mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
6.0 KiB
178 lines
6.0 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2019 Intel Corporation |
|
|
|
|
|
#ifdef HAVE_PLAIDML |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#include <stdexcept> |
|
#include <ade/util/iota_range.hpp> |
|
#include "logger.hpp" |
|
|
|
#include <opencv2/gapi/plaidml/core.hpp> |
|
#include <opencv2/gapi/plaidml/plaidml.hpp> |
|
|
|
namespace opencv_test |
|
{ |
|
|
|
inline cv::gapi::plaidml::config getConfig() |
|
{ |
|
auto read_var_from_env = [](const char* env) |
|
{ |
|
const char* raw = std::getenv(env); |
|
if (!raw) |
|
{ |
|
cv::util::throw_error(std::runtime_error(std::string(env) + " is't set")); |
|
} |
|
|
|
return std::string(raw); |
|
}; |
|
|
|
auto dev_id = read_var_from_env("PLAIDML_DEVICE"); |
|
auto trg_id = read_var_from_env("PLAIDML_TARGET"); |
|
|
|
return cv::gapi::plaidml::config{std::move(dev_id), |
|
std::move(trg_id)}; |
|
} |
|
|
|
TEST(GAPI_PlaidML_Pipelines, SimpleArithmetic) |
|
{ |
|
cv::Size size(1920, 1080); |
|
int type = CV_8UC1; |
|
|
|
cv::Mat in_mat1(size, type); |
|
cv::Mat in_mat2(size, type); |
|
|
|
// NB: What about overflow ? PlaidML doesn't handle it |
|
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(127)); |
|
cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(127)); |
|
|
|
cv::Mat out_mat(size, type, cv::Scalar::all(0)); |
|
cv::Mat ref_mat(size, type, cv::Scalar::all(0)); |
|
|
|
////////////////////////////// G-API ////////////////////////////////////// |
|
cv::GMat in1, in2; |
|
auto out = in1 + in2; |
|
|
|
cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out)); |
|
comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(out_mat), |
|
cv::compile_args(getConfig(), |
|
cv::gapi::use_only{cv::gapi::core::plaidml::kernels()})); |
|
|
|
////////////////////////////// OpenCV ///////////////////////////////////// |
|
cv::add(in_mat1, in_mat2, ref_mat, cv::noArray(), type); |
|
|
|
EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); |
|
} |
|
|
|
// FIXME PlaidML cpu backend does't support bitwise operations |
|
TEST(GAPI_PlaidML_Pipelines, DISABLED_ComplexArithmetic) |
|
{ |
|
cv::Size size(1920, 1080); |
|
int type = CV_8UC1; |
|
|
|
cv::Mat in_mat1(size, type); |
|
cv::Mat in_mat2(size, type); |
|
|
|
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255)); |
|
cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255)); |
|
|
|
cv::Mat out_mat(size, type, cv::Scalar::all(0)); |
|
cv::Mat ref_mat(size, type, cv::Scalar::all(0)); |
|
|
|
////////////////////////////// G-API ////////////////////////////////////// |
|
cv::GMat in1, in2; |
|
auto out = in1 | (in2 ^ (in1 & (in2 + (in1 - in2)))); |
|
|
|
cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out)); |
|
comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(out_mat), |
|
cv::compile_args(getConfig(), |
|
cv::gapi::use_only{cv::gapi::core::plaidml::kernels()})); |
|
|
|
////////////////////////////// OpenCV ///////////////////////////////////// |
|
cv::subtract(in_mat1, in_mat2, ref_mat, cv::noArray(), type); |
|
cv::add(in_mat2, ref_mat, ref_mat, cv::noArray(), type); |
|
cv::bitwise_and(in_mat1, ref_mat, ref_mat); |
|
cv::bitwise_xor(in_mat2, ref_mat, ref_mat); |
|
cv::bitwise_or(in_mat1, ref_mat, ref_mat); |
|
|
|
EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); |
|
} |
|
|
|
TEST(GAPI_PlaidML_Pipelines, TwoInputOperations) |
|
{ |
|
cv::Size size(1920, 1080); |
|
int type = CV_8UC1; |
|
|
|
constexpr int kNumInputs = 4; |
|
std::vector<cv::Mat> in_mat(kNumInputs, cv::Mat(size, type)); |
|
for (int i = 0; i < kNumInputs; ++i) |
|
{ |
|
cv::randu(in_mat[i], cv::Scalar::all(0), cv::Scalar::all(60)); |
|
} |
|
|
|
cv::Mat out_mat(size, type, cv::Scalar::all(0)); |
|
cv::Mat ref_mat(size, type, cv::Scalar::all(0)); |
|
|
|
////////////////////////////// G-API ////////////////////////////////////// |
|
cv::GMat in[4]; |
|
auto out = (in[3] - in[0]) + (in[2] - in[1]); |
|
|
|
cv::GComputation comp(cv::GIn(in[0], in[1], in[2], in[3]), cv::GOut(out)); |
|
|
|
// FIXME Doesn't work just apply(in_mat, out_mat, ...) |
|
comp.apply(cv::gin(in_mat[0], in_mat[1], in_mat[2], in_mat[3]), cv::gout(out_mat), |
|
cv::compile_args(getConfig(), |
|
cv::gapi::use_only{cv::gapi::core::plaidml::kernels()})); |
|
|
|
////////////////////////////// OpenCV ///////////////////////////////////// |
|
cv::subtract(in_mat[3], in_mat[0], ref_mat, cv::noArray(), type); |
|
cv::add(ref_mat, in_mat[2], ref_mat, cv::noArray(), type); |
|
cv::subtract(ref_mat, in_mat[1], ref_mat, cv::noArray(), type); |
|
|
|
EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); |
|
} |
|
|
|
TEST(GAPI_PlaidML_Pipelines, TwoOutputOperations) |
|
{ |
|
cv::Size size(1920, 1080); |
|
int type = CV_8UC1; |
|
|
|
constexpr int kNumInputs = 4; |
|
std::vector<cv::Mat> in_mat(kNumInputs, cv::Mat(size, type)); |
|
for (int i = 0; i < kNumInputs; ++i) |
|
{ |
|
cv::randu(in_mat[i], cv::Scalar::all(0), cv::Scalar::all(60)); |
|
} |
|
|
|
std::vector<cv::Mat> out_mat(kNumInputs, cv::Mat(size, type, cv::Scalar::all(0))); |
|
std::vector<cv::Mat> ref_mat(kNumInputs, cv::Mat(size, type, cv::Scalar::all(0))); |
|
|
|
////////////////////////////// G-API ////////////////////////////////////// |
|
cv::GMat in[4], out[2]; |
|
out[0] = in[0] + in[3]; |
|
out[1] = in[1] + in[2]; |
|
|
|
cv::GComputation comp(cv::GIn(in[0], in[1], in[2], in[3]), cv::GOut(out[0], out[1])); |
|
|
|
// FIXME Doesn't work just apply(in_mat, out_mat, ...) |
|
comp.apply(cv::gin(in_mat[0], in_mat[1], in_mat[2], in_mat[3]), |
|
cv::gout(out_mat[0], out_mat[1]), |
|
cv::compile_args(getConfig(), |
|
cv::gapi::use_only{cv::gapi::core::plaidml::kernels()})); |
|
|
|
////////////////////////////// OpenCV ///////////////////////////////////// |
|
cv::add(in_mat[0], in_mat[3], ref_mat[0], cv::noArray(), type); |
|
cv::add(in_mat[1], in_mat[2], ref_mat[1], cv::noArray(), type); |
|
|
|
EXPECT_EQ(0, cv::norm(out_mat[0], ref_mat[0])); |
|
EXPECT_EQ(0, cv::norm(out_mat[1], ref_mat[1])); |
|
} |
|
|
|
} // namespace opencv_test |
|
|
|
#endif // HAVE_PLAIDML
|
|
|