mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
157 lines
4.5 KiB
157 lines
4.5 KiB
#ifndef __OPENCV_MOTION_ESTIMATORS_HPP__ |
|
#define __OPENCV_MOTION_ESTIMATORS_HPP__ |
|
|
|
#include <vector> |
|
#include <opencv2/core/core.hpp> |
|
#include <opencv2/features2d/features2d.hpp> |
|
#include "util.hpp" |
|
|
|
struct ImageFeatures |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
cv::Mat descriptors; |
|
}; |
|
|
|
|
|
class FeaturesFinder |
|
{ |
|
public: |
|
virtual ~FeaturesFinder() {} |
|
void operator ()(const std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features) { find(images, features); } |
|
|
|
protected: |
|
virtual void find(const std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features) = 0; |
|
}; |
|
|
|
|
|
class SurfFeaturesFinder : public FeaturesFinder |
|
{ |
|
public: |
|
explicit SurfFeaturesFinder(bool gpu_hint = true); |
|
|
|
protected: |
|
void find(const std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features); |
|
|
|
cv::Ptr<FeaturesFinder> impl_; |
|
}; |
|
|
|
|
|
struct MatchesInfo |
|
{ |
|
MatchesInfo(); |
|
MatchesInfo(const MatchesInfo &other); |
|
const MatchesInfo& operator =(const MatchesInfo &other); |
|
|
|
int src_img_idx, dst_img_idx; // Optional images indices |
|
std::vector<cv::DMatch> matches; |
|
int num_inliers; // Number of geometrically consistent matches |
|
cv::Mat H; // Homography |
|
}; |
|
|
|
|
|
class FeaturesMatcher |
|
{ |
|
public: |
|
virtual ~FeaturesMatcher() {} |
|
void operator ()(const cv::Mat &img1, const ImageFeatures &features1, const cv::Mat &img2, const ImageFeatures &features2, |
|
MatchesInfo& matches_info) { match(img1, features1, img2, features2, matches_info); } |
|
void operator ()(const std::vector<cv::Mat> &images, const std::vector<ImageFeatures> &features, |
|
std::vector<MatchesInfo> &pairwise_matches); |
|
|
|
protected: |
|
virtual void match(const cv::Mat &img1, const ImageFeatures &features1, const cv::Mat &img2, const ImageFeatures &features2, |
|
MatchesInfo& matches_info) = 0; |
|
}; |
|
|
|
|
|
class BestOf2NearestMatcher : public FeaturesMatcher |
|
{ |
|
public: |
|
explicit BestOf2NearestMatcher(bool gpu_hint = true, float match_conf = 0.55f, int num_matches_thresh1 = 5, int num_matches_thresh2 = 5); |
|
|
|
protected: |
|
void match(const cv::Mat &img1, const ImageFeatures &features1, const cv::Mat &img2, const ImageFeatures &features2, |
|
MatchesInfo &matches_info); |
|
|
|
int num_matches_thresh1_; |
|
int num_matches_thresh2_; |
|
|
|
cv::Ptr<FeaturesMatcher> impl_; |
|
}; |
|
|
|
|
|
struct CameraParams |
|
{ |
|
CameraParams(); |
|
CameraParams(const CameraParams& other); |
|
const CameraParams& operator =(const CameraParams& other); |
|
|
|
double focal; |
|
cv::Mat M, t; |
|
}; |
|
|
|
|
|
class Estimator |
|
{ |
|
public: |
|
void operator ()(const std::vector<cv::Mat> &images, const std::vector<ImageFeatures> &features, |
|
const std::vector<MatchesInfo> &pairwise_matches, std::vector<CameraParams> &cameras) |
|
{ |
|
estimate(images, features, pairwise_matches, cameras); |
|
} |
|
|
|
protected: |
|
virtual void estimate(const std::vector<cv::Mat> &images, const std::vector<ImageFeatures> &features, |
|
const std::vector<MatchesInfo> &pairwise_matches, std::vector<CameraParams> &cameras) = 0; |
|
}; |
|
|
|
|
|
class HomographyBasedEstimator : public Estimator |
|
{ |
|
public: |
|
HomographyBasedEstimator() : is_focals_estimated_(false) {} |
|
bool isFocalsEstimated() const { return is_focals_estimated_; } |
|
|
|
private: |
|
void estimate(const std::vector<cv::Mat> &images, const std::vector<ImageFeatures> &features, |
|
const std::vector<MatchesInfo> &pairwise_matches, std::vector<CameraParams> &cameras); |
|
|
|
bool is_focals_estimated_; |
|
}; |
|
|
|
|
|
class BundleAdjuster : public Estimator |
|
{ |
|
public: |
|
enum { RAY_SPACE, FOCAL_RAY_SPACE }; |
|
|
|
BundleAdjuster(int cost_space = FOCAL_RAY_SPACE) : cost_space_(cost_space) {} |
|
|
|
private: |
|
void estimate(const std::vector<cv::Mat> &images, const std::vector<ImageFeatures> &features, |
|
const std::vector<MatchesInfo> &pairwise_matches, std::vector<CameraParams> &cameras); |
|
|
|
void calcError(cv::Mat &err); |
|
void calcJacobian(); |
|
|
|
int num_images_; |
|
int total_num_matches_; |
|
const cv::Mat *images_; |
|
const ImageFeatures *features_; |
|
const MatchesInfo *pairwise_matches_; |
|
cv::Mat cameras_; |
|
std::vector<std::pair<int,int> > edges_; |
|
|
|
int cost_space_; |
|
cv::Mat err_, err1_, err2_; |
|
cv::Mat J_; |
|
}; |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// Auxiliary functions |
|
|
|
void findMaxSpanningTree(int num_images, const std::vector<MatchesInfo> &pairwise_matches, |
|
Graph &span_tree, std::vector<int> ¢ers); |
|
|
|
#endif // __OPENCV_MOTION_ESTIMATORS_HPP__
|
|
|