Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

445 lines
17 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// This file is modified from the ficus (https://github.com/vpisarev/ficus/blob/master/lib/NN/OpConv.fx).
// Here is the original license:
/*
This file is a part of ficus language project.
See ficus/LICENSE for the licensing terms
*/
#include "../../precomp.hpp"
#include "fast_convolution.hpp"
#include "../layers_common.hpp"
namespace cv { namespace dnn {
static void depthWiseBlockConv2D(const float* wptr,
int kernel_h, int kernel_w,
int stride_h, int stride_w,
int dilation_h, int dilation_w,
int pad_t, int pad_l,
const float* biasptr, const float* relu,
const float* inptr_,
int height, int width,
float* outptr_,
int out_d, int outH, int outW, bool fusedAdd)
{
const float w00_ = wptr[0], w01_ = wptr[1], w02_ = wptr[2],
w10 = wptr[3], w11 = wptr[4], w12 = wptr[5],
w20_ = wptr[6], w21_ = wptr[7], w22_ = wptr[8];
const int outW1 = min(outW, (width - dilation_w*(kernel_w - 1) + pad_l)/stride_w);
float relu_coeff = relu ? relu[out_d] : 1.f, bias = biasptr[out_d];
for (int out_i = 0; out_i < outH; out_i++)
{
int in_i = out_i * stride_h - pad_t, out_j = 0;
const float* imgptr0 = inptr_ + in_i*width;
const float* imgptr1 = imgptr0 + dilation_h*width;
const float* imgptr2 = imgptr0 + (dilation_h*2)*width;
float out, w00 = w00_, w01 = w01_, w02 = w02_;
float w20 = w20_, w21 = w21_, w22 = w22_;
if (in_i < 0)
{
w00 = w01 = w02 = 0.f;
imgptr0 = imgptr1;
}
else if (in_i + dilation_h*(kernel_h-1) >= height)
{
w20 = w21 = w22 = 0.f;
imgptr2 = imgptr1;
}
float* outptr = outptr_ + out_i*outW;
if (pad_l > 0)
{
out = imgptr0[0]*w01 + imgptr0[dilation_w]*w02 +
imgptr1[0]*w11 + imgptr1[dilation_w]*w12 +
imgptr2[0]*w21 + imgptr2[dilation_w]*w22 + bias;
if (fusedAdd)
out += outptr[0];
if (relu)
out = out > 0.f ? out : out*relu_coeff;
outptr[0] = out;
out_j = 1;
}
#if CV_SIMD128
const int VEC_NLANES = 4;
if ((stride_w == 1 || (stride_w == 2 && dilation_w == 1)) && (outW1 - out_j) >= VEC_NLANES)
{
v_float32x4 vw00 = v_setall_f32(w00);
v_float32x4 vw01 = v_setall_f32(w01);
v_float32x4 vw02 = v_setall_f32(w02);
v_float32x4 vw10 = v_setall_f32(w10);
v_float32x4 vw11 = v_setall_f32(w11);
v_float32x4 vw12 = v_setall_f32(w12);
v_float32x4 vw20 = v_setall_f32(w20);
v_float32x4 vw21 = v_setall_f32(w21);
v_float32x4 vw22 = v_setall_f32(w22);
v_float32x4 z = v_setzero_f32();
v_float32x4 vbias = v_setall_f32(bias);
v_float32x4 vrc = v_setall_f32(relu_coeff);
if (stride_w == 1)
{
for (; out_j < outW1; out_j += VEC_NLANES)
{
// Tail processing.
if (out_j > outW1 - VEC_NLANES)
{
// If fusedAdd is true, what is stored in outptr is not a meaningless value,
// but the number being added. And we should avoid use tail processing in this case.
// Because the tail process will make some elements compute twice,
// which will lead to result errors.
if (fusedAdd)
break;
out_j = outW1 - VEC_NLANES;
}
int in_j = out_j * stride_w - pad_l;
v_float32x4 v00 = v_load(imgptr0 + in_j),
v01 = v_load(imgptr0 + in_j + dilation_w),
v02 = v_load(imgptr0 + in_j + dilation_w*2),
v10 = v_load(imgptr1 + in_j),
v11 = v_load(imgptr1 + in_j + dilation_w),
v12 = v_load(imgptr1 + in_j + dilation_w*2),
v20 = v_load(imgptr2 + in_j),
v21 = v_load(imgptr2 + in_j + dilation_w),
v22 = v_load(imgptr2 + in_j + dilation_w*2);
v_float32x4 vout = v00*vw00 + v01*vw01 + v02*vw02 +
v10*vw10 + v11*vw11 + v12*vw12 +
v20*vw20 + v21*vw21 + v22*vw22 + vbias;
if (fusedAdd)
vout = v_load(outptr + out_j) + vout;
if (relu)
vout = v_select(vout > z, vout, vout*vrc);
v_store(outptr + out_j, vout);
}
}
else // (stride_w == 2 && dilation_w == 1)
{
for (; out_j < outW1; out_j += VEC_NLANES)
{
// Tail processing.
if (out_j > outW1 - VEC_NLANES)
{
if (fusedAdd)
break;
out_j = outW1 - VEC_NLANES;
}
int in_j = out_j * stride_w - pad_l;
v_float32x4 v00, v01, v02, v10, v11, v12, v20, v21, v22, unused;
v_load_deinterleave(imgptr0 + in_j, v00, v01);
v_load_deinterleave(imgptr0 + in_j + 2, v02, unused);
v_load_deinterleave(imgptr1 + in_j, v10, v11);
v_load_deinterleave(imgptr1 + in_j + 2, v12, unused);
v_load_deinterleave(imgptr2 + in_j, v20, v21);
v_load_deinterleave(imgptr2 + in_j + 2, v22, unused);
v_float32x4 vout = v00 * vw00 + v01 * vw01 + v02 * vw02 +
v10 * vw10 + v11 * vw11 + v12 * vw12 +
v20 * vw20 + v21 * vw21 + v22 * vw22 + vbias;
if (fusedAdd)
vout = v_load(outptr + out_j) + vout;
if (relu)
vout = v_select(vout > z, vout, vout*vrc);
v_store(outptr + out_j, vout);
}
}
}
#endif
for (; out_j < outW1; out_j++)
{
int in_j = out_j * stride_w - pad_l;
out = imgptr0[in_j]*w00 + imgptr0[in_j + dilation_w]*w01 + imgptr0[in_j + dilation_w*2]*w02 +
imgptr1[in_j]*w10 + imgptr1[in_j + dilation_w]*w11 + imgptr1[in_j + dilation_w*2]*w12 +
imgptr2[in_j]*w20 + imgptr2[in_j + dilation_w]*w21 + imgptr2[in_j + dilation_w*2]*w22 + bias;
if (fusedAdd)
out += outptr[out_j];
if (relu)
out = out > 0.f ? out : out*relu_coeff;
outptr[out_j] = out;
}
for (; out_j < outW; out_j++ )
{
int in_j0 = out_j * stride_w - pad_l, in_j1 = in_j0 + dilation_w, in_j2 = in_j0 + dilation_w*2;
float s0 = 1.f, s1 = 1.f, s2 = 1.f;
if (in_j0 >= width)
{
in_j0 = 0;
s0 = 0.f;
}
if (in_j1 >= width)
{
in_j1 = 0;
s1 = 0.f;
}
if (in_j2 >= width)
{
in_j2 = 0;
s2 = 0.f;
}
out = imgptr0[in_j0]*w00*s0 + imgptr0[in_j1]*w01*s1 + imgptr0[in_j2]*w02*s2 +
imgptr1[in_j0]*w10*s0 + imgptr1[in_j1]*w11*s1 + imgptr1[in_j2]*w12*s2 +
imgptr2[in_j0]*w20*s0 + imgptr2[in_j1]*w21*s1 + imgptr2[in_j2]*w22*s2 + bias;
if (fusedAdd)
out += outptr[out_j];
if (relu)
out = out > 0.f ? out : out*relu_coeff;
outptr[out_j] = out;
}
}
}
static void depthWiseBlockConv1D(const float* wptr,
int kernel_w, int stride_w, int dilation_w, int pad_l,
const float* biasptr, const float* relu,
const float* inptr_, int width,
float* outptr_,
int out_d, int outW, bool fusedAdd)
{
const float w00_ = wptr[0], w01_ = wptr[1], w02_ = wptr[2];
const int outW1 = min(outW, (width - dilation_w * (kernel_w - 1) + pad_l)/stride_w);
float relu_coeff = relu ? relu[out_d] : 1.f, bias = biasptr[out_d];
int out_j = 0;
const float* imgptr0 = inptr_;
float out, w00 = w00_, w01 = w01_, w02 = w02_;
float* outptr = outptr_;
if (pad_l > 0)
{
out = imgptr0[0]*w01 + imgptr0[dilation_w]*w02 + bias;
if (fusedAdd)
out += outptr[0];
if (relu)
out = out > 0.f ? out : out*relu_coeff;
outptr[0] = out;
out_j = 1;
}
#if CV_SIMD128
const int VEC_NLANES = 4;
if ((stride_w == 1 || (stride_w == 2 && dilation_w == 1)) && (outW1 - out_j) >= VEC_NLANES)
{
v_float32x4 vw00 = v_setall_f32(w00);
v_float32x4 vw01 = v_setall_f32(w01);
v_float32x4 vw02 = v_setall_f32(w02);
v_float32x4 z = v_setzero_f32();
v_float32x4 vbias = v_setall_f32(bias);
v_float32x4 vrc = v_setall_f32(relu_coeff);
if( stride_w == 1 )
{
for( ; out_j < outW1; out_j += VEC_NLANES )
{
// Tail processing.
if (out_j + VEC_NLANES > outW1)
{
if (fusedAdd)
break;
out_j = outW1 - VEC_NLANES;
}
int in_j = out_j * stride_w - pad_l;
v_float32x4 v00 = v_load(imgptr0 + in_j),
v01 = v_load(imgptr0 + in_j + dilation_w),
v02 = v_load(imgptr0 + in_j + dilation_w*2);
v_float32x4 vout = v00*vw00 + v01*vw01 + v02*vw02 + vbias;
if (fusedAdd)
vout = v_load(outptr + out_j) + vout;
if (relu)
vout = v_select(vout > z, vout, vout*vrc);
v_store(outptr + out_j, vout);
}
}
else // (stride_w == 2 && dilation_w == 1)
{
for( ; out_j < outW1; out_j += VEC_NLANES )
{
// Tail processing.
if (out_j + VEC_NLANES > outW1)
{
if (fusedAdd)
break;
out_j = outW1 - VEC_NLANES;
}
int in_j = out_j * stride_w - pad_l;
v_float32x4 v00, v01, v02, unused;
v_load_deinterleave(imgptr0 + in_j, v00, v01);
v_load_deinterleave(imgptr0 + in_j + 2, v02, unused);
v_float32x4 vout = v00 * vw00 + v01 * vw01 + v02 * vw02 + vbias;
if (fusedAdd)
vout = v_load(outptr + out_j) + vout;
if (relu)
vout = v_select(vout > z, vout, vout*vrc);
v_store(outptr + out_j, vout);
}
}
}
#endif
for (; out_j < outW1; out_j++)
{
int in_j = out_j * stride_w - pad_l;
out = imgptr0[in_j]*w00 + imgptr0[in_j + dilation_w]*w01 + imgptr0[in_j + dilation_w*2]*w02 + bias;
if (fusedAdd)
out += outptr[out_j];
if (relu)
out = out > 0.f ? out : out*relu_coeff;
outptr[out_j] = out;
}
for (; out_j < outW; out_j++ )
{
int in_j0 = out_j * stride_w - pad_l, in_j1 = in_j0 + dilation_w, in_j2 = in_j0 + dilation_w*2;
float s0 = 1.f, s1 = 1.f, s2 = 1.f;
if (in_j0 >= width)
{
in_j0 = 0;
s0 = 0.f;
}
if (in_j1 >= width)
{
in_j1 = 0;
s1 = 0.f;
}
if (in_j2 >= width)
{
in_j2 = 0;
s2 = 0.f;
}
out = imgptr0[in_j0]*w00*s0 + imgptr0[in_j1]*w01*s1 + imgptr0[in_j2]*w02*s2 + bias;
if (fusedAdd)
out += outptr[out_j];
if (relu)
out = out > 0.f ? out : out*relu_coeff;
outptr[out_j] = out;
}
}
void runDepthwise(InputArray _input, OutputArray _output, const Ptr<FastConv>& conv, ActivationLayer* activ_,
const std::vector<float>& reluslope, bool fusedAdd)
{
Mat input = _input.getMat();
Mat output = _output.getMat();
MatShape inputShape = shape(input);
MatShape outputShape = shape(output);
CV_Assert(inputShape.size() == 3 || inputShape.size() == 4);
CV_Assert(inputShape.size() == outputShape.size());
int conv_dim = conv->conv_dim;
CV_Assert((conv_dim == CONV_2D || conv_dim == CONV_1D) &&
"DNN: Currently we do not support depth-wise for Convolution 3D!");
ActivationLayer* activ = reluslope.empty() ? activ_ : nullptr;
int N = inputShape[0], C = inputShape[1];
int Hi = conv_dim == CONV_1D ? 1 : inputShape[inputShape.size() - 2];
int Wi = inputShape[inputShape.size() - 1];
int K = conv->K, Hk = conv->Hk, Wk = conv->Wk;
int H0 = conv_dim == CONV_1D ? 1 : outputShape[outputShape.size() - 2];
int W0 = outputShape[outputShape.size() - 1];
int ngroups = conv->ngroups;
const size_t inp_planesize = (size_t) Hi * Wi;
const size_t out_planesize = (size_t) H0 * W0;
CV_Assert(ngroups > 1 && ngroups == K && ngroups == C);
int stride_h = conv->stride_h, stride_w = conv->stride_w;
int dilation_h = conv->dilation_h, dilation_w = conv->dilation_w;
int pad_top = conv->pad_top, pad_bottom = conv->pad_bottom;
int pad_left = conv->pad_left, pad_right = conv->pad_right;
int ksize = Hk * Wk;
const int VEC_NLANES = 32;
int padded_ksize = ((ksize + VEC_NLANES-1) / VEC_NLANES) * VEC_NLANES;
const float *inp = input.ptr<float>();
float *out = output.ptr<float>();
#if CV_TRY_AVX2 || CV_TRY_AVX || CV_TRY_RVV
// TODO: remove the following limitation, need change code in layers_common.simd.hpp.
bool canRunOpt = Wi >= 16 + dilation_w*(Wk - 1) && !fusedAdd;
#endif
std::vector<int> ofstab_(3 * ksize, 0);
int *ofstab = ofstab_.data();
int *yxtab = ofstab + ksize;
for (int k = 0; k < ksize; k++)
{
int y = k < ksize ? k / Wk : 0;
int x = k < ksize ? k % Wk : 0;
int dy = y * dilation_h, dx = x * dilation_w;
yxtab[k * 2] = dy;
yxtab[k * 2 + 1] = dx;
ofstab[k] = dy * Wi + dx;
}
const float *weights0 = conv->weightsBufPtr, *bias = conv->biasBuf.data();
const float* relu = reluslope.data();
CV_Assert(ksize > 1 || (pad_left == 0 && pad_right == 0 && pad_top == 0 && pad_bottom == 0));
parallel_for_(Range(0, N * C), [&](const Range &r0) {
for (int nc = r0.start; nc < r0.end; nc++)
{
int c = nc % C;
const float *inptr0 = inp + inp_planesize * nc;
float *outptr0 = out + out_planesize * nc;
const float *weights = weights0 + c * padded_ksize;
if (conv_dim == CONV_2D)
{
#if CV_TRY_AVX2
if(canRunOpt && conv->useAVX2)
opt_AVX2::fastDepthwiseConv(weights, Hk, Wk, stride_h, stride_w, dilation_h, dilation_w,
pad_top, pad_left, bias, relu, inptr0, Hi, Wi, outptr0, c, H0, W0);
else
#endif
#if CV_TRY_AVX
if(canRunOpt && conv->useAVX)
opt_AVX::fastDepthwiseConv(weights, Hk, Wk, stride_h, stride_w, dilation_h, dilation_w,
pad_top, pad_left, bias, relu, inptr0, Hi, Wi, outptr0, c, H0, W0);
else
#endif
#if CV_TRY_RVV
if(canRunOpt && conv->useRVV)
opt_RVV::fastDepthwiseConv(weights, Hk, Wk, stride_h, stride_w, dilation_h, dilation_w,
pad_top, pad_left, bias, relu, inptr0, Hi, Wi, outptr0, c, H0, W0);
else
#endif
depthWiseBlockConv2D(weights, Hk, Wk, stride_h, stride_w, dilation_h, dilation_w,
pad_top, pad_left, bias, relu, inptr0, Hi, Wi, outptr0, c, H0, W0, fusedAdd);
}
else // conv_dim == CONV_1D, spatial branch for depth-wise Conv1D.
{
depthWiseBlockConv1D(weights, Wk, stride_w, dilation_w, pad_left, bias, relu, inptr0, Wi, outptr0, c, W0, fusedAdd);
}
if (activ)
activ->forwardSlice(outptr0, outptr0, (int) out_planesize, out_planesize, c, c+1);
}});
}
}} // namespace cv::dnn