node ); |
|
int get_var_count() const { return var_idx ? var_idx->cols : var_all; } |
|
|
|
protected: |
|
|
|
virtual bool set_params( const CvSVMParams& _params ); |
|
virtual bool train1( int sample_count, int var_count, const float** samples, |
|
const void* _responses, double Cp, double Cn, |
|
CvMemStorage* _storage, double* alpha, double& rho ); |
|
virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples, |
|
const CvMat* _responses, CvMemStorage* _storage, double* alpha ); |
|
virtual void create_kernel(); |
|
virtual void create_solver(); |
|
|
|
virtual float predict( const float* row_sample, int row_len, bool returnDFVal=false ) const; |
|
|
|
virtual void write_params( CvFileStorage* fs ) const; |
|
virtual void read_params( CvFileStorage* fs, CvFileNode* node ); |
|
|
|
CvSVMParams params; |
|
CvMat* class_labels; |
|
int var_all; |
|
float** sv; |
|
int sv_total; |
|
CvMat* var_idx; |
|
CvMat* class_weights; |
|
CvSVMDecisionFunc* decision_func; |
|
CvMemStorage* storage; |
|
|
|
CvSVMSolver* solver; |
|
CvSVMKernel* kernel; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Expectation - Maximization * |
|
\****************************************************************************************/ |
|
|
|
struct CV_EXPORTS CvEMParams |
|
{ |
|
CvEMParams() : nclusters(10), cov_mat_type(1/*CvEM::COV_MAT_DIAGONAL*/), |
|
start_step(0/*CvEM::START_AUTO_STEP*/), probs(0), weights(0), means(0), covs(0) |
|
{ |
|
term_crit=cvTermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON ); |
|
} |
|
|
|
CvEMParams( int _nclusters, int _cov_mat_type=1/*CvEM::COV_MAT_DIAGONAL*/, |
|
int _start_step=0/*CvEM::START_AUTO_STEP*/, |
|
CvTermCriteria _term_crit=cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON), |
|
const CvMat* _probs=0, const CvMat* _weights=0, const CvMat* _means=0, const CvMat** _covs=0 ) : |
|
nclusters(_nclusters), cov_mat_type(_cov_mat_type), start_step(_start_step), |
|
probs(_probs), weights(_weights), means(_means), covs(_covs), term_crit(_term_crit) |
|
{} |
|
|
|
int nclusters; |
|
int cov_mat_type; |
|
int start_step; |
|
const CvMat* probs; |
|
const CvMat* weights; |
|
const CvMat* means; |
|
const CvMat** covs; |
|
CvTermCriteria term_crit; |
|
}; |
|
|
|
|
|
class CV_EXPORTS CvEM : public CvStatModel |
|
{ |
|
public: |
|
// Type of covariation matrices |
|
enum { COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2 }; |
|
|
|
// The initial step |
|
enum { START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0 }; |
|
|
|
CvEM(); |
|
CvEM( const CvMat* samples, const CvMat* sample_idx=0, |
|
CvEMParams params=CvEMParams(), CvMat* labels=0 ); |
|
//CvEM (CvEMParams params, CvMat * means, CvMat ** covs, CvMat * weights, CvMat * probs, CvMat * log_weight_div_det, CvMat * inv_eigen_values, CvMat** cov_rotate_mats); |
|
|
|
virtual ~CvEM(); |
|
|
|
virtual bool train( const CvMat* samples, const CvMat* sample_idx=0, |
|
CvEMParams params=CvEMParams(), CvMat* labels=0 ); |
|
|
|
virtual float predict( const CvMat* sample, CvMat* probs ) const; |
|
|
|
#ifndef SWIG |
|
CvEM( const cv::Mat& samples, const cv::Mat& sample_idx=cv::Mat(), |
|
CvEMParams params=CvEMParams(), cv::Mat* labels=0 ); |
|
|
|
virtual bool train( const cv::Mat& samples, const cv::Mat& sample_idx=cv::Mat(), |
|
CvEMParams params=CvEMParams(), cv::Mat* labels=0 ); |
|
|
|
virtual float predict( const cv::Mat& sample, cv::Mat* probs ) const; |
|
#endif |
|
|
|
virtual void clear(); |
|
|
|
int get_nclusters() const; |
|
const CvMat* get_means() const; |
|
const CvMat** get_covs() const; |
|
const CvMat* get_weights() const; |
|
const CvMat* get_probs() const; |
|
|
|
inline double get_log_likelihood () const { return log_likelihood; }; |
|
|
|
// inline const CvMat * get_log_weight_div_det () const { return log_weight_div_det; }; |
|
// inline const CvMat * get_inv_eigen_values () const { return inv_eigen_values; }; |
|
// inline const CvMat ** get_cov_rotate_mats () const { return cov_rotate_mats; }; |
|
|
|
protected: |
|
|
|
virtual void set_params( const CvEMParams& params, |
|
const CvVectors& train_data ); |
|
virtual void init_em( const CvVectors& train_data ); |
|
virtual double run_em( const CvVectors& train_data ); |
|
virtual void init_auto( const CvVectors& samples ); |
|
virtual void kmeans( const CvVectors& train_data, int nclusters, |
|
CvMat* labels, CvTermCriteria criteria, |
|
const CvMat* means ); |
|
CvEMParams params; |
|
double log_likelihood; |
|
|
|
CvMat* means; |
|
CvMat** covs; |
|
CvMat* weights; |
|
CvMat* probs; |
|
|
|
CvMat* log_weight_div_det; |
|
CvMat* inv_eigen_values; |
|
CvMat** cov_rotate_mats; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Decision Tree * |
|
\****************************************************************************************/\ |
|
struct CvPair16u32s |
|
{ |
|
unsigned short* u; |
|
int* i; |
|
}; |
|
|
|
|
|
#define CV_DTREE_CAT_DIR(idx,subset) \ |
|
(2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1) |
|
|
|
struct CvDTreeSplit |
|
{ |
|
int var_idx; |
|
int condensed_idx; |
|
int inversed; |
|
float quality; |
|
CvDTreeSplit* next; |
|
union |
|
{ |
|
int subset[2]; |
|
struct |
|
{ |
|
float c; |
|
int split_point; |
|
} |
|
ord; |
|
}; |
|
}; |
|
|
|
|
|
struct CvDTreeNode |
|
{ |
|
int class_idx; |
|
int Tn; |
|
double value; |
|
|
|
CvDTreeNode* parent; |
|
CvDTreeNode* left; |
|
CvDTreeNode* right; |
|
|
|
CvDTreeSplit* split; |
|
|
|
int sample_count; |
|
int depth; |
|
int* num_valid; |
|
int offset; |
|
int buf_idx; |
|
double maxlr; |
|
|
|
// global pruning data |
|
int complexity; |
|
double alpha; |
|
double node_risk, tree_risk, tree_error; |
|
|
|
// cross-validation pruning data |
|
int* cv_Tn; |
|
double* cv_node_risk; |
|
double* cv_node_error; |
|
|
|
int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; } |
|
void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; } |
|
}; |
|
|
|
|
|
struct CV_EXPORTS CvDTreeParams |
|
{ |
|
int max_categories; |
|
int max_depth; |
|
int min_sample_count; |
|
int cv_folds; |
|
bool use_surrogates; |
|
bool use_1se_rule; |
|
bool truncate_pruned_tree; |
|
float regression_accuracy; |
|
const float* priors; |
|
|
|
CvDTreeParams() : max_categories(10), max_depth(INT_MAX), min_sample_count(10), |
|
cv_folds(10), use_surrogates(true), use_1se_rule(true), |
|
truncate_pruned_tree(true), regression_accuracy(0.01f), priors(0) |
|
{} |
|
|
|
CvDTreeParams( int _max_depth, int _min_sample_count, |
|
float _regression_accuracy, bool _use_surrogates, |
|
int _max_categories, int _cv_folds, |
|
bool _use_1se_rule, bool _truncate_pruned_tree, |
|
const float* _priors ) : |
|
max_categories(_max_categories), max_depth(_max_depth), |
|
min_sample_count(_min_sample_count), cv_folds (_cv_folds), |
|
use_surrogates(_use_surrogates), use_1se_rule(_use_1se_rule), |
|
truncate_pruned_tree(_truncate_pruned_tree), |
|
regression_accuracy(_regression_accuracy), |
|
priors(_priors) |
|
{} |
|
}; |
|
|
|
|
|
struct CV_EXPORTS CvDTreeTrainData |
|
{ |
|
CvDTreeTrainData(); |
|
CvDTreeTrainData( const CvMat* _train_data, int _tflag, |
|
const CvMat* _responses, const CvMat* _var_idx=0, |
|
const CvMat* _sample_idx=0, const CvMat* _var_type=0, |
|
const CvMat* _missing_mask=0, |
|
const CvDTreeParams& _params=CvDTreeParams(), |
|
bool _shared=false, bool _add_labels=false ); |
|
virtual ~CvDTreeTrainData(); |
|
|
|
virtual void set_data( const CvMat* _train_data, int _tflag, |
|
const CvMat* _responses, const CvMat* _var_idx=0, |
|
const CvMat* _sample_idx=0, const CvMat* _var_type=0, |
|
const CvMat* _missing_mask=0, |
|
const CvDTreeParams& _params=CvDTreeParams(), |
|
bool _shared=false, bool _add_labels=false, |
|
bool _update_data=false ); |
|
virtual void do_responses_copy(); |
|
|
|
virtual void get_vectors( const CvMat* _subsample_idx, |
|
float* values, uchar* missing, float* responses, bool get_class_idx=false ); |
|
|
|
virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx ); |
|
|
|
virtual void write_params( CvFileStorage* fs ) const; |
|
virtual void read_params( CvFileStorage* fs, CvFileNode* node ); |
|
|
|
// release all the data |
|
virtual void clear(); |
|
|
|
int get_num_classes() const; |
|
int get_var_type(int vi) const; |
|
int get_work_var_count() const {return work_var_count;} |
|
|
|
virtual const float* get_ord_responses( CvDTreeNode* n, float* values_buf, int* sample_indices_buf ); |
|
virtual const int* get_class_labels( CvDTreeNode* n, int* labels_buf ); |
|
virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf ); |
|
virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf ); |
|
virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf ); |
|
virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf, |
|
const float** ord_values, const int** sorted_indices, int* sample_indices_buf ); |
|
virtual int get_child_buf_idx( CvDTreeNode* n ); |
|
|
|
//////////////////////////////////// |
|
|
|
virtual bool set_params( const CvDTreeParams& params ); |
|
virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count, |
|
int storage_idx, int offset ); |
|
|
|
virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val, |
|
int split_point, int inversed, float quality ); |
|
virtual CvDTreeSplit* new_split_cat( int vi, float quality ); |
|
virtual void free_node_data( CvDTreeNode* node ); |
|
virtual void free_train_data(); |
|
virtual void free_node( CvDTreeNode* node ); |
|
|
|
int sample_count, var_all, var_count, max_c_count; |
|
int ord_var_count, cat_var_count, work_var_count; |
|
bool have_labels, have_priors; |
|
bool is_classifier; |
|
int tflag; |
|
|
|
const CvMat* train_data; |
|
const CvMat* responses; |
|
CvMat* responses_copy; // used in Boosting |
|
|
|
int buf_count, buf_size; |
|
bool shared; |
|
int is_buf_16u; |
|
|
|
CvMat* cat_count; |
|
CvMat* cat_ofs; |
|
CvMat* cat_map; |
|
|
|
CvMat* counts; |
|
CvMat* buf; |
|
CvMat* direction; |
|
CvMat* split_buf; |
|
|
|
CvMat* var_idx; |
|
CvMat* var_type; // i-th element = |
|
// k<0 - ordered |
|
// k>=0 - categorical, see k-th element of cat_* arrays |
|
CvMat* priors; |
|
CvMat* priors_mult; |
|
|
|
CvDTreeParams params; |
|
|
|
CvMemStorage* tree_storage; |
|
CvMemStorage* temp_storage; |
|
|
|
CvDTreeNode* data_root; |
|
|
|
CvSet* node_heap; |
|
CvSet* split_heap; |
|
CvSet* cv_heap; |
|
CvSet* nv_heap; |
|
|
|
CvRNG rng; |
|
}; |
|
|
|
class CvDTree; |
|
class CvForestTree; |
|
|
|
namespace cv |
|
{ |
|
struct DTreeBestSplitFinder; |
|
struct ForestTreeBestSplitFinder; |
|
} |
|
|
|
class CV_EXPORTS CvDTree : public CvStatModel |
|
{ |
|
public: |
|
CvDTree(); |
|
virtual ~CvDTree(); |
|
|
|
virtual bool train( const CvMat* _train_data, int _tflag, |
|
const CvMat* _responses, const CvMat* _var_idx=0, |
|
const CvMat* _sample_idx=0, const CvMat* _var_type=0, |
|
const CvMat* _missing_mask=0, |
|
CvDTreeParams params=CvDTreeParams() ); |
|
|
|
virtual bool train( CvMLData* _data, CvDTreeParams _params=CvDTreeParams() ); |
|
|
|
virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} |
|
|
|
virtual bool train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx ); |
|
|
|
virtual CvDTreeNode* predict( const CvMat* _sample, const CvMat* _missing_data_mask=0, |
|
bool preprocessed_input=false ) const; |
|
|
|
#ifndef SWIG |
|
virtual bool train( const cv::Mat& _train_data, int _tflag, |
|
const cv::Mat& _responses, const cv::Mat& _var_idx=cv::Mat(), |
|
const cv::Mat& _sample_idx=cv::Mat(), const cv::Mat& _var_type=cv::Mat(), |
|
const cv::Mat& _missing_mask=cv::Mat(), |
|
CvDTreeParams params=CvDTreeParams() ); |
|
|
|
virtual CvDTreeNode* predict( const cv::Mat& _sample, const cv::Mat& _missing_data_mask=cv::Mat(), |
|
bool preprocessed_input=false ) const; |
|
#endif |
|
|
|
virtual const CvMat* get_var_importance(); |
|
virtual void clear(); |
|
|
|
virtual void read( CvFileStorage* fs, CvFileNode* node ); |
|
virtual void write( CvFileStorage* fs, const char* name ) const; |
|
|
|
// special read & write methods for trees in the tree ensembles |
|
virtual void read( CvFileStorage* fs, CvFileNode* node, |
|
CvDTreeTrainData* data ); |
|
virtual void write( CvFileStorage* fs ) const; |
|
|
|
const CvDTreeNode* get_root() const; |
|
int get_pruned_tree_idx() const; |
|
CvDTreeTrainData* get_data(); |
|
|
|
protected: |
|
friend struct cv::DTreeBestSplitFinder; |
|
|
|
virtual bool do_train( const CvMat* _subsample_idx ); |
|
|
|
virtual void try_split_node( CvDTreeNode* n ); |
|
virtual void split_node_data( CvDTreeNode* n ); |
|
virtual CvDTreeSplit* find_best_split( CvDTreeNode* n ); |
|
virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); |
|
virtual double calc_node_dir( CvDTreeNode* node ); |
|
virtual void complete_node_dir( CvDTreeNode* node ); |
|
virtual void cluster_categories( const int* vectors, int vector_count, |
|
int var_count, int* sums, int k, int* cluster_labels ); |
|
|
|
virtual void calc_node_value( CvDTreeNode* node ); |
|
|
|
virtual void prune_cv(); |
|
virtual double update_tree_rnc( int T, int fold ); |
|
virtual int cut_tree( int T, int fold, double min_alpha ); |
|
virtual void free_prune_data(bool cut_tree); |
|
virtual void free_tree(); |
|
|
|
virtual void write_node( CvFileStorage* fs, CvDTreeNode* node ) const; |
|
virtual void write_split( CvFileStorage* fs, CvDTreeSplit* split ) const; |
|
virtual CvDTreeNode* read_node( CvFileStorage* fs, CvFileNode* node, CvDTreeNode* parent ); |
|
virtual CvDTreeSplit* read_split( CvFileStorage* fs, CvFileNode* node ); |
|
virtual void write_tree_nodes( CvFileStorage* fs ) const; |
|
virtual void read_tree_nodes( CvFileStorage* fs, CvFileNode* node ); |
|
|
|
CvDTreeNode* root; |
|
CvMat* var_importance; |
|
CvDTreeTrainData* data; |
|
|
|
public: |
|
int pruned_tree_idx; |
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* Random Trees Classifier * |
|
\****************************************************************************************/ |
|
|
|
class CvRTrees; |
|
|
|
class CV_EXPORTS CvForestTree: public CvDTree |
|
{ |
|
public: |
|
CvForestTree(); |
|
virtual ~CvForestTree(); |
|
|
|
virtual bool train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx, CvRTrees* forest ); |
|
|
|
virtual int get_var_count() const {return data ? data->var_count : 0;} |
|
virtual void read( CvFileStorage* fs, CvFileNode* node, CvRTrees* forest, CvDTreeTrainData* _data ); |
|
|
|
/* dummy methods to avoid warnings: BEGIN */ |
|
virtual bool train( const CvMat* _train_data, int _tflag, |
|
const CvMat* _responses, const CvMat* _var_idx=0, |
|
const CvMat* _sample_idx=0, const CvMat* _var_type=0, |
|
const CvMat* _missing_mask=0, |
|
CvDTreeParams params=CvDTreeParams() ); |
|
|
|
virtual bool train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx ); |
|
virtual void read( CvFileStorage* fs, CvFileNode* node ); |
|
virtual void read( CvFileStorage* fs, CvFileNode* node, |
|
CvDTreeTrainData* data ); |
|
/* dummy methods to avoid warnings: END */ |
|
|
|
protected: |
|
friend struct cv::ForestTreeBestSplitFinder; |
|
|
|
virtual CvDTreeSplit* find_best_split( CvDTreeNode* n ); |
|
CvRTrees* forest; |
|
}; |
|
|
|
|
|
struct CV_EXPORTS CvRTParams : public CvDTreeParams |
|
{ |
|
//Parameters for the forest |
|
bool calc_var_importance; // true <=> RF processes variable importance |
|
int nactive_vars; |
|
CvTermCriteria term_crit; |
|
|
|
CvRTParams() : CvDTreeParams( 5, 10, 0, false, 10, 0, false, false, 0 ), |
|
calc_var_importance(false), nactive_vars(0) |
|
{ |
|
term_crit = cvTermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 50, 0.1 ); |
|
} |
|
|
|
CvRTParams( int _max_depth, int _min_sample_count, |
|
float _regression_accuracy, bool _use_surrogates, |
|
int _max_categories, const float* _priors, bool _calc_var_importance, |
|
int _nactive_vars, int max_num_of_trees_in_the_forest, |
|
float forest_accuracy, int termcrit_type ) : |
|
CvDTreeParams( _max_depth, _min_sample_count, _regression_accuracy, |
|
_use_surrogates, _max_categories, 0, |
|
false, false, _priors ), |
|
calc_var_importance(_calc_var_importance), |
|
nactive_vars(_nactive_vars) |
|
{ |
|
term_crit = cvTermCriteria(termcrit_type, |
|
max_num_of_trees_in_the_forest, forest_accuracy); |
|
} |
|
}; |
|
|
|
|
|
class CV_EXPORTS CvRTrees : public CvStatModel |
|
{ |
|
public: |
|
CvRTrees(); |
|
virtual ~CvRTrees(); |
|
virtual bool train( const CvMat* _train_data, int _tflag, |
|
const CvMat* _responses, const CvMat* _var_idx=0, |
|
const CvMat* _sample_idx=0, const CvMat* _var_type=0, |
|
const CvMat* _missing_mask=0, |
|
CvRTParams params=CvRTParams() ); |
|
|
|
virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() ); |
|
virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const; |
|
virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const; |
|
|
|
#ifndef SWIG |
|
virtual bool train( const cv::Mat& _train_data, int _tflag, |
|
const cv::Mat& _responses, const cv::Mat& _var_idx=cv::Mat(), |
|
const cv::Mat& _sample_idx=cv::Mat(), const cv::Mat& _var_type=cv::Mat(), |
|
const cv::Mat& _missing_mask=cv::Mat(), |
|
CvRTParams params=CvRTParams() ); |
|
virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const; |
|
virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const; |
|
#endif |
|
|
|
virtual void clear(); |
|
|
|
virtual const CvMat* get_var_importance(); |
|
virtual float get_proximity( const CvMat* sample1, const CvMat* sample2, |
|
const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const; |
|
|
|
virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} |
|
|
|
virtual float get_train_error(); |
|
|
|
virtual void read( CvFileStorage* fs, CvFileNode* node ); |
|
virtual void write( CvFileStorage* fs, const char* name ) const; |
|
|
|
CvMat* get_active_var_mask(); |
|
CvRNG* get_rng(); |
|
|
|
int get_tree_count() const; |
|
CvForestTree* get_tree(int i) const; |
|
|
|
protected: |
|
|
|
virtual bool grow_forest( const CvTermCriteria term_crit ); |
|
|
|
// array of the trees of the forest |
|
CvForestTree** trees; |
|
CvDTreeTrainData* data; |
|
int ntrees; |
|
int nclasses; |
|
double oob_error; |
|
CvMat* var_importance; |
|
int nsamples; |
|
|
|
CvRNG rng; |
|
CvMat* active_var_mask; |
|
}; |
|
|
|
/****************************************************************************************\ |
|
* Extremely randomized trees Classifier * |
|
\****************************************************************************************/ |
|
struct CV_EXPORTS CvERTreeTrainData : public CvDTreeTrainData |
|
{ |
|
virtual void set_data( const CvMat* _train_data, int _tflag, |
|
const CvMat* _responses, const CvMat* _var_idx=0, |
|
const CvMat* _sample_idx=0, const CvMat* _var_type=0, |
|
const CvMat* _missing_mask=0, |
|
const CvDTreeParams& _params=CvDTreeParams(), |
|
bool _shared=false, bool _add_labels=false, |
|
bool _update_data=false ); |
|
virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* missing_buf, |
|
const float** ord_values, const int** missing, int* sample_buf = 0 ); |
|
virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf ); |
|
virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf ); |
|
virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf ); |
|
virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing, |
|
float* responses, bool get_class_idx=false ); |
|
virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx ); |
|
const CvMat* missing_mask; |
|
}; |
|
|
|
class CV_EXPORTS CvForestERTree : public CvForestTree |
|
{ |
|
protected: |
|
virtual double calc_node_dir( CvDTreeNode* node ); |
|
virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual void split_node_data( CvDTreeNode* n ); |
|
}; |
|
|
|
class CV_EXPORTS CvERTrees : public CvRTrees |
|
{ |
|
public: |
|
CvERTrees(); |
|
virtual ~CvERTrees(); |
|
virtual bool train( const CvMat* _train_data, int _tflag, |
|
const CvMat* _responses, const CvMat* _var_idx=0, |
|
const CvMat* _sample_idx=0, const CvMat* _var_type=0, |
|
const CvMat* _missing_mask=0, |
|
CvRTParams params=CvRTParams()); |
|
#ifndef SWIG |
|
virtual bool train( const cv::Mat& _train_data, int _tflag, |
|
const cv::Mat& _responses, const cv::Mat& _var_idx=cv::Mat(), |
|
const cv::Mat& _sample_idx=cv::Mat(), const cv::Mat& _var_type=cv::Mat(), |
|
const cv::Mat& _missing_mask=cv::Mat(), |
|
CvRTParams params=CvRTParams()); |
|
#endif |
|
virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() ); |
|
protected: |
|
virtual bool grow_forest( const CvTermCriteria term_crit ); |
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* Boosted tree classifier * |
|
\****************************************************************************************/ |
|
|
|
struct CV_EXPORTS CvBoostParams : public CvDTreeParams |
|
{ |
|
int boost_type; |
|
int weak_count; |
|
int split_criteria; |
|
double weight_trim_rate; |
|
|
|
CvBoostParams(); |
|
CvBoostParams( int boost_type, int weak_count, double weight_trim_rate, |
|
int max_depth, bool use_surrogates, const float* priors ); |
|
}; |
|
|
|
|
|
class CvBoost; |
|
|
|
class CV_EXPORTS CvBoostTree: public CvDTree |
|
{ |
|
public: |
|
CvBoostTree(); |
|
virtual ~CvBoostTree(); |
|
|
|
virtual bool train( CvDTreeTrainData* _train_data, |
|
const CvMat* subsample_idx, CvBoost* ensemble ); |
|
|
|
virtual void scale( double s ); |
|
virtual void read( CvFileStorage* fs, CvFileNode* node, |
|
CvBoost* ensemble, CvDTreeTrainData* _data ); |
|
virtual void clear(); |
|
|
|
/* dummy methods to avoid warnings: BEGIN */ |
|
virtual bool train( const CvMat* _train_data, int _tflag, |
|
const CvMat* _responses, const CvMat* _var_idx=0, |
|
const CvMat* _sample_idx=0, const CvMat* _var_type=0, |
|
const CvMat* _missing_mask=0, |
|
CvDTreeParams params=CvDTreeParams() ); |
|
virtual bool train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx ); |
|
|
|
virtual void read( CvFileStorage* fs, CvFileNode* node ); |
|
virtual void read( CvFileStorage* fs, CvFileNode* node, |
|
CvDTreeTrainData* data ); |
|
/* dummy methods to avoid warnings: END */ |
|
|
|
protected: |
|
|
|
virtual void try_split_node( CvDTreeNode* n ); |
|
virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, |
|
float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); |
|
virtual void calc_node_value( CvDTreeNode* n ); |
|
virtual double calc_node_dir( CvDTreeNode* n ); |
|
|
|
CvBoost* ensemble; |
|
}; |
|
|
|
|
|
class CV_EXPORTS CvBoost : public CvStatModel |
|
{ |
|
public: |
|
// Boosting type |
|
enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 }; |
|
|
|
// Splitting criteria |
|
enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 }; |
|
|
|
CvBoost(); |
|
virtual ~CvBoost(); |
|
|
|
CvBoost( const CvMat* _train_data, int _tflag, |
|
const CvMat* _responses, const CvMat* _var_idx=0, |
|
const CvMat* _sample_idx=0, const CvMat* _var_type=0, |
|
const CvMat* _missing_mask=0, |
|
CvBoostParams params=CvBoostParams() ); |
|
|
|
virtual bool train( const CvMat* _train_data, int _tflag, |
|
const CvMat* _responses, const CvMat* _var_idx=0, |
|
const CvMat* _sample_idx=0, const CvMat* _var_type=0, |
|
const CvMat* _missing_mask=0, |
|
CvBoostParams params=CvBoostParams(), |
|
bool update=false ); |
|
|
|
virtual bool train( CvMLData* data, |
|
CvBoostParams params=CvBoostParams(), |
|
bool update=false ); |
|
|
|
virtual float predict( const CvMat* _sample, const CvMat* _missing=0, |
|
CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ, |
|
bool raw_mode=false, bool return_sum=false ) const; |
|
|
|
#ifndef SWIG |
|
CvBoost( const cv::Mat& _train_data, int _tflag, |
|
const cv::Mat& _responses, const cv::Mat& _var_idx=cv::Mat(), |
|
const cv::Mat& _sample_idx=cv::Mat(), const cv::Mat& _var_type=cv::Mat(), |
|
const cv::Mat& _missing_mask=cv::Mat(), |
|
CvBoostParams params=CvBoostParams() ); |
|
|
|
virtual bool train( const cv::Mat& _train_data, int _tflag, |
|
const cv::Mat& _responses, const cv::Mat& _var_idx=cv::Mat(), |
|
const cv::Mat& _sample_idx=cv::Mat(), const cv::Mat& _var_type=cv::Mat(), |
|
const cv::Mat& _missing_mask=cv::Mat(), |
|
CvBoostParams params=CvBoostParams(), |
|
bool update=false ); |
|
|
|
virtual float predict( const cv::Mat& _sample, const cv::Mat& _missing=cv::Mat(), |
|
cv::Mat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ, |
|
bool raw_mode=false, bool return_sum=false ) const; |
|
#endif |
|
|
|
virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} |
|
|
|
virtual void prune( CvSlice slice ); |
|
|
|
virtual void clear(); |
|
|
|
virtual void write( CvFileStorage* storage, const char* name ) const; |
|
virtual void read( CvFileStorage* storage, CvFileNode* node ); |
|
virtual const CvMat* get_active_vars(bool absolute_idx=true); |
|
|
|
CvSeq* get_weak_predictors(); |
|
|
|
CvMat* get_weights(); |
|
CvMat* get_subtree_weights(); |
|
CvMat* get_weak_response(); |
|
const CvBoostParams& get_params() const; |
|
const CvDTreeTrainData* get_data() const; |
|
|
|
protected: |
|
|
|
virtual bool set_params( const CvBoostParams& _params ); |
|
virtual void update_weights( CvBoostTree* tree ); |
|
virtual void trim_weights(); |
|
virtual void write_params( CvFileStorage* fs ) const; |
|
virtual void read_params( CvFileStorage* fs, CvFileNode* node ); |
|
|
|
CvDTreeTrainData* data; |
|
CvBoostParams params; |
|
CvSeq* weak; |
|
|
|
CvMat* active_vars; |
|
CvMat* active_vars_abs; |
|
bool have_active_cat_vars; |
|
|
|
CvMat* orig_response; |
|
CvMat* sum_response; |
|
CvMat* weak_eval; |
|
CvMat* subsample_mask; |
|
CvMat* weights; |
|
CvMat* subtree_weights; |
|
bool have_subsample; |
|
}; |
|
|
|
|
|
/****************************************************************************************\ |
|
* Artificial Neural Networks (ANN) * |
|
\****************************************************************************************/ |
|
|
|
/////////////////////////////////// Multi-Layer Perceptrons ////////////////////////////// |
|
|
|
struct CV_EXPORTS CvANN_MLP_TrainParams |
|
{ |
|
CvANN_MLP_TrainParams(); |
|
CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method, |
|
double param1, double param2=0 ); |
|
~CvANN_MLP_TrainParams(); |
|
|
|
enum { BACKPROP=0, RPROP=1 }; |
|
|
|
CvTermCriteria term_crit; |
|
int train_method; |
|
|
|
// backpropagation parameters |
|
double bp_dw_scale, bp_moment_scale; |
|
|
|
// rprop parameters |
|
double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max; |
|
}; |
|
|
|
|
|
class CV_EXPORTS CvANN_MLP : public CvStatModel |
|
{ |
|
public: |
|
CvANN_MLP(); |
|
CvANN_MLP( const CvMat* _layer_sizes, |
|
int _activ_func=SIGMOID_SYM, |
|
double _f_param1=0, double _f_param2=0 ); |
|
|
|
virtual ~CvANN_MLP(); |
|
|
|
virtual void create( const CvMat* _layer_sizes, |
|
int _activ_func=SIGMOID_SYM, |
|
double _f_param1=0, double _f_param2=0 ); |
|
|
|
virtual int train( const CvMat* _inputs, const CvMat* _outputs, |
|
const CvMat* _sample_weights, const CvMat* _sample_idx=0, |
|
CvANN_MLP_TrainParams _params = CvANN_MLP_TrainParams(), |
|
int flags=0 ); |
|
virtual float predict( const CvMat* _inputs, CvMat* _outputs ) const; |
|
|
|
#ifndef SWIG |
|
CvANN_MLP( const cv::Mat& _layer_sizes, |
|
int _activ_func=SIGMOID_SYM, |
|
double _f_param1=0, double _f_param2=0 ); |
|
|
|
virtual void create( const cv::Mat& _layer_sizes, |
|
int _activ_func=SIGMOID_SYM, |
|
double _f_param1=0, double _f_param2=0 ); |
|
|
|
virtual int train( const cv::Mat& _inputs, const cv::Mat& _outputs, |
|
const cv::Mat& _sample_weights, const cv::Mat& _sample_idx=cv::Mat(), |
|
CvANN_MLP_TrainParams _params = CvANN_MLP_TrainParams(), |
|
int flags=0 ); |
|
|
|
virtual float predict( const cv::Mat& _inputs, cv::Mat& _outputs ) const; |
|
#endif |
|
|
|
virtual void clear(); |
|
|
|
// possible activation functions |
|
enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 }; |
|
|
|
// available training flags |
|
enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 }; |
|
|
|
virtual void read( CvFileStorage* fs, CvFileNode* node ); |
|
virtual void write( CvFileStorage* storage, const char* name ) const; |
|
|
|
int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; } |
|
const CvMat* get_layer_sizes() { return layer_sizes; } |
|
double* get_weights(int layer) |
|
{ |
|
return layer_sizes && weights && |
|
(unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0; |
|
} |
|
|
|
protected: |
|
|
|
virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs, |
|
const CvMat* _sample_weights, const CvMat* _sample_idx, |
|
CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags ); |
|
|
|
// sequential random backpropagation |
|
virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw ); |
|
|
|
// RPROP algorithm |
|
virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw ); |
|
|
|
virtual void calc_activ_func( CvMat* xf, const double* bias ) const; |
|
virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const; |
|
virtual void set_activ_func( int _activ_func=SIGMOID_SYM, |
|
double _f_param1=0, double _f_param2=0 ); |
|
virtual void init_weights(); |
|
virtual void scale_input( const CvMat* _src, CvMat* _dst ) const; |
|
virtual void scale_output( const CvMat* _src, CvMat* _dst ) const; |
|
virtual void calc_input_scale( const CvVectors* vecs, int flags ); |
|
virtual void calc_output_scale( const CvVectors* vecs, int flags ); |
|
|
|
virtual void write_params( CvFileStorage* fs ) const; |
|
virtual void read_params( CvFileStorage* fs, CvFileNode* node ); |
|
|
|
CvMat* layer_sizes; |
|
CvMat* wbuf; |
|
CvMat* sample_weights; |
|
double** weights; |
|
double f_param1, f_param2; |
|
double min_val, max_val, min_val1, max_val1; |
|
int activ_func; |
|
int max_count, max_buf_sz; |
|
CvANN_MLP_TrainParams params; |
|
CvRNG rng; |
|
}; |
|
|
|
#if 0 |
|
/****************************************************************************************\ |
|
* Convolutional Neural Network * |
|
\****************************************************************************************/ |
|
typedef struct CvCNNLayer CvCNNLayer; |
|
typedef struct CvCNNetwork CvCNNetwork; |
|
|
|
#define CV_CNN_LEARN_RATE_DECREASE_HYPERBOLICALLY 1 |
|
#define CV_CNN_LEARN_RATE_DECREASE_SQRT_INV 2 |
|
#define CV_CNN_LEARN_RATE_DECREASE_LOG_INV 3 |
|
|
|
#define CV_CNN_GRAD_ESTIM_RANDOM 0 |
|
#define CV_CNN_GRAD_ESTIM_BY_WORST_IMG 1 |
|
|
|
#define ICV_CNN_LAYER 0x55550000 |
|
#define ICV_CNN_CONVOLUTION_LAYER 0x00001111 |
|
#define ICV_CNN_SUBSAMPLING_LAYER 0x00002222 |
|
#define ICV_CNN_FULLCONNECT_LAYER 0x00003333 |
|
|
|
#define ICV_IS_CNN_LAYER( layer ) \ |
|
( ((layer) != NULL) && ((((CvCNNLayer*)(layer))->flags & CV_MAGIC_MASK)\ |
|
== ICV_CNN_LAYER )) |
|
|
|
#define ICV_IS_CNN_CONVOLUTION_LAYER( layer ) \ |
|
( (ICV_IS_CNN_LAYER( layer )) && (((CvCNNLayer*) (layer))->flags \ |
|
& ~CV_MAGIC_MASK) == ICV_CNN_CONVOLUTION_LAYER ) |
|
|
|
#define ICV_IS_CNN_SUBSAMPLING_LAYER( layer ) \ |
|
( (ICV_IS_CNN_LAYER( layer )) && (((CvCNNLayer*) (layer))->flags \ |
|
& ~CV_MAGIC_MASK) == ICV_CNN_SUBSAMPLING_LAYER ) |
|
|
|
#define ICV_IS_CNN_FULLCONNECT_LAYER( layer ) \ |
|
( (ICV_IS_CNN_LAYER( layer )) && (((CvCNNLayer*) (layer))->flags \ |
|
& ~CV_MAGIC_MASK) == ICV_CNN_FULLCONNECT_LAYER ) |
|
|
|
typedef void (CV_CDECL *CvCNNLayerForward) |
|
( CvCNNLayer* layer, const CvMat* input, CvMat* output ); |
|
|
|
typedef void (CV_CDECL *CvCNNLayerBackward) |
|
( CvCNNLayer* layer, int t, const CvMat* X, const CvMat* dE_dY, CvMat* dE_dX ); |
|
|
|
typedef void (CV_CDECL *CvCNNLayerRelease) |
|
(CvCNNLayer** layer); |
|
|
|
typedef void (CV_CDECL *CvCNNetworkAddLayer) |
|
(CvCNNetwork* network, CvCNNLayer* layer); |
|
|
|
typedef void (CV_CDECL *CvCNNetworkRelease) |
|
(CvCNNetwork** network); |
|
|
|
#define CV_CNN_LAYER_FIELDS() \ |
|
/* Indicator of the layer's type */ \ |
|
int flags; \ |
|
\ |
|
/* Number of input images */ \ |
|
int n_input_planes; \ |
|
/* Height of each input image */ \ |
|
int input_height; \ |
|
/* Width of each input image */ \ |
|
int input_width; \ |
|
\ |
|
/* Number of output images */ \ |
|
int n_output_planes; \ |
|
/* Height of each output image */ \ |
|
int output_height; \ |
|
/* Width of each output image */ \ |
|
int output_width; \ |
|
\ |
|
/* Learning rate at the first iteration */ \ |
|
float init_learn_rate; \ |
|
/* Dynamics of learning rate decreasing */ \ |
|
int learn_rate_decrease_type; \ |
|
/* Trainable weights of the layer (including bias) */ \ |
|
/* i-th row is a set of weights of the i-th output plane */ \ |
|
CvMat* weights; \ |
|
\ |
|
CvCNNLayerForward forward; \ |
|
CvCNNLayerBackward backward; \ |
|
CvCNNLayerRelease release; \ |
|
/* Pointers to the previous and next layers in the network */ \ |
|
CvCNNLayer* prev_layer; \ |
|
CvCNNLayer* next_layer |
|
|
|
typedef struct CvCNNLayer |
|
{ |
|
CV_CNN_LAYER_FIELDS(); |
|
}CvCNNLayer; |
|
|
|
typedef struct CvCNNConvolutionLayer |
|
{ |
|
CV_CNN_LAYER_FIELDS(); |
|
// Kernel size (height and width) for convolution. |
|
int K; |
|
// connections matrix, (i,j)-th element is 1 iff there is a connection between |
|
// i-th plane of the current layer and j-th plane of the previous layer; |
|
// (i,j)-th element is equal to 0 otherwise |
|
CvMat *connect_mask; |
|
// value of the learning rate for updating weights at the first iteration |
|
}CvCNNConvolutionLayer; |
|
|
|
typedef struct CvCNNSubSamplingLayer |
|
{ |
|
CV_CNN_LAYER_FIELDS(); |
|
// ratio between the heights (or widths - ratios are supposed to be equal) |
|
// of the input and output planes |
|
int sub_samp_scale; |
|
// amplitude of sigmoid activation function |
|
float a; |
|
// scale parameter of sigmoid activation function |
|
float s; |
|
// exp2ssumWX = exp(2<s>*(bias+w*(x1+...+x4))), where x1,...x4 are some elements of X |
|
// - is the vector used in computing of the activation function in backward |
|
CvMat* exp2ssumWX; |
|
// (x1+x2+x3+x4), where x1,...x4 are some elements of X |
|
// - is the vector used in computing of the activation function in backward |
|
CvMat* sumX; |
|
}CvCNNSubSamplingLayer; |
|
|
|
// Structure of the last layer. |
|
typedef struct CvCNNFullConnectLayer |
|
{ |
|
CV_CNN_LAYER_FIELDS(); |
|
// amplitude of sigmoid activation function |
|
float a; |
|
// scale parameter of sigmoid activation function |
|
float s; |
|
// exp2ssumWX = exp(2*<s>*(W*X)) - is the vector used in computing of the |
|
// activation function and it's derivative by the formulae |
|
// activ.func. = <a>(exp(2<s>WX)-1)/(exp(2<s>WX)+1) == <a> - 2<a>/(<exp2ssumWX> + 1) |
|
// (activ.func.)' = 4<a><s>exp(2<s>WX)/(exp(2<s>WX)+1)^2 |
|
CvMat* exp2ssumWX; |
|
}CvCNNFullConnectLayer; |
|
|
|
typedef struct CvCNNetwork |
|
{ |
|
int n_layers; |
|
CvCNNLayer* layers; |
|
CvCNNetworkAddLayer add_layer; |
|
CvCNNetworkRelease release; |
|
}CvCNNetwork; |
|
|
|
typedef struct CvCNNStatModel |
|
{ |
|
CV_STAT_MODEL_FIELDS(); |
|
CvCNNetwork* network; |
|
// etalons are allocated as rows, the i-th etalon has label cls_labeles[i] |
|
CvMat* etalons; |
|
// classes labels |
|
CvMat* cls_labels; |
|
}CvCNNStatModel; |
|
|
|
typedef struct CvCNNStatModelParams |
|
{ |
|
CV_STAT_MODEL_PARAM_FIELDS(); |
|
// network must be created by the functions cvCreateCNNetwork and <add_layer> |
|
CvCNNetwork* network; |
|
CvMat* etalons; |
|
// termination criteria |
|
int max_iter; |
|
int start_iter; |
|
int grad_estim_type; |
|
}CvCNNStatModelParams; |
|
|
|
CVAPI(CvCNNLayer*) cvCreateCNNConvolutionLayer( |
|
int n_input_planes, int input_height, int input_width, |
|
int n_output_planes, int K, |
|
float init_learn_rate, int learn_rate_decrease_type, |
|
CvMat* connect_mask CV_DEFAULT(0), CvMat* weights CV_DEFAULT(0) ); |
|
|
|
CVAPI(CvCNNLayer*) cvCreateCNNSubSamplingLayer( |
|
int n_input_planes, int input_height, int input_width, |
|
int sub_samp_scale, float a, float s, |
|
float init_learn_rate, int learn_rate_decrease_type, CvMat* weights CV_DEFAULT(0) ); |
|
|
|
CVAPI(CvCNNLayer*) cvCreateCNNFullConnectLayer( |
|
int n_inputs, int n_outputs, float a, float s, |
|
float init_learn_rate, int learning_type, CvMat* weights CV_DEFAULT(0) ); |
|
|
|
CVAPI(CvCNNetwork*) cvCreateCNNetwork( CvCNNLayer* first_layer ); |
|
|
|
CVAPI(CvStatModel*) cvTrainCNNClassifier( |
|
const CvMat* train_data, int tflag, |
|
const CvMat* responses, |
|
const CvStatModelParams* params, |
|
const CvMat* CV_DEFAULT(0), |
|
const CvMat* sample_idx CV_DEFAULT(0), |
|
const CvMat* CV_DEFAULT(0), const CvMat* CV_DEFAULT(0) ); |
|
|
|
/****************************************************************************************\ |
|
* Estimate classifiers algorithms * |
|
\****************************************************************************************/ |
|
typedef const CvMat* (CV_CDECL *CvStatModelEstimateGetMat) |
|
( const CvStatModel* estimateModel ); |
|
|
|
typedef int (CV_CDECL *CvStatModelEstimateNextStep) |
|
( CvStatModel* estimateModel ); |
|
|
|
typedef void (CV_CDECL *CvStatModelEstimateCheckClassifier) |
|
( CvStatModel* estimateModel, |
|
const CvStatModel* model, |
|
const CvMat* features, |
|
int sample_t_flag, |
|
const CvMat* responses ); |
|
|
|
typedef void (CV_CDECL *CvStatModelEstimateCheckClassifierEasy) |
|
( CvStatModel* estimateModel, |
|
const CvStatModel* model ); |
|
|
|
typedef float (CV_CDECL *CvStatModelEstimateGetCurrentResult) |
|
( const CvStatModel* estimateModel, |
|
float* correlation ); |
|
|
|
typedef void (CV_CDECL *CvStatModelEstimateReset) |
|
( CvStatModel* estimateModel ); |
|
|
|
//-------------------------------- Cross-validation -------------------------------------- |
|
#define CV_CROSS_VALIDATION_ESTIMATE_CLASSIFIER_PARAM_FIELDS() \ |
|
CV_STAT_MODEL_PARAM_FIELDS(); \ |
|
int k_fold; \ |
|
int is_regression; \ |
|
CvRNG* rng |
|
|
|
typedef struct CvCrossValidationParams |
|
{ |
|
CV_CROSS_VALIDATION_ESTIMATE_CLASSIFIER_PARAM_FIELDS(); |
|
} CvCrossValidationParams; |
|
|
|
#define CV_CROSS_VALIDATION_ESTIMATE_CLASSIFIER_FIELDS() \ |
|
CvStatModelEstimateGetMat getTrainIdxMat; \ |
|
CvStatModelEstimateGetMat getCheckIdxMat; \ |
|
CvStatModelEstimateNextStep nextStep; \ |
|
CvStatModelEstimateCheckClassifier check; \ |
|
CvStatModelEstimateGetCurrentResult getResult; \ |
|
CvStatModelEstimateReset reset; \ |
|
int is_regression; \ |
|
int folds_all; \ |
|
int samples_all; \ |
|
int* sampleIdxAll; \ |
|
int* folds; \ |
|
int max_fold_size; \ |
|
int current_fold; \ |
|
int is_checked; \ |
|
CvMat* sampleIdxTrain; \ |
|
CvMat* sampleIdxEval; \ |
|
CvMat* predict_results; \ |
|
int correct_results; \ |
|
int all_results; \ |
|
double sq_error; \ |
|
double sum_correct; \ |
|
double sum_predict; \ |
|
double sum_cc; \ |
|
double sum_pp; \ |
|
double sum_cp |
|
|
|
typedef struct CvCrossValidationModel |
|
{ |
|
CV_STAT_MODEL_FIELDS(); |
|
CV_CROSS_VALIDATION_ESTIMATE_CLASSIFIER_FIELDS(); |
|
} CvCrossValidationModel; |
|
|
|
CVAPI(CvStatModel*) |
|
cvCreateCrossValidationEstimateModel |
|
( int samples_all, |
|
const CvStatModelParams* estimateParams CV_DEFAULT(0), |
|
const CvMat* sampleIdx CV_DEFAULT(0) ); |
|
|
|
CVAPI(float) |
|
cvCrossValidation( const CvMat* trueData, |
|
int tflag, |
|
const CvMat* trueClasses, |
|
CvStatModel* (*createClassifier)( const CvMat*, |
|
int, |
|
const CvMat*, |
|
const CvStatModelParams*, |
|
const CvMat*, |
|
const CvMat*, |
|
const CvMat*, |
|
const CvMat* ), |
|
const CvStatModelParams* estimateParams CV_DEFAULT(0), |
|
const CvStatModelParams* trainParams CV_DEFAULT(0), |
|
const CvMat* compIdx CV_DEFAULT(0), |
|
const CvMat* sampleIdx CV_DEFAULT(0), |
|
CvStatModel** pCrValModel CV_DEFAULT(0), |
|
const CvMat* typeMask CV_DEFAULT(0), |
|
const CvMat* missedMeasurementMask CV_DEFAULT(0) ); |
|
#endif |
|
|
|
/****************************************************************************************\ |
|
* Auxilary functions declarations * |
|
\****************************************************************************************/ |
|
|
|
/* Generates <sample> from multivariate normal distribution, where <mean> - is an |
|
average row vector, <cov> - symmetric covariation matrix */ |
|
CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample, |
|
CvRNG* rng CV_DEFAULT(0) ); |
|
|
|
/* Generates sample from gaussian mixture distribution */ |
|
CVAPI(void) cvRandGaussMixture( CvMat* means[], |
|
CvMat* covs[], |
|
float weights[], |
|
int clsnum, |
|
CvMat* sample, |
|
CvMat* sampClasses CV_DEFAULT(0) ); |
|
|
|
#define CV_TS_CONCENTRIC_SPHERES 0 |
|
|
|
/* creates test set */ |
|
CVAPI(void) cvCreateTestSet( int type, CvMat** samples, |
|
int num_samples, |
|
int num_features, |
|
CvMat** responses, |
|
int num_classes, ... ); |
|
|
|
|
|
#endif |
|
|
|
/****************************************************************************************\ |
|
* Data * |
|
\****************************************************************************************/ |
|
|
|
#include <map> |
|
#include <string> |
|
#include <iostream> |
|
|
|
#define CV_COUNT 0 |
|
#define CV_PORTION 1 |
|
|
|
struct CV_EXPORTS CvTrainTestSplit |
|
{ |
|
public: |
|
CvTrainTestSplit(); |
|
CvTrainTestSplit( int _train_sample_count, bool _mix = true); |
|
CvTrainTestSplit( float _train_sample_portion, bool _mix = true); |
|
|
|
union |
|
{ |
|
int count; |
|
float portion; |
|
} train_sample_part; |
|
int train_sample_part_mode; |
|
|
|
union |
|
{ |
|
int *count; |
|
float *portion; |
|
} *class_part; |
|
int class_part_mode; |
|
|
|
bool mix; |
|
}; |
|
|
|
class CV_EXPORTS CvMLData |
|
{ |
|
public: |
|
CvMLData(); |
|
virtual ~CvMLData(); |
|
|
|
// returns: |
|
// 0 - OK |
|
// 1 - file can not be opened or is not correct |
|
int read_csv(const char* filename); |
|
|
|
const CvMat* get_values(){ return values; }; |
|
|
|
const CvMat* get_responses(); |
|
|
|
const CvMat* get_missing(){ return missing; }; |
|
|
|
void set_response_idx( int idx ); // old response become predictors, new response_idx = idx |
|
// if idx < 0 there will be no response |
|
int get_response_idx() { return response_idx; } |
|
|
|
const CvMat* get_train_sample_idx() { return train_sample_idx; }; |
|
const CvMat* get_test_sample_idx() { return test_sample_idx; }; |
|
void mix_train_and_test_idx(); |
|
void set_train_test_split( const CvTrainTestSplit * spl); |
|
|
|
const CvMat* get_var_idx(); |
|
void chahge_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor |
|
|
|
const CvMat* get_var_types(); |
|
int get_var_type( int var_idx ) { return var_types->data.ptr[var_idx]; }; |
|
// following 2 methods enable to change vars type |
|
// use these methods to assign CV_VAR_CATEGORICAL type for categorical variable |
|
// with numerical labels; in the other cases var types are correctly determined automatically |
|
void set_var_types( const char* str ); // str examples: |
|
// "ord[0-17],cat[18]", "ord[0,2,4,10-12], cat[1,3,5-9,13,14]", |
|
// "cat", "ord" (all vars are categorical/ordered) |
|
void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL } |
|
|
|
void set_delimiter( char ch ); |
|
char get_delimiter() { return delimiter; }; |
|
|
|
void set_miss_ch( char ch ); |
|
char get_miss_ch() { return miss_ch; }; |
|
|
|
protected: |
|
virtual void clear(); |
|
|
|
void str_to_flt_elem( const char* token, float& flt_elem, int& type); |
|
void free_train_test_idx(); |
|
|
|
char delimiter; |
|
char miss_ch; |
|
//char flt_separator; |
|
|
|
CvMat* values; |
|
CvMat* missing; |
|
CvMat* var_types; |
|
CvMat* var_idx_mask; |
|
|
|
CvMat* response_out; // header |
|
CvMat* var_idx_out; // mat |
|
CvMat* var_types_out; // mat |
|
|
|
int response_idx; |
|
|
|
int train_sample_count; |
|
bool mix; |
|
|
|
int total_class_count; |
|
std::map<std::string, int> *class_map; |
|
|
|
CvMat* train_sample_idx; |
|
CvMat* test_sample_idx; |
|
int* sample_idx; // data of train_sample_idx and test_sample_idx |
|
|
|
CvRNG rng; |
|
}; |
|
|
|
|
|
namespace cv |
|
{ |
|
|
|
typedef CvStatModel StatModel; |
|
typedef CvParamGrid ParamGrid; |
|
typedef CvNormalBayesClassifier NormalBayesClassifier; |
|
typedef CvKNearest KNearest; |
|
typedef CvSVMParams SVMParams; |
|
typedef CvSVMKernel SVMKernel; |
|
typedef CvSVMSolver SVMSolver; |
|
typedef CvSVM SVM; |
|
typedef CvEMParams EMParams; |
|
typedef CvEM ExpectationMaximization; |
|
typedef CvDTreeParams DTreeParams; |
|
typedef CvMLData TrainData; |
|
typedef CvDTree DecisionTree; |
|
typedef CvForestTree ForestTree; |
|
typedef CvRTParams RandomTreeParams; |
|
typedef CvRTrees RandomTrees; |
|
typedef CvERTreeTrainData ERTreeTRainData; |
|
typedef CvForestERTree ERTree; |
|
typedef CvERTrees ERTrees; |
|
typedef CvBoostParams BoostParams; |
|
typedef CvBoostTree BoostTree; |
|
typedef CvBoost Boost; |
|
typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams; |
|
typedef CvANN_MLP NeuralNet_MLP; |
|
|
|
} |
|
|
|
#endif |
|
/* End of file. */
|
|
|