mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
6.0 KiB
175 lines
6.0 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
static string getDataDir() { return TS::ptr()->get_data_path(); } |
|
|
|
static string getRubberWhaleFrame1() { return getDataDir() + "optflow/RubberWhale1.png"; } |
|
|
|
static string getRubberWhaleFrame2() { return getDataDir() + "optflow/RubberWhale2.png"; } |
|
|
|
static string getRubberWhaleGroundTruth() { return getDataDir() + "optflow/RubberWhale.flo"; } |
|
|
|
static bool isFlowCorrect(float u) { return !cvIsNaN(u) && (fabs(u) < 1e9); } |
|
|
|
static float calcRMSE(Mat flow1, Mat flow2) |
|
{ |
|
float sum = 0; |
|
int counter = 0; |
|
const int rows = flow1.rows; |
|
const int cols = flow1.cols; |
|
|
|
for (int y = 0; y < rows; ++y) |
|
{ |
|
for (int x = 0; x < cols; ++x) |
|
{ |
|
Vec2f flow1_at_point = flow1.at<Vec2f>(y, x); |
|
Vec2f flow2_at_point = flow2.at<Vec2f>(y, x); |
|
|
|
float u1 = flow1_at_point[0]; |
|
float v1 = flow1_at_point[1]; |
|
float u2 = flow2_at_point[0]; |
|
float v2 = flow2_at_point[1]; |
|
|
|
if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2)) |
|
{ |
|
sum += (u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2); |
|
counter++; |
|
} |
|
} |
|
} |
|
return (float)sqrt(sum / (1e-9 + counter)); |
|
} |
|
|
|
bool readRubberWhale(Mat &dst_frame_1, Mat &dst_frame_2, Mat &dst_GT) |
|
{ |
|
const string frame1_path = getRubberWhaleFrame1(); |
|
const string frame2_path = getRubberWhaleFrame2(); |
|
const string gt_flow_path = getRubberWhaleGroundTruth(); |
|
|
|
dst_frame_1 = imread(frame1_path); |
|
dst_frame_2 = imread(frame2_path); |
|
dst_GT = readOpticalFlow(gt_flow_path); |
|
|
|
if (dst_frame_1.empty() || dst_frame_2.empty() || dst_GT.empty()) |
|
return false; |
|
else |
|
return true; |
|
} |
|
|
|
TEST(DenseOpticalFlow_DIS, ReferenceAccuracy) |
|
{ |
|
Mat frame1, frame2, GT; |
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); |
|
int presets[] = {DISOpticalFlow::PRESET_ULTRAFAST, DISOpticalFlow::PRESET_FAST, DISOpticalFlow::PRESET_MEDIUM}; |
|
float target_RMSE[] = {0.86f, 0.74f, 0.49f}; |
|
cvtColor(frame1, frame1, COLOR_BGR2GRAY); |
|
cvtColor(frame2, frame2, COLOR_BGR2GRAY); |
|
|
|
Ptr<DenseOpticalFlow> algo; |
|
|
|
// iterate over presets: |
|
for (int i = 0; i < 3; i++) |
|
{ |
|
Mat flow; |
|
algo = DISOpticalFlow::create(presets[i]); |
|
algo->calc(frame1, frame2, flow); |
|
ASSERT_EQ(GT.rows, flow.rows); |
|
ASSERT_EQ(GT.cols, flow.cols); |
|
EXPECT_LE(calcRMSE(GT, flow), target_RMSE[i]); |
|
} |
|
} |
|
|
|
TEST(DenseOpticalFlow_DIS, InvalidImgSize_CoarsestLevelLessThanZero) |
|
{ |
|
cv::Ptr<cv::DISOpticalFlow> of = cv::DISOpticalFlow::create(); |
|
const int mat_size = 10; |
|
|
|
cv::Mat x(mat_size, mat_size, CV_8UC1, 42); |
|
cv::Mat y(mat_size, mat_size, CV_8UC1, 42); |
|
cv::Mat flow; |
|
|
|
ASSERT_THROW(of->calc(x, y, flow), cv::Exception); |
|
} |
|
|
|
// make sure that autoSelectPatchSizeAndScales() works properly. |
|
TEST(DenseOpticalFlow_DIS, InvalidImgSize_CoarsestLevelLessThanFinestLevel) |
|
{ |
|
cv::Ptr<cv::DISOpticalFlow> of = cv::DISOpticalFlow::create(); |
|
const int mat_size = 80; |
|
|
|
cv::Mat x(mat_size, mat_size, CV_8UC1, 42); |
|
cv::Mat y(mat_size, mat_size, CV_8UC1, 42); |
|
cv::Mat flow; |
|
|
|
of->calc(x, y, flow); |
|
|
|
ASSERT_EQ(flow.rows, mat_size); |
|
ASSERT_EQ(flow.cols, mat_size); |
|
} |
|
|
|
TEST(DenseOpticalFlow_VariationalRefinement, ReferenceAccuracy) |
|
{ |
|
Mat frame1, frame2, GT; |
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); |
|
float target_RMSE = 0.86f; |
|
cvtColor(frame1, frame1, COLOR_BGR2GRAY); |
|
cvtColor(frame2, frame2, COLOR_BGR2GRAY); |
|
|
|
Ptr<VariationalRefinement> var_ref; |
|
var_ref = VariationalRefinement::create(); |
|
var_ref->setAlpha(20.0f); |
|
var_ref->setDelta(5.0f); |
|
var_ref->setGamma(10.0f); |
|
var_ref->setSorIterations(25); |
|
var_ref->setFixedPointIterations(25); |
|
Mat flow(frame1.size(), CV_32FC2); |
|
flow.setTo(0.0f); |
|
var_ref->calc(frame1, frame2, flow); |
|
ASSERT_EQ(GT.rows, flow.rows); |
|
ASSERT_EQ(GT.cols, flow.cols); |
|
EXPECT_LE(calcRMSE(GT, flow), target_RMSE); |
|
} |
|
|
|
}} // namespace
|
|
|