mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2053 lines
91 KiB
2053 lines
91 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#include <vector> |
|
|
|
#include "opencv2/core/hal/intrin.hpp" |
|
|
|
#include "filter.hpp" |
|
|
|
#include "opencv2/core/softfloat.hpp" |
|
|
|
namespace cv { |
|
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN |
|
// forward declarations |
|
void GaussianBlurFixedPoint(const Mat& src, /*const*/ Mat& dst, |
|
const uint16_t/*ufixedpoint16*/* fkx, int fkx_size, |
|
const uint16_t/*ufixedpoint16*/* fky, int fky_size, |
|
int borderType); |
|
|
|
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY |
|
|
|
#if defined(CV_CPU_BASELINE_MODE) |
|
// included in dispatch.cpp |
|
#else |
|
#include "fixedpoint.inl.hpp" |
|
#endif |
|
|
|
namespace { |
|
|
|
template <typename ET, typename FT> |
|
void hlineSmooth1N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int) |
|
{ |
|
for (int i = 0; i < len*cn; i++, src++, dst++) |
|
*dst = (*m) * (*src); |
|
} |
|
template <> |
|
void hlineSmooth1N<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int) |
|
{ |
|
int lencn = len*cn; |
|
int i = 0; |
|
#if CV_SIMD |
|
const int VECSZ = v_uint16::nlanes; |
|
v_uint16 v_mul = vx_setall_u16(*((uint16_t*)m)); |
|
for (; i <= lencn - VECSZ; i += VECSZ) |
|
v_store((uint16_t*)dst + i, v_mul_wrap(v_mul, vx_load_expand(src + i))); |
|
#endif |
|
for (; i < lencn; i++) |
|
dst[i] = m[0] * src[i]; |
|
} |
|
template <typename ET, typename FT> |
|
void hlineSmooth1N1(const ET* src, int cn, const FT*, int, FT* dst, int len, int) |
|
{ |
|
for (int i = 0; i < len*cn; i++, src++, dst++) |
|
*dst = *src; |
|
} |
|
template <> |
|
void hlineSmooth1N1<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16*, int, ufixedpoint16* dst, int len, int) |
|
{ |
|
int lencn = len*cn; |
|
int i = 0; |
|
#if CV_SIMD |
|
const int VECSZ = v_uint16::nlanes; |
|
for (; i <= lencn - VECSZ; i += VECSZ) |
|
v_store((uint16_t*)dst + i, v_shl<8>(vx_load_expand(src + i))); |
|
#endif |
|
for (; i < lencn; i++) |
|
dst[i] = src[i]; |
|
} |
|
template <typename ET, typename FT> |
|
void hlineSmooth3N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType) |
|
{ |
|
if (len == 1) |
|
{ |
|
FT msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] : m[1]; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = msum * src[k]; |
|
} |
|
else |
|
{ |
|
// Point that fall left from border |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[1] * src[k] + m[2] * src[cn + k]; |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int src_idx = borderInterpolate(-1, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[0] * src[src_idx*cn + k]; |
|
} |
|
|
|
src += cn; dst += cn; |
|
for (int i = cn; i < (len - 1)*cn; i++, src++, dst++) |
|
*dst = m[0] * src[-cn] + m[1] * src[0] + m[2] * src[cn]; |
|
|
|
// Point that fall right from border |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[0] * src[k - cn] + m[1] * src[k]; |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[2] * src[src_idx + k]; |
|
} |
|
} |
|
} |
|
template <> |
|
void hlineSmooth3N<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int borderType) |
|
{ |
|
if (len == 1) |
|
{ |
|
ufixedpoint16 msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] : m[1]; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = msum * src[k]; |
|
} |
|
else |
|
{ |
|
// Point that fall left from border |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[1] * src[k] + m[2] * src[cn + k]; |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int src_idx = borderInterpolate(-1, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[0] * src[src_idx*cn + k]; |
|
} |
|
|
|
src += cn; dst += cn; |
|
int i = cn, lencn = (len - 1)*cn; |
|
#if CV_SIMD |
|
const uint16_t* _m = (const uint16_t*)m; |
|
const int VECSZ = v_uint16::nlanes; |
|
v_uint16 v_mul0 = vx_setall_u16(_m[0]); |
|
v_uint16 v_mul1 = vx_setall_u16(_m[1]); |
|
v_uint16 v_mul2 = vx_setall_u16(_m[2]); |
|
for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) |
|
v_store((uint16_t*)dst, v_mul_wrap(vx_load_expand(src - cn), v_mul0) + |
|
v_mul_wrap(vx_load_expand(src), v_mul1) + |
|
v_mul_wrap(vx_load_expand(src + cn), v_mul2)); |
|
#endif |
|
for (; i < lencn; i++, src++, dst++) |
|
*dst = m[0] * src[-cn] + m[1] * src[0] + m[2] * src[cn]; |
|
|
|
// Point that fall right from border |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[0] * src[k - cn] + m[1] * src[k]; |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[2] * src[src_idx + k]; |
|
} |
|
} |
|
} |
|
template <typename ET, typename FT> |
|
void hlineSmooth3N121(const ET* src, int cn, const FT*, int, FT* dst, int len, int borderType) |
|
{ |
|
if (len == 1) |
|
{ |
|
if(borderType != BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = FT(src[k]); |
|
else |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = FT(src[k])>>1; |
|
} |
|
else |
|
{ |
|
// Point that fall left from border |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = (FT(src[k])>>1) + (FT(src[cn + k])>>2); |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int src_idx = borderInterpolate(-1, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + (FT(src[src_idx*cn + k])>>2); |
|
} |
|
|
|
src += cn; dst += cn; |
|
for (int i = cn; i < (len - 1)*cn; i++, src++, dst++) |
|
*dst = (FT(src[-cn])>>2) + (FT(src[cn])>>2) + (FT(src[0])>>1); |
|
|
|
// Point that fall right from border |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = (FT(src[k - cn])>>2) + (FT(src[k])>>1); |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + (FT(src[src_idx + k])>>2); |
|
} |
|
} |
|
} |
|
template <> |
|
void hlineSmooth3N121<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16*, int, ufixedpoint16* dst, int len, int borderType) |
|
{ |
|
if (len == 1) |
|
{ |
|
if (borderType != BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = ufixedpoint16(src[k]); |
|
else |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = ufixedpoint16(src[k]) >> 1; |
|
} |
|
else |
|
{ |
|
// Point that fall left from border |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = (ufixedpoint16(src[k])>>1) + (ufixedpoint16(src[cn + k])>>2); |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int src_idx = borderInterpolate(-1, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + (ufixedpoint16(src[src_idx*cn + k])>>2); |
|
} |
|
|
|
src += cn; dst += cn; |
|
int i = cn, lencn = (len - 1)*cn; |
|
#if CV_SIMD |
|
const int VECSZ = v_uint16::nlanes; |
|
for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) |
|
v_store((uint16_t*)dst, (vx_load_expand(src - cn) + vx_load_expand(src + cn) + (vx_load_expand(src) << 1)) << 6); |
|
#endif |
|
for (; i < lencn; i++, src++, dst++) |
|
*((uint16_t*)dst) = (uint16_t(src[-cn]) + uint16_t(src[cn]) + (uint16_t(src[0]) << 1)) << 6; |
|
|
|
// Point that fall right from border |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = (ufixedpoint16(src[k - cn])>>2) + (ufixedpoint16(src[k])>>1); |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + (ufixedpoint16(src[src_idx + k])>>2); |
|
} |
|
} |
|
} |
|
template <typename ET, typename FT> |
|
void hlineSmooth3Naba(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType) |
|
{ |
|
if (len == 1) |
|
{ |
|
FT msum = borderType != BORDER_CONSTANT ? (m[0]<<1) + m[1] : m[1]; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = msum * src[k]; |
|
} |
|
else |
|
{ |
|
// Point that fall left from border |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int src_idx = borderInterpolate(-1, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[1] * src[k] + m[0] * src[cn + k] + m[0] * src[src_idx*cn + k]; |
|
} |
|
else |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[1] * src[k] + m[0] * src[cn + k]; |
|
} |
|
|
|
src += cn; dst += cn; |
|
for (int i = cn; i < (len - 1)*cn; i++, src++, dst++) |
|
*dst = m[1] * src[0] + m[0] * src[-cn] + m[0] * src[cn]; |
|
|
|
// Point that fall right from border |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[1] * src[k] + m[0] * src[k - cn] + m[0] * src[src_idx + k]; |
|
} |
|
else |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[0] * src[k - cn] + m[1] * src[k]; |
|
} |
|
} |
|
} |
|
template <> |
|
void hlineSmooth3Naba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int borderType) |
|
{ |
|
if (len == 1) |
|
{ |
|
ufixedpoint16 msum = borderType != BORDER_CONSTANT ? (m[0]<<1) + m[1] : m[1]; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = msum * src[k]; |
|
} |
|
else |
|
{ |
|
// Point that fall left from border |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int src_idx = borderInterpolate(-1, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
((uint16_t*)dst)[k] = saturate_cast<uint16_t>(((uint16_t*)m)[1] * (uint32_t)(src[k]) + ((uint16_t*)m)[0] * ((uint32_t)(src[cn + k]) + (uint32_t)(src[src_idx*cn + k]))); |
|
} |
|
else |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[1] * src[k] + m[0] * src[cn + k]; |
|
} |
|
|
|
src += cn; dst += cn; |
|
int i = cn, lencn = (len - 1)*cn; |
|
#if CV_SIMD |
|
const uint16_t* _m = (const uint16_t*)m; |
|
const int VECSZ = v_uint16::nlanes; |
|
v_uint16 v_mul0 = vx_setall_u16(_m[0]); |
|
v_uint16 v_mul1 = vx_setall_u16(_m[1]); |
|
for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) |
|
v_store((uint16_t*)dst, v_mul_wrap(vx_load_expand(src - cn) + vx_load_expand(src + cn), v_mul0) + |
|
v_mul_wrap(vx_load_expand(src), v_mul1)); |
|
#endif |
|
for (; i < lencn; i++, src++, dst++) |
|
*((uint16_t*)dst) = saturate_cast<uint16_t>(((uint16_t*)m)[1] * (uint32_t)(src[0]) + ((uint16_t*)m)[0] * ((uint32_t)(src[-cn]) + (uint32_t)(src[cn]))); |
|
|
|
// Point that fall right from border |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int src_idx = (borderInterpolate(len, len, borderType) - (len - 1))*cn; |
|
for (int k = 0; k < cn; k++) |
|
((uint16_t*)dst)[k] = saturate_cast<uint16_t>(((uint16_t*)m)[1] * (uint32_t)(src[k]) + ((uint16_t*)m)[0] * ((uint32_t)(src[k - cn]) + (uint32_t)(src[src_idx + k]))); |
|
} |
|
else |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[0] * src[k - cn] + m[1] * src[k]; |
|
} |
|
} |
|
} |
|
template <typename ET, typename FT> |
|
void hlineSmooth5N(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType) |
|
{ |
|
if (len == 1) |
|
{ |
|
FT msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] + m[3] + m[4] : m[2]; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = msum * src[k]; |
|
} |
|
else if (len == 2) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k ] = m[2] * src[k] + m[3] * src[k+cn]; |
|
dst[k+cn] = m[1] * src[k] + m[2] * src[k+cn]; |
|
} |
|
else |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
int idxp1 = borderInterpolate(2, len, borderType)*cn; |
|
int idxp2 = borderInterpolate(3, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k ] = m[1] * src[k + idxm1] + m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + idxp1] + m[0] * src[k + idxm2]; |
|
dst[k + cn] = m[0] * src[k + idxm1] + m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + idxp1] + m[4] * src[k + idxp2]; |
|
} |
|
} |
|
} |
|
else if (len == 3) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k ] = m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + 2*cn]; |
|
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + 2*cn]; |
|
dst[k + 2*cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2*cn]; |
|
} |
|
else |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
int idxp1 = borderInterpolate(3, len, borderType)*cn; |
|
int idxp2 = borderInterpolate(4, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k ] = m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + 2*cn] + m[0] * src[k + idxm2] + m[1] * src[k + idxm1]; |
|
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + 2*cn] + m[0] * src[k + idxm1] + m[4] * src[k + idxp1]; |
|
dst[k + 2*cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2*cn] + m[3] * src[k + idxp1] + m[4] * src[k + idxp2]; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// Points that fall left from border |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[2] * src[k] + m[3] * src[cn + k] + m[4] * src[2*cn + k]; |
|
dst[k + cn] = m[1] * src[k] + m[2] * src[cn + k] + m[3] * src[2*cn + k] + m[4] * src[3*cn + k]; |
|
} |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = dst[k] + m[0] * src[idxm2 + k] + m[1] * src[idxm1 + k]; |
|
dst[k + cn] = dst[k + cn] + m[0] * src[idxm1 + k]; |
|
} |
|
} |
|
|
|
src += 2*cn; dst += 2*cn; |
|
for (int i = 2*cn; i < (len - 2)*cn; i++, src++, dst++) |
|
*dst = m[0] * src[-2*cn] + m[1] * src[-cn] + m[2] * src[0] + m[3] * src[cn] + m[4] * src[2*cn]; |
|
|
|
// Points that fall right from border |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[0] * src[k - 2*cn] + m[1] * src[k - cn] + m[2] * src[k] + m[3] * src[k + cn]; |
|
dst[k + cn] = m[0] * src[k - cn] + m[1] * src[k] + m[2] * src[k + cn]; |
|
} |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn; |
|
int idxp2 = (borderInterpolate(len+1, len, borderType) - (len - 2))*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = dst[k] + m[4] * src[idxp1 + k]; |
|
dst[k + cn] = dst[k + cn] + m[3] * src[idxp1 + k] + m[4] * src[idxp2 + k]; |
|
} |
|
} |
|
} |
|
} |
|
template <> |
|
void hlineSmooth5N<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int borderType) |
|
{ |
|
if (len == 1) |
|
{ |
|
ufixedpoint16 msum = borderType != BORDER_CONSTANT ? m[0] + m[1] + m[2] + m[3] + m[4] : m[2]; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = msum * src[k]; |
|
} |
|
else if (len == 2) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[2] * src[k] + m[3] * src[k + cn]; |
|
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn]; |
|
} |
|
else |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
int idxp1 = borderInterpolate(2, len, borderType)*cn; |
|
int idxp2 = borderInterpolate(3, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[1] * src[k + idxm1] + m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + idxp1] + m[0] * src[k + idxm2]; |
|
dst[k + cn] = m[0] * src[k + idxm1] + m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + idxp1] + m[4] * src[k + idxp2]; |
|
} |
|
} |
|
} |
|
else if (len == 3) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + 2 * cn]; |
|
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + 2 * cn]; |
|
dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn]; |
|
} |
|
else |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
int idxp1 = borderInterpolate(3, len, borderType)*cn; |
|
int idxp2 = borderInterpolate(4, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[2] * src[k] + m[3] * src[k + cn] + m[4] * src[k + 2 * cn] + m[0] * src[k + idxm2] + m[1] * src[k + idxm1]; |
|
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[3] * src[k + 2 * cn] + m[0] * src[k + idxm1] + m[4] * src[k + idxp1]; |
|
dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn] + m[3] * src[k + idxp1] + m[4] * src[k + idxp2]; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// Points that fall left from border |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[2] * src[k] + m[3] * src[cn + k] + m[4] * src[2 * cn + k]; |
|
dst[k + cn] = m[1] * src[k] + m[2] * src[cn + k] + m[3] * src[2 * cn + k] + m[4] * src[3 * cn + k]; |
|
} |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = dst[k] + m[0] * src[idxm2 + k] + m[1] * src[idxm1 + k]; |
|
dst[k + cn] = dst[k + cn] + m[0] * src[idxm1 + k]; |
|
} |
|
} |
|
|
|
src += 2 * cn; dst += 2 * cn; |
|
int i = 2*cn, lencn = (len - 2)*cn; |
|
#if CV_SIMD |
|
const uint16_t* _m = (const uint16_t*)m; |
|
const int VECSZ = v_uint16::nlanes; |
|
v_uint16 v_mul0 = vx_setall_u16(_m[0]); |
|
v_uint16 v_mul1 = vx_setall_u16(_m[1]); |
|
v_uint16 v_mul2 = vx_setall_u16(_m[2]); |
|
v_uint16 v_mul3 = vx_setall_u16(_m[3]); |
|
v_uint16 v_mul4 = vx_setall_u16(_m[4]); |
|
for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) |
|
v_store((uint16_t*)dst, v_mul_wrap(vx_load_expand(src - 2 * cn), v_mul0) + |
|
v_mul_wrap(vx_load_expand(src - cn), v_mul1) + |
|
v_mul_wrap(vx_load_expand(src), v_mul2) + |
|
v_mul_wrap(vx_load_expand(src + cn), v_mul3) + |
|
v_mul_wrap(vx_load_expand(src + 2 * cn), v_mul4)); |
|
#endif |
|
for (; i < lencn; i++, src++, dst++) |
|
*dst = m[0] * src[-2*cn] + m[1] * src[-cn] + m[2] * src[0] + m[3] * src[cn] + m[4] * src[2*cn]; |
|
|
|
// Points that fall right from border |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[0] * src[k - 2 * cn] + m[1] * src[k - cn] + m[2] * src[k] + m[3] * src[k + cn]; |
|
dst[k + cn] = m[0] * src[k - cn] + m[1] * src[k] + m[2] * src[k + cn]; |
|
} |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn; |
|
int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = dst[k] + m[4] * src[idxp1 + k]; |
|
dst[k + cn] = dst[k + cn] + m[3] * src[idxp1 + k] + m[4] * src[idxp2 + k]; |
|
} |
|
} |
|
} |
|
} |
|
template <typename ET, typename FT> |
|
void hlineSmooth5N14641(const ET* src, int cn, const FT*, int, FT* dst, int len, int borderType) |
|
{ |
|
if (len == 1) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = (FT(src[k])>>3)*(uint8_t)3; |
|
else |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = src[k]; |
|
} |
|
else if (len == 2) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2); |
|
dst[k + cn] = (FT(src[k]) >> 2) + (FT(src[k + cn])>>4)*(uint8_t)6; |
|
} |
|
else |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
int idxp1 = borderInterpolate(2, len, borderType)*cn; |
|
int idxp2 = borderInterpolate(3, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k + idxm1])>>2) + (FT(src[k + cn])>>2) + (FT(src[k + idxp1])>>4) + (FT(src[k + idxm2])>>4); |
|
dst[k + cn] = (FT(src[k + cn])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[k + idxp1])>>2) + (FT(src[k + idxm1])>>4) + (FT(src[k + idxp2])>>4); |
|
} |
|
} |
|
} |
|
else if (len == 3) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2) + (FT(src[k + 2 * cn])>>4); |
|
dst[k + cn] = (FT(src[k + cn])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[k + 2 * cn])>>2); |
|
dst[k + 2 * cn] = (FT(src[k + 2 * cn])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2) + (FT(src[k])>>4); |
|
} |
|
else |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
int idxp1 = borderInterpolate(3, len, borderType)*cn; |
|
int idxp2 = borderInterpolate(4, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2) + (FT(src[k + idxm1])>>2) + (FT(src[k + 2 * cn])>>4) + (FT(src[k + idxm2])>>4); |
|
dst[k + cn] = (FT(src[k + cn])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[k + 2 * cn])>>2) + (FT(src[k + idxm1])>>4) + (FT(src[k + idxp1])>>4); |
|
dst[k + 2 * cn] = (FT(src[k + 2 * cn])>>4)*(uint8_t)6 + (FT(src[k + cn])>>2) + (FT(src[k + idxp1])>>2) + (FT(src[k])>>4) + (FT(src[k + idxp2])>>4); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// Points that fall left from border |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[cn + k])>>2) + (FT(src[2 * cn + k])>>4); |
|
dst[k + cn] = (FT(src[cn + k])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[2 * cn + k])>>2) + (FT(src[3 * cn + k])>>4); |
|
} |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = dst[k] + (FT(src[idxm2 + k])>>4) + (FT(src[idxm1 + k])>>2); |
|
dst[k + cn] = dst[k + cn] + (FT(src[idxm1 + k])>>4); |
|
} |
|
} |
|
|
|
src += 2 * cn; dst += 2 * cn; |
|
for (int i = 2 * cn; i < (len - 2)*cn; i++, src++, dst++) |
|
*dst = (FT(src[0])>>4)*(uint8_t)6 + (FT(src[-cn])>>2) + (FT(src[cn])>>2) + (FT(src[-2 * cn])>>4) + (FT(src[2 * cn])>>4); |
|
|
|
// Points that fall right from border |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = (FT(src[k])>>4)*(uint8_t)6 + (FT(src[k - cn])>>2) + (FT(src[k + cn])>>2) + (FT(src[k - 2 * cn])>>4); |
|
dst[k + cn] = (FT(src[k + cn])>>4)*(uint8_t)6 + (FT(src[k])>>2) + (FT(src[k - cn])>>4); |
|
} |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn; |
|
int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = dst[k] + (FT(src[idxp1 + k])>>4); |
|
dst[k + cn] = dst[k + cn] + (FT(src[idxp1 + k])>>2) + (FT(src[idxp2 + k])>>4); |
|
} |
|
} |
|
} |
|
} |
|
template <> |
|
void hlineSmooth5N14641<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16*, int, ufixedpoint16* dst, int len, int borderType) |
|
{ |
|
if (len == 1) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = (ufixedpoint16(src[k])>>3) * (uint8_t)3; |
|
else |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = src[k]; |
|
} |
|
} |
|
else if (len == 2) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2); |
|
dst[k + cn] = (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6; |
|
} |
|
else |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
int idxp1 = borderInterpolate(2, len, borderType)*cn; |
|
int idxp2 = borderInterpolate(3, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + idxm1]) >> 2) + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 4) + (ufixedpoint16(src[k + idxm2]) >> 4); |
|
dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 4) + (ufixedpoint16(src[k + idxp2]) >> 4); |
|
} |
|
} |
|
} |
|
else if (len == 3) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 4); |
|
dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 2); |
|
dst[k + 2 * cn] = (ufixedpoint16(src[k + 2 * cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k]) >> 4); |
|
} |
|
else |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
int idxp1 = borderInterpolate(3, len, borderType)*cn; |
|
int idxp2 = borderInterpolate(4, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 4) + (ufixedpoint16(src[k + idxm2]) >> 4); |
|
dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k + 2 * cn]) >> 2) + (ufixedpoint16(src[k + idxm1]) >> 4) + (ufixedpoint16(src[k + idxp1]) >> 4); |
|
dst[k + 2 * cn] = (ufixedpoint16(src[k + 2 * cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k + idxp1]) >> 2) + (ufixedpoint16(src[k]) >> 4) + (ufixedpoint16(src[k + idxp2]) >> 4); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// Points that fall left from border |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[cn + k]) >> 2) + (ufixedpoint16(src[2 * cn + k]) >> 4); |
|
dst[k + cn] = (ufixedpoint16(src[cn + k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[2 * cn + k]) >> 2) + (ufixedpoint16(src[3 * cn + k]) >> 4); |
|
} |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = dst[k] + (ufixedpoint16(src[idxm2 + k]) >> 4) + (ufixedpoint16(src[idxm1 + k]) >> 2); |
|
dst[k + cn] = dst[k + cn] + (ufixedpoint16(src[idxm1 + k]) >> 4); |
|
} |
|
} |
|
|
|
src += 2 * cn; dst += 2 * cn; |
|
int i = 2 * cn, lencn = (len - 2)*cn; |
|
#if CV_SIMD |
|
const int VECSZ = v_uint16::nlanes; |
|
v_uint16 v_6 = vx_setall_u16(6); |
|
for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) |
|
v_store((uint16_t*)dst, (v_mul_wrap(vx_load_expand(src), v_6) + ((vx_load_expand(src - cn) + vx_load_expand(src + cn)) << 2) + vx_load_expand(src - 2 * cn) + vx_load_expand(src + 2 * cn)) << 4); |
|
#endif |
|
for (; i < lencn; i++, src++, dst++) |
|
*((uint16_t*)dst) = (uint16_t(src[0]) * 6 + ((uint16_t(src[-cn]) + uint16_t(src[cn])) << 2) + uint16_t(src[-2 * cn]) + uint16_t(src[2 * cn])) << 4; |
|
|
|
// Points that fall right from border |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = (ufixedpoint16(src[k]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k - cn]) >> 2) + (ufixedpoint16(src[k + cn]) >> 2) + (ufixedpoint16(src[k - 2 * cn]) >> 4); |
|
dst[k + cn] = (ufixedpoint16(src[k + cn]) >> 4) * (uint8_t)6 + (ufixedpoint16(src[k]) >> 2) + (ufixedpoint16(src[k - cn]) >> 4); |
|
} |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn; |
|
int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = dst[k] + (ufixedpoint16(src[idxp1 + k]) >> 4); |
|
dst[k + cn] = dst[k + cn] + (ufixedpoint16(src[idxp1 + k]) >> 2) + (ufixedpoint16(src[idxp2 + k]) >> 4); |
|
} |
|
} |
|
} |
|
} |
|
template <typename ET, typename FT> |
|
void hlineSmooth5Nabcba(const ET* src, int cn, const FT* m, int, FT* dst, int len, int borderType) |
|
{ |
|
if (len == 1) |
|
{ |
|
FT msum = borderType != BORDER_CONSTANT ? ((m[0] + m[1])<<1) + m[2] : m[2]; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = msum * src[k]; |
|
} |
|
else if (len == 2) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[2] * src[k] + m[1] * src[k + cn]; |
|
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn]; |
|
} |
|
else |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
int idxp1 = borderInterpolate(2, len, borderType)*cn; |
|
int idxp2 = borderInterpolate(3, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[1] * src[k + idxm1] + m[2] * src[k] + m[1] * src[k + cn] + m[0] * src[k + idxp1] + m[0] * src[k + idxm2]; |
|
dst[k + cn] = m[0] * src[k + idxm1] + m[1] * src[k] + m[2] * src[k + cn] + m[1] * src[k + idxp1] + m[0] * src[k + idxp2]; |
|
} |
|
} |
|
} |
|
else if (len == 3) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[2] * src[k] + m[1] * src[k + cn] + m[0] * src[k + 2 * cn]; |
|
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[1] * src[k + 2 * cn]; |
|
dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn]; |
|
} |
|
else |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
int idxp1 = borderInterpolate(3, len, borderType)*cn; |
|
int idxp2 = borderInterpolate(4, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[2] * src[k] + m[1] * src[k + cn] + m[0] * src[k + 2 * cn] + m[0] * src[k + idxm2] + m[1] * src[k + idxm1]; |
|
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn] + m[1] * src[k + 2 * cn] + m[0] * src[k + idxm1] + m[0] * src[k + idxp1]; |
|
dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn] + m[1] * src[k + idxp1] + m[0] * src[k + idxp2]; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// Points that fall left from border |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[2] * src[k] + m[1] * src[cn + k] + m[0] * src[2 * cn + k]; |
|
dst[k + cn] = m[1] * src[k] + m[2] * src[cn + k] + m[1] * src[2 * cn + k] + m[0] * src[3 * cn + k]; |
|
} |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = dst[k] + m[0] * src[idxm2 + k] + m[1] * src[idxm1 + k]; |
|
dst[k + cn] = dst[k + cn] + m[0] * src[idxm1 + k]; |
|
} |
|
} |
|
|
|
src += 2 * cn; dst += 2 * cn; |
|
for (int i = 2 * cn; i < (len - 2)*cn; i++, src++, dst++) |
|
*dst = m[0] * src[-2 * cn] + m[1] * src[-cn] + m[2] * src[0] + m[3] * src[cn] + m[4] * src[2 * cn]; |
|
|
|
// Points that fall right from border |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[0] * src[k - 2 * cn] + m[1] * src[k - cn] + m[2] * src[k] + m[3] * src[k + cn]; |
|
dst[k + cn] = m[0] * src[k - cn] + m[1] * src[k] + m[2] * src[k + cn]; |
|
} |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn; |
|
int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = dst[k] + m[0] * src[idxp1 + k]; |
|
dst[k + cn] = dst[k + cn] + m[1] * src[idxp1 + k] + m[0] * src[idxp2 + k]; |
|
} |
|
} |
|
} |
|
} |
|
template <> |
|
void hlineSmooth5Nabcba<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int, ufixedpoint16* dst, int len, int borderType) |
|
{ |
|
if (len == 1) |
|
{ |
|
ufixedpoint16 msum = borderType != BORDER_CONSTANT ? ((m[0] + m[1]) << 1) + m[2] : m[2]; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = msum * src[k]; |
|
} |
|
else if (len == 2) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[2] * src[k] + m[1] * src[k + cn]; |
|
dst[k + cn] = m[1] * src[k] + m[2] * src[k + cn]; |
|
} |
|
else |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
int idxp1 = borderInterpolate(2, len, borderType)*cn; |
|
int idxp2 = borderInterpolate(3, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
((uint16_t*)dst)[k] = saturate_cast<uint16_t>(((uint16_t*)m)[1] * ((uint32_t)(src[k + idxm1]) + (uint32_t)(src[k + cn])) + ((uint16_t*)m)[2] * (uint32_t)(src[k]) + ((uint16_t*)m)[0] * ((uint32_t)(src[k + idxp1]) + (uint32_t)(src[k + idxm2]))); |
|
((uint16_t*)dst)[k + cn] = saturate_cast<uint16_t>(((uint16_t*)m)[0] * ((uint32_t)(src[k + idxm1]) + (uint32_t)(src[k + idxp2])) + ((uint16_t*)m)[1] * ((uint32_t)(src[k]) + (uint32_t)(src[k + idxp1])) + ((uint16_t*)m)[2] * (uint32_t)(src[k + cn])); |
|
} |
|
} |
|
} |
|
else if (len == 3) |
|
{ |
|
if (borderType == BORDER_CONSTANT) |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[2] * src[k] + m[1] * src[k + cn] + m[0] * src[k + 2 * cn]; |
|
((uint16_t*)dst)[k + cn] = saturate_cast<uint16_t>(((uint16_t*)m)[1] * ((uint32_t)(src[k]) + (uint32_t)(src[k + 2 * cn])) + ((uint16_t*)m)[2] * (uint32_t)(src[k + cn])); |
|
dst[k + 2 * cn] = m[0] * src[k] + m[1] * src[k + cn] + m[2] * src[k + 2 * cn]; |
|
} |
|
else |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
int idxp1 = borderInterpolate(3, len, borderType)*cn; |
|
int idxp2 = borderInterpolate(4, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
((uint16_t*)dst)[k] = saturate_cast<uint16_t>(((uint16_t*)m)[2] * (uint32_t)(src[k]) + ((uint16_t*)m)[1] * ((uint32_t)(src[k + cn]) + (uint32_t)(src[k + idxm1])) + ((uint16_t*)m)[0] * ((uint32_t)(src[k + 2 * cn]) + (uint32_t)(src[k + idxm2]))); |
|
((uint16_t*)dst)[k + cn] = saturate_cast<uint16_t>(((uint16_t*)m)[2] * (uint32_t)(src[k + cn]) + ((uint16_t*)m)[1] * ((uint32_t)(src[k]) + (uint32_t)(src[k + 2 * cn])) + ((uint16_t*)m)[0] * ((uint32_t)(src[k + idxm1]) + (uint32_t)(src[k + idxp1]))); |
|
((uint16_t*)dst)[k + 2 * cn] = saturate_cast<uint16_t>(((uint16_t*)m)[0] * ((uint32_t)(src[k]) + (uint32_t)(src[k + idxp2])) + ((uint16_t*)m)[1] * ((uint32_t)(src[k + cn]) + (uint32_t)(src[k + idxp1])) + ((uint16_t*)m)[2] * (uint32_t)(src[k + 2 * cn])); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// Points that fall left from border |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int idxm2 = borderInterpolate(-2, len, borderType)*cn; |
|
int idxm1 = borderInterpolate(-1, len, borderType)*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
((uint16_t*)dst)[k] = saturate_cast<uint16_t>(((uint16_t*)m)[2] * (uint32_t)(src[k]) + ((uint16_t*)m)[1] * ((uint32_t)(src[cn + k]) + (uint32_t)(src[idxm1 + k])) + ((uint16_t*)m)[0] * ((uint32_t)(src[2 * cn + k]) + (uint32_t)(src[idxm2 + k]))); |
|
((uint16_t*)dst)[k + cn] = saturate_cast<uint16_t>(((uint16_t*)m)[1] * ((uint32_t)(src[k]) + (uint32_t)(src[2 * cn + k])) + ((uint16_t*)m)[2] * (uint32_t)(src[cn + k]) + ((uint16_t*)m)[0] * ((uint32_t)(src[3 * cn + k]) + (uint32_t)(src[idxm1 + k]))); |
|
} |
|
} |
|
else |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
dst[k] = m[2] * src[k] + m[1] * src[cn + k] + m[0] * src[2 * cn + k]; |
|
((uint16_t*)dst)[k + cn] = saturate_cast<uint16_t>(((uint16_t*)m)[1] * ((uint32_t)(src[k]) + (uint32_t)(src[2 * cn + k])) + ((uint16_t*)m)[2] * (uint32_t)(src[cn + k]) + ((uint16_t*)m)[0] * (uint32_t)(src[3 * cn + k])); |
|
} |
|
} |
|
|
|
src += 2 * cn; dst += 2 * cn; |
|
int i = 2 * cn, lencn = (len - 2)*cn; |
|
#if CV_SIMD |
|
const uint16_t* _m = (const uint16_t*)m; |
|
const int VECSZ = v_uint16::nlanes; |
|
v_uint16 v_mul0 = vx_setall_u16(_m[0]); |
|
v_uint16 v_mul1 = vx_setall_u16(_m[1]); |
|
v_uint16 v_mul2 = vx_setall_u16(_m[2]); |
|
for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) |
|
v_store((uint16_t*)dst, v_mul_wrap(vx_load_expand(src - 2 * cn) + vx_load_expand(src + 2 * cn), v_mul0) + |
|
v_mul_wrap(vx_load_expand(src - cn) + vx_load_expand(src + cn), v_mul1) + |
|
v_mul_wrap(vx_load_expand(src), v_mul2)); |
|
#endif |
|
for (; i < lencn; i++, src++, dst++) |
|
*((uint16_t*)dst) = saturate_cast<uint16_t>(((uint16_t*)m)[0] * ((uint32_t)(src[-2 * cn]) + (uint32_t)(src[2 * cn])) + ((uint16_t*)m)[1] * ((uint32_t)(src[-cn]) + (uint32_t)(src[cn])) + ((uint16_t*)m)[2] * (uint32_t)(src[0])); |
|
|
|
// Points that fall right from border |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int idxp1 = (borderInterpolate(len, len, borderType) - (len - 2))*cn; |
|
int idxp2 = (borderInterpolate(len + 1, len, borderType) - (len - 2))*cn; |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
((uint16_t*)dst)[k] = saturate_cast<uint16_t>(((uint16_t*)m)[0] * ((uint32_t)(src[k - 2 * cn]) + (uint32_t)(src[idxp1 + k])) + ((uint16_t*)m)[1] * ((uint32_t)(src[k - cn]) + (uint32_t)(src[k + cn])) + ((uint16_t*)m)[2] * (uint32_t)(src[k])); |
|
((uint16_t*)dst)[k + cn] = saturate_cast<uint16_t>(((uint16_t*)m)[0] * ((uint32_t)(src[k - cn]) + (uint32_t)(src[idxp2 + k])) + ((uint16_t*)m)[1] * ((uint32_t)(src[k]) + (uint32_t)(src[idxp1 + k])) + ((uint16_t*)m)[2] * (uint32_t)(src[k + cn])); |
|
} |
|
} |
|
else |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
{ |
|
((uint16_t*)dst)[k] = saturate_cast<uint16_t>(((uint16_t*)m)[0] * (uint32_t)(src[k - 2 * cn]) + ((uint16_t*)m)[1] * ((uint32_t)(src[k - cn]) + (uint32_t)(src[k + cn])) + ((uint16_t*)m)[2] * (uint32_t)(src[k])); |
|
dst[k + cn] = m[0] * src[k - cn] + m[1] * src[k] + m[2] * src[k + cn]; |
|
} |
|
} |
|
} |
|
} |
|
template <typename ET, typename FT> |
|
void hlineSmooth(const ET* src, int cn, const FT* m, int n, FT* dst, int len, int borderType) |
|
{ |
|
int pre_shift = n / 2; |
|
int post_shift = n - pre_shift; |
|
int i = 0; |
|
for (; i < min(pre_shift, len); i++, dst += cn) // Points that fall left from border |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[pre_shift-i] * src[k]; |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
for (int j = i - pre_shift, mid = 0; j < 0; j++, mid++) |
|
{ |
|
int src_idx = borderInterpolate(j, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; |
|
} |
|
int j, mid; |
|
for (j = 1, mid = pre_shift - i + 1; j < min(i + post_shift, len); j++, mid++) |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[mid] * src[j*cn + k]; |
|
if (borderType != BORDER_CONSTANT) |
|
for (; j < i + post_shift; j++, mid++) |
|
{ |
|
int src_idx = borderInterpolate(j, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; |
|
} |
|
} |
|
i *= cn; |
|
for (; i < (len - post_shift + 1)*cn; i++, src++, dst++) |
|
{ |
|
*dst = m[0] * src[0]; |
|
for (int j = 1; j < n; j++) |
|
*dst = *dst + m[j] * src[j*cn]; |
|
} |
|
i /= cn; |
|
for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[0] * src[k]; |
|
int j = 1; |
|
for (; j < len - i; j++) |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[j] * src[j*cn + k]; |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
for (; j < n; j++) |
|
{ |
|
int src_idx = borderInterpolate(i + j, len, borderType) - i; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[j] * src[src_idx*cn + k]; |
|
} |
|
} |
|
} |
|
template <> |
|
void hlineSmooth<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int n, ufixedpoint16* dst, int len, int borderType) |
|
{ |
|
int pre_shift = n / 2; |
|
int post_shift = n - pre_shift; |
|
int i = 0; |
|
for (; i < min(pre_shift, len); i++, dst += cn) // Points that fall left from border |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[pre_shift - i] * src[k]; |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
for (int j = i - pre_shift, mid = 0; j < 0; j++, mid++) |
|
{ |
|
int src_idx = borderInterpolate(j, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; |
|
} |
|
int j, mid; |
|
for (j = 1, mid = pre_shift - i + 1; j < min(i + post_shift, len); j++, mid++) |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[mid] * src[j*cn + k]; |
|
if (borderType != BORDER_CONSTANT) |
|
for (; j < i + post_shift; j++, mid++) |
|
{ |
|
int src_idx = borderInterpolate(j, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; |
|
} |
|
} |
|
i *= cn; |
|
int lencn = (len - post_shift + 1)*cn; |
|
#if CV_SIMD |
|
const int VECSZ = v_uint16::nlanes; |
|
for (; i <= lencn - VECSZ; i+=VECSZ, src+=VECSZ, dst+=VECSZ) |
|
{ |
|
v_uint16 v_res0 = v_mul_wrap(vx_load_expand(src), vx_setall_u16(*((uint16_t*)m))); |
|
for (int j = 1; j < n; j++) |
|
v_res0 += v_mul_wrap(vx_load_expand(src + j * cn), vx_setall_u16(*((uint16_t*)(m + j)))); |
|
v_store((uint16_t*)dst, v_res0); |
|
} |
|
#endif |
|
for (; i < lencn; i++, src++, dst++) |
|
{ |
|
*dst = m[0] * src[0]; |
|
for (int j = 1; j < n; j++) |
|
*dst = *dst + m[j] * src[j*cn]; |
|
} |
|
i /= cn; |
|
for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[0] * src[k]; |
|
int j = 1; |
|
for (; j < len - i; j++) |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[j] * src[j*cn + k]; |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
for (; j < n; j++) |
|
{ |
|
int src_idx = borderInterpolate(i + j, len, borderType) - i; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[j] * src[src_idx*cn + k]; |
|
} |
|
} |
|
} |
|
template <typename ET, typename FT> |
|
void hlineSmoothONa_yzy_a(const ET* src, int cn, const FT* m, int n, FT* dst, int len, int borderType) |
|
{ |
|
int pre_shift = n / 2; |
|
int post_shift = n - pre_shift; |
|
int i = 0; |
|
for (; i < min(pre_shift, len); i++, dst += cn) // Points that fall left from border |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[pre_shift - i] * src[k]; |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
for (int j = i - pre_shift, mid = 0; j < 0; j++, mid++) |
|
{ |
|
int src_idx = borderInterpolate(j, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; |
|
} |
|
int j, mid; |
|
for (j = 1, mid = pre_shift - i + 1; j < min(i + post_shift, len); j++, mid++) |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[mid] * src[j*cn + k]; |
|
if (borderType != BORDER_CONSTANT) |
|
for (; j < i + post_shift; j++, mid++) |
|
{ |
|
int src_idx = borderInterpolate(j, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; |
|
} |
|
} |
|
i *= cn; |
|
for (; i < (len - post_shift + 1)*cn; i++, src++, dst++) |
|
{ |
|
*dst = m[pre_shift] * src[pre_shift*cn]; |
|
for (int j = 0; j < pre_shift; j++) |
|
*dst = *dst + m[j] * src[j*cn] + m[j] * src[(n-1-j)*cn]; |
|
} |
|
i /= cn; |
|
for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[0] * src[k]; |
|
int j = 1; |
|
for (; j < len - i; j++) |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[j] * src[j*cn + k]; |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
for (; j < n; j++) |
|
{ |
|
int src_idx = borderInterpolate(i + j, len, borderType) - i; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[j] * src[src_idx*cn + k]; |
|
} |
|
} |
|
} |
|
template <> |
|
void hlineSmoothONa_yzy_a<uint8_t, ufixedpoint16>(const uint8_t* src, int cn, const ufixedpoint16* m, int n, ufixedpoint16* dst, int len, int borderType) |
|
{ |
|
int pre_shift = n / 2; |
|
int post_shift = n - pre_shift; |
|
int i = 0; |
|
for (; i < min(pre_shift, len); i++, dst += cn) // Points that fall left from border |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[pre_shift - i] * src[k]; |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
for (int j = i - pre_shift, mid = 0; j < 0; j++, mid++) |
|
{ |
|
int src_idx = borderInterpolate(j, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; |
|
} |
|
int j, mid; |
|
for (j = 1, mid = pre_shift - i + 1; j < min(i + post_shift, len); j++, mid++) |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[mid] * src[j*cn + k]; |
|
if (borderType != BORDER_CONSTANT) |
|
for (; j < i + post_shift; j++, mid++) |
|
{ |
|
int src_idx = borderInterpolate(j, len, borderType); |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[mid] * src[src_idx*cn + k]; |
|
} |
|
} |
|
i *= cn; |
|
int lencn = (len - post_shift + 1)*cn; |
|
#if CV_SIMD |
|
const int VECSZ = v_uint16::nlanes; |
|
for (; i <= lencn - VECSZ; i += VECSZ, src += VECSZ, dst += VECSZ) |
|
{ |
|
v_uint16 v_res0 = v_mul_wrap(vx_load_expand(src + pre_shift * cn), vx_setall_u16(*((uint16_t*)(m + pre_shift)))); |
|
for (int j = 0; j < pre_shift; j ++) |
|
v_res0 += v_mul_wrap(vx_load_expand(src + j * cn) + vx_load_expand(src + (n - 1 - j)*cn), vx_setall_u16(*((uint16_t*)(m + j)))); |
|
v_store((uint16_t*)dst, v_res0); |
|
} |
|
#endif |
|
for (; i < lencn; i++, src++, dst++) |
|
{ |
|
*dst = m[pre_shift] * src[pre_shift*cn]; |
|
for (int j = 0; j < pre_shift; j++) |
|
*dst = *dst + m[j] * src[j*cn] + m[j] * src[(n - 1 - j)*cn]; |
|
} |
|
i /= cn; |
|
for (i -= pre_shift; i < len - pre_shift; i++, src += cn, dst += cn) // Points that fall right from border |
|
{ |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = m[0] * src[k]; |
|
int j = 1; |
|
for (; j < len - i; j++) |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[j] * src[j*cn + k]; |
|
if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
for (; j < n; j++) |
|
{ |
|
int src_idx = borderInterpolate(i + j, len, borderType) - i; |
|
for (int k = 0; k < cn; k++) |
|
dst[k] = dst[k] + m[j] * src[src_idx*cn + k]; |
|
} |
|
} |
|
} |
|
template <typename ET, typename FT> |
|
void vlineSmooth1N(const FT* const * src, const FT* m, int, ET* dst, int len) |
|
{ |
|
const FT* src0 = src[0]; |
|
for (int i = 0; i < len; i++) |
|
dst[i] = *m * src0[i]; |
|
} |
|
template <> |
|
void vlineSmooth1N<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int, uint8_t* dst, int len) |
|
{ |
|
const ufixedpoint16* src0 = src[0]; |
|
int i = 0; |
|
#if CV_SIMD |
|
const int VECSZ = v_uint16::nlanes; |
|
v_uint16 v_mul = vx_setall_u16(*((uint16_t*)m)<<1); |
|
for (; i <= len - VECSZ; i += VECSZ) |
|
v_rshr_pack_store<1>(dst + i, v_mul_hi(vx_load((uint16_t*)src0 + i), v_mul)); |
|
#endif |
|
for (; i < len; i++) |
|
dst[i] = m[0] * src0[i]; |
|
} |
|
template <typename ET, typename FT> |
|
void vlineSmooth1N1(const FT* const * src, const FT*, int, ET* dst, int len) |
|
{ |
|
const FT* src0 = src[0]; |
|
for (int i = 0; i < len; i++) |
|
dst[i] = src0[i]; |
|
} |
|
template <> |
|
void vlineSmooth1N1<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16*, int, uint8_t* dst, int len) |
|
{ |
|
const ufixedpoint16* src0 = src[0]; |
|
int i = 0; |
|
#if CV_SIMD |
|
const int VECSZ = v_uint16::nlanes; |
|
for (; i <= len - VECSZ; i += VECSZ) |
|
v_rshr_pack_store<8>(dst + i, vx_load((uint16_t*)(src0 + i))); |
|
#endif |
|
for (; i < len; i++) |
|
dst[i] = src0[i]; |
|
} |
|
template <typename ET, typename FT> |
|
void vlineSmooth3N(const FT* const * src, const FT* m, int, ET* dst, int len) |
|
{ |
|
for (int i = 0; i < len; i++) |
|
dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i]; |
|
} |
|
template <> |
|
void vlineSmooth3N<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int, uint8_t* dst, int len) |
|
{ |
|
int i = 0; |
|
#if CV_SIMD |
|
static const v_int16 v_128 = v_reinterpret_as_s16(vx_setall_u16((uint16_t)1 << 15)); |
|
v_int32 v_128_4 = vx_setall_s32(128 << 16); |
|
const int VECSZ = v_uint16::nlanes; |
|
if (len >= VECSZ) |
|
{ |
|
ufixedpoint32 val[] = { (m[0] + m[1] + m[2]) * ufixedpoint16((uint8_t)128) }; |
|
v_128_4 = vx_setall_s32(*((int32_t*)val)); |
|
} |
|
v_int16 v_mul01 = v_reinterpret_as_s16(vx_setall_u32(*((uint32_t*)m))); |
|
v_int16 v_mul2 = v_reinterpret_as_s16(vx_setall_u16(*((uint16_t*)(m + 2)))); |
|
for (; i <= len - 4*VECSZ; i += 4*VECSZ) |
|
{ |
|
v_int16 v_src00, v_src10, v_src01, v_src11, v_src02, v_src12, v_src03, v_src13; |
|
v_int16 v_tmp0, v_tmp1; |
|
|
|
const int16_t* src0 = (const int16_t*)src[0] + i; |
|
const int16_t* src1 = (const int16_t*)src[1] + i; |
|
v_src00 = vx_load(src0); |
|
v_src01 = vx_load(src0 + VECSZ); |
|
v_src02 = vx_load(src0 + 2*VECSZ); |
|
v_src03 = vx_load(src0 + 3*VECSZ); |
|
v_src10 = vx_load(src1); |
|
v_src11 = vx_load(src1 + VECSZ); |
|
v_src12 = vx_load(src1 + 2*VECSZ); |
|
v_src13 = vx_load(src1 + 3*VECSZ); |
|
v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1); |
|
v_int32 v_res0 = v_dotprod(v_tmp0, v_mul01); |
|
v_int32 v_res1 = v_dotprod(v_tmp1, v_mul01); |
|
v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1); |
|
v_int32 v_res2 = v_dotprod(v_tmp0, v_mul01); |
|
v_int32 v_res3 = v_dotprod(v_tmp1, v_mul01); |
|
v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1); |
|
v_int32 v_res4 = v_dotprod(v_tmp0, v_mul01); |
|
v_int32 v_res5 = v_dotprod(v_tmp1, v_mul01); |
|
v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1); |
|
v_int32 v_res6 = v_dotprod(v_tmp0, v_mul01); |
|
v_int32 v_res7 = v_dotprod(v_tmp1, v_mul01); |
|
|
|
v_int32 v_resj0, v_resj1; |
|
const int16_t* src2 = (const int16_t*)src[2] + i; |
|
v_src00 = vx_load(src2); |
|
v_src01 = vx_load(src2 + VECSZ); |
|
v_src02 = vx_load(src2 + 2*VECSZ); |
|
v_src03 = vx_load(src2 + 3*VECSZ); |
|
v_mul_expand(v_add_wrap(v_src00, v_128), v_mul2, v_resj0, v_resj1); |
|
v_res0 += v_resj0; |
|
v_res1 += v_resj1; |
|
v_mul_expand(v_add_wrap(v_src01, v_128), v_mul2, v_resj0, v_resj1); |
|
v_res2 += v_resj0; |
|
v_res3 += v_resj1; |
|
v_mul_expand(v_add_wrap(v_src02, v_128), v_mul2, v_resj0, v_resj1); |
|
v_res4 += v_resj0; |
|
v_res5 += v_resj1; |
|
v_mul_expand(v_add_wrap(v_src03, v_128), v_mul2, v_resj0, v_resj1); |
|
v_res6 += v_resj0; |
|
v_res7 += v_resj1; |
|
|
|
v_res0 += v_128_4; |
|
v_res1 += v_128_4; |
|
v_res2 += v_128_4; |
|
v_res3 += v_128_4; |
|
v_res4 += v_128_4; |
|
v_res5 += v_128_4; |
|
v_res6 += v_128_4; |
|
v_res7 += v_128_4; |
|
|
|
v_store(dst + i , v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1)), |
|
v_reinterpret_as_u16(v_rshr_pack<16>(v_res2, v_res3)))); |
|
v_store(dst + i + 2*VECSZ, v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res4, v_res5)), |
|
v_reinterpret_as_u16(v_rshr_pack<16>(v_res6, v_res7)))); |
|
} |
|
#endif |
|
for (; i < len; i++) |
|
dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i]; |
|
} |
|
template <typename ET, typename FT> |
|
void vlineSmooth3N121(const FT* const * src, const FT*, int, ET* dst, int len) |
|
{ |
|
for (int i = 0; i < len; i++) |
|
dst[i] = (FT::WT(src[0][i]) >> 2) + (FT::WT(src[2][i]) >> 2) + (FT::WT(src[1][i]) >> 1); |
|
} |
|
template <> |
|
void vlineSmooth3N121<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16*, int, uint8_t* dst, int len) |
|
{ |
|
int i = 0; |
|
#if CV_SIMD |
|
const int VECSZ = v_uint16::nlanes; |
|
for (; i <= len - 2*VECSZ; i += 2*VECSZ) |
|
{ |
|
v_uint32 v_src00, v_src01, v_src02, v_src03, v_src10, v_src11, v_src12, v_src13, v_src20, v_src21, v_src22, v_src23; |
|
v_expand(vx_load((uint16_t*)(src[0]) + i), v_src00, v_src01); |
|
v_expand(vx_load((uint16_t*)(src[0]) + i + VECSZ), v_src02, v_src03); |
|
v_expand(vx_load((uint16_t*)(src[1]) + i), v_src10, v_src11); |
|
v_expand(vx_load((uint16_t*)(src[1]) + i + VECSZ), v_src12, v_src13); |
|
v_expand(vx_load((uint16_t*)(src[2]) + i), v_src20, v_src21); |
|
v_expand(vx_load((uint16_t*)(src[2]) + i + VECSZ), v_src22, v_src23); |
|
v_store(dst + i, v_pack(v_rshr_pack<10>(v_src00 + v_src20 + (v_src10 + v_src10), v_src01 + v_src21 + (v_src11 + v_src11)), |
|
v_rshr_pack<10>(v_src02 + v_src22 + (v_src12 + v_src12), v_src03 + v_src23 + (v_src13 + v_src13)))); |
|
} |
|
#endif |
|
for (; i < len; i++) |
|
dst[i] = (((uint32_t)(((uint16_t*)(src[0]))[i]) + (uint32_t)(((uint16_t*)(src[2]))[i]) + ((uint32_t)(((uint16_t*)(src[1]))[i]) << 1)) + (1 << 9)) >> 10; |
|
} |
|
template <typename ET, typename FT> |
|
void vlineSmooth5N(const FT* const * src, const FT* m, int, ET* dst, int len) |
|
{ |
|
for (int i = 0; i < len; i++) |
|
dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i] + m[3] * src[3][i] + m[4] * src[4][i]; |
|
} |
|
template <> |
|
void vlineSmooth5N<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int, uint8_t* dst, int len) |
|
{ |
|
int i = 0; |
|
#if CV_SIMD |
|
const int VECSZ = v_uint16::nlanes; |
|
if (len >= 4 * VECSZ) |
|
{ |
|
ufixedpoint32 val[] = { (m[0] + m[1] + m[2] + m[3] + m[4]) * ufixedpoint16((uint8_t)128) }; |
|
v_int32 v_128_4 = vx_setall_s32(*((int32_t*)val)); |
|
static const v_int16 v_128 = v_reinterpret_as_s16(vx_setall_u16((uint16_t)1 << 15)); |
|
v_int16 v_mul01 = v_reinterpret_as_s16(vx_setall_u32(*((uint32_t*)m))); |
|
v_int16 v_mul23 = v_reinterpret_as_s16(vx_setall_u32(*((uint32_t*)(m + 2)))); |
|
v_int16 v_mul4 = v_reinterpret_as_s16(vx_setall_u16(*((uint16_t*)(m + 4)))); |
|
for (; i <= len - 4*VECSZ; i += 4*VECSZ) |
|
{ |
|
v_int16 v_src00, v_src10, v_src01, v_src11, v_src02, v_src12, v_src03, v_src13; |
|
v_int16 v_tmp0, v_tmp1; |
|
|
|
const int16_t* src0 = (const int16_t*)src[0] + i; |
|
const int16_t* src1 = (const int16_t*)src[1] + i; |
|
v_src00 = vx_load(src0); |
|
v_src01 = vx_load(src0 + VECSZ); |
|
v_src02 = vx_load(src0 + 2*VECSZ); |
|
v_src03 = vx_load(src0 + 3*VECSZ); |
|
v_src10 = vx_load(src1); |
|
v_src11 = vx_load(src1 + VECSZ); |
|
v_src12 = vx_load(src1 + 2*VECSZ); |
|
v_src13 = vx_load(src1 + 3*VECSZ); |
|
v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1); |
|
v_int32 v_res0 = v_dotprod(v_tmp0, v_mul01); |
|
v_int32 v_res1 = v_dotprod(v_tmp1, v_mul01); |
|
v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1); |
|
v_int32 v_res2 = v_dotprod(v_tmp0, v_mul01); |
|
v_int32 v_res3 = v_dotprod(v_tmp1, v_mul01); |
|
v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1); |
|
v_int32 v_res4 = v_dotprod(v_tmp0, v_mul01); |
|
v_int32 v_res5 = v_dotprod(v_tmp1, v_mul01); |
|
v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1); |
|
v_int32 v_res6 = v_dotprod(v_tmp0, v_mul01); |
|
v_int32 v_res7 = v_dotprod(v_tmp1, v_mul01); |
|
|
|
const int16_t* src2 = (const int16_t*)src[2] + i; |
|
const int16_t* src3 = (const int16_t*)src[3] + i; |
|
v_src00 = vx_load(src2); |
|
v_src01 = vx_load(src2 + VECSZ); |
|
v_src02 = vx_load(src2 + 2*VECSZ); |
|
v_src03 = vx_load(src2 + 3*VECSZ); |
|
v_src10 = vx_load(src3); |
|
v_src11 = vx_load(src3 + VECSZ); |
|
v_src12 = vx_load(src3 + 2*VECSZ); |
|
v_src13 = vx_load(src3 + 3*VECSZ); |
|
v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1); |
|
v_res0 += v_dotprod(v_tmp0, v_mul23); |
|
v_res1 += v_dotprod(v_tmp1, v_mul23); |
|
v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1); |
|
v_res2 += v_dotprod(v_tmp0, v_mul23); |
|
v_res3 += v_dotprod(v_tmp1, v_mul23); |
|
v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1); |
|
v_res4 += v_dotprod(v_tmp0, v_mul23); |
|
v_res5 += v_dotprod(v_tmp1, v_mul23); |
|
v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1); |
|
v_res6 += v_dotprod(v_tmp0, v_mul23); |
|
v_res7 += v_dotprod(v_tmp1, v_mul23); |
|
|
|
v_int32 v_resj0, v_resj1; |
|
const int16_t* src4 = (const int16_t*)src[4] + i; |
|
v_src00 = vx_load(src4); |
|
v_src01 = vx_load(src4 + VECSZ); |
|
v_src02 = vx_load(src4 + 2*VECSZ); |
|
v_src03 = vx_load(src4 + 3*VECSZ); |
|
v_mul_expand(v_add_wrap(v_src00, v_128), v_mul4, v_resj0, v_resj1); |
|
v_res0 += v_resj0; |
|
v_res1 += v_resj1; |
|
v_mul_expand(v_add_wrap(v_src01, v_128), v_mul4, v_resj0, v_resj1); |
|
v_res2 += v_resj0; |
|
v_res3 += v_resj1; |
|
v_mul_expand(v_add_wrap(v_src02, v_128), v_mul4, v_resj0, v_resj1); |
|
v_res4 += v_resj0; |
|
v_res5 += v_resj1; |
|
v_mul_expand(v_add_wrap(v_src03, v_128), v_mul4, v_resj0, v_resj1); |
|
v_res6 += v_resj0; |
|
v_res7 += v_resj1; |
|
|
|
v_res0 += v_128_4; |
|
v_res1 += v_128_4; |
|
v_res2 += v_128_4; |
|
v_res3 += v_128_4; |
|
v_res4 += v_128_4; |
|
v_res5 += v_128_4; |
|
v_res6 += v_128_4; |
|
v_res7 += v_128_4; |
|
|
|
v_store(dst + i , v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1)), |
|
v_reinterpret_as_u16(v_rshr_pack<16>(v_res2, v_res3)))); |
|
v_store(dst + i + 2*VECSZ, v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res4, v_res5)), |
|
v_reinterpret_as_u16(v_rshr_pack<16>(v_res6, v_res7)))); |
|
} |
|
} |
|
#endif |
|
for (; i < len; i++) |
|
dst[i] = m[0] * src[0][i] + m[1] * src[1][i] + m[2] * src[2][i] + m[3] * src[3][i] + m[4] * src[4][i]; |
|
} |
|
template <typename ET, typename FT> |
|
void vlineSmooth5N14641(const FT* const * src, const FT*, int, ET* dst, int len) |
|
{ |
|
for (int i = 0; i < len; i++) |
|
dst[i] = (FT::WT(src[2][i])*(uint8_t)6 + ((FT::WT(src[1][i]) + FT::WT(src[3][i]))<<2) + FT::WT(src[0][i]) + FT::WT(src[4][i])) >> 4; |
|
} |
|
template <> |
|
void vlineSmooth5N14641<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16*, int, uint8_t* dst, int len) |
|
{ |
|
int i = 0; |
|
#if CV_SIMD |
|
v_uint32 v_6 = vx_setall_u32(6); |
|
const int VECSZ = v_uint16::nlanes; |
|
for (; i <= len - 2*VECSZ; i += 2*VECSZ) |
|
{ |
|
v_uint32 v_src00, v_src10, v_src20, v_src30, v_src40; |
|
v_uint32 v_src01, v_src11, v_src21, v_src31, v_src41; |
|
v_uint32 v_src02, v_src12, v_src22, v_src32, v_src42; |
|
v_uint32 v_src03, v_src13, v_src23, v_src33, v_src43; |
|
v_expand(vx_load((uint16_t*)(src[0]) + i), v_src00, v_src01); |
|
v_expand(vx_load((uint16_t*)(src[0]) + i + VECSZ), v_src02, v_src03); |
|
v_expand(vx_load((uint16_t*)(src[1]) + i), v_src10, v_src11); |
|
v_expand(vx_load((uint16_t*)(src[1]) + i + VECSZ), v_src12, v_src13); |
|
v_expand(vx_load((uint16_t*)(src[2]) + i), v_src20, v_src21); |
|
v_expand(vx_load((uint16_t*)(src[2]) + i + VECSZ), v_src22, v_src23); |
|
v_expand(vx_load((uint16_t*)(src[3]) + i), v_src30, v_src31); |
|
v_expand(vx_load((uint16_t*)(src[3]) + i + VECSZ), v_src32, v_src33); |
|
v_expand(vx_load((uint16_t*)(src[4]) + i), v_src40, v_src41); |
|
v_expand(vx_load((uint16_t*)(src[4]) + i + VECSZ), v_src42, v_src43); |
|
v_store(dst + i, v_pack(v_rshr_pack<12>(v_src20*v_6 + ((v_src10 + v_src30) << 2) + v_src00 + v_src40, |
|
v_src21*v_6 + ((v_src11 + v_src31) << 2) + v_src01 + v_src41), |
|
v_rshr_pack<12>(v_src22*v_6 + ((v_src12 + v_src32) << 2) + v_src02 + v_src42, |
|
v_src23*v_6 + ((v_src13 + v_src33) << 2) + v_src03 + v_src43))); |
|
} |
|
#endif |
|
for (; i < len; i++) |
|
dst[i] = ((uint32_t)(((uint16_t*)(src[2]))[i]) * 6 + |
|
(((uint32_t)(((uint16_t*)(src[1]))[i]) + (uint32_t)(((uint16_t*)(src[3]))[i])) << 2) + |
|
(uint32_t)(((uint16_t*)(src[0]))[i]) + (uint32_t)(((uint16_t*)(src[4]))[i]) + (1 << 11)) >> 12; |
|
} |
|
template <typename ET, typename FT> |
|
void vlineSmooth(const FT* const * src, const FT* m, int n, ET* dst, int len) |
|
{ |
|
for (int i = 0; i < len; i++) |
|
{ |
|
typename FT::WT val = m[0] * src[0][i]; |
|
for (int j = 1; j < n; j++) |
|
val = val + m[j] * src[j][i]; |
|
dst[i] = val; |
|
} |
|
} |
|
template <> |
|
void vlineSmooth<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int n, uint8_t* dst, int len) |
|
{ |
|
int i = 0; |
|
#if CV_SIMD |
|
static const v_int16 v_128 = v_reinterpret_as_s16(vx_setall_u16((uint16_t)1 << 15)); |
|
v_int32 v_128_4 = vx_setall_s32(128 << 16); |
|
const int VECSZ = v_uint16::nlanes; |
|
if (len >= VECSZ) |
|
{ |
|
ufixedpoint16 msum = m[0] + m[1]; |
|
for (int j = 2; j < n; j++) |
|
msum = msum + m[j]; |
|
ufixedpoint32 val[] = { msum * ufixedpoint16((uint8_t)128) }; |
|
v_128_4 = vx_setall_s32(*((int32_t*)val)); |
|
} |
|
for (; i <= len - 4*VECSZ; i += 4*VECSZ) |
|
{ |
|
v_int16 v_src00, v_src10, v_src01, v_src11, v_src02, v_src12, v_src03, v_src13; |
|
v_int16 v_tmp0, v_tmp1; |
|
|
|
v_int16 v_mul = v_reinterpret_as_s16(vx_setall_u32(*((uint32_t*)m))); |
|
|
|
const int16_t* src0 = (const int16_t*)src[0] + i; |
|
const int16_t* src1 = (const int16_t*)src[1] + i; |
|
v_src00 = vx_load(src0); |
|
v_src01 = vx_load(src0 + VECSZ); |
|
v_src02 = vx_load(src0 + 2*VECSZ); |
|
v_src03 = vx_load(src0 + 3*VECSZ); |
|
v_src10 = vx_load(src1); |
|
v_src11 = vx_load(src1 + VECSZ); |
|
v_src12 = vx_load(src1 + 2*VECSZ); |
|
v_src13 = vx_load(src1 + 3*VECSZ); |
|
v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1); |
|
v_int32 v_res0 = v_dotprod(v_tmp0, v_mul); |
|
v_int32 v_res1 = v_dotprod(v_tmp1, v_mul); |
|
v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1); |
|
v_int32 v_res2 = v_dotprod(v_tmp0, v_mul); |
|
v_int32 v_res3 = v_dotprod(v_tmp1, v_mul); |
|
v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1); |
|
v_int32 v_res4 = v_dotprod(v_tmp0, v_mul); |
|
v_int32 v_res5 = v_dotprod(v_tmp1, v_mul); |
|
v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1); |
|
v_int32 v_res6 = v_dotprod(v_tmp0, v_mul); |
|
v_int32 v_res7 = v_dotprod(v_tmp1, v_mul); |
|
|
|
int j = 2; |
|
for (; j < n - 1; j+=2) |
|
{ |
|
v_mul = v_reinterpret_as_s16(vx_setall_u32(*((uint32_t*)(m+j)))); |
|
|
|
const int16_t* srcj0 = (const int16_t*)src[j] + i; |
|
const int16_t* srcj1 = (const int16_t*)src[j + 1] + i; |
|
v_src00 = vx_load(srcj0); |
|
v_src01 = vx_load(srcj0 + VECSZ); |
|
v_src02 = vx_load(srcj0 + 2*VECSZ); |
|
v_src03 = vx_load(srcj0 + 3*VECSZ); |
|
v_src10 = vx_load(srcj1); |
|
v_src11 = vx_load(srcj1 + VECSZ); |
|
v_src12 = vx_load(srcj1 + 2*VECSZ); |
|
v_src13 = vx_load(srcj1 + 3*VECSZ); |
|
v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src10, v_128), v_tmp0, v_tmp1); |
|
v_res0 += v_dotprod(v_tmp0, v_mul); |
|
v_res1 += v_dotprod(v_tmp1, v_mul); |
|
v_zip(v_add_wrap(v_src01, v_128), v_add_wrap(v_src11, v_128), v_tmp0, v_tmp1); |
|
v_res2 += v_dotprod(v_tmp0, v_mul); |
|
v_res3 += v_dotprod(v_tmp1, v_mul); |
|
v_zip(v_add_wrap(v_src02, v_128), v_add_wrap(v_src12, v_128), v_tmp0, v_tmp1); |
|
v_res4 += v_dotprod(v_tmp0, v_mul); |
|
v_res5 += v_dotprod(v_tmp1, v_mul); |
|
v_zip(v_add_wrap(v_src03, v_128), v_add_wrap(v_src13, v_128), v_tmp0, v_tmp1); |
|
v_res6 += v_dotprod(v_tmp0, v_mul); |
|
v_res7 += v_dotprod(v_tmp1, v_mul); |
|
} |
|
if(j < n) |
|
{ |
|
v_int32 v_resj0, v_resj1; |
|
v_mul = v_reinterpret_as_s16(vx_setall_u16(*((uint16_t*)(m + j)))); |
|
const int16_t* srcj = (const int16_t*)src[j] + i; |
|
v_src00 = vx_load(srcj); |
|
v_src01 = vx_load(srcj + VECSZ); |
|
v_src02 = vx_load(srcj + 2*VECSZ); |
|
v_src03 = vx_load(srcj + 3*VECSZ); |
|
v_mul_expand(v_add_wrap(v_src00, v_128), v_mul, v_resj0, v_resj1); |
|
v_res0 += v_resj0; |
|
v_res1 += v_resj1; |
|
v_mul_expand(v_add_wrap(v_src01, v_128), v_mul, v_resj0, v_resj1); |
|
v_res2 += v_resj0; |
|
v_res3 += v_resj1; |
|
v_mul_expand(v_add_wrap(v_src02, v_128), v_mul, v_resj0, v_resj1); |
|
v_res4 += v_resj0; |
|
v_res5 += v_resj1; |
|
v_mul_expand(v_add_wrap(v_src03, v_128), v_mul, v_resj0, v_resj1); |
|
v_res6 += v_resj0; |
|
v_res7 += v_resj1; |
|
} |
|
v_res0 += v_128_4; |
|
v_res1 += v_128_4; |
|
v_res2 += v_128_4; |
|
v_res3 += v_128_4; |
|
v_res4 += v_128_4; |
|
v_res5 += v_128_4; |
|
v_res6 += v_128_4; |
|
v_res7 += v_128_4; |
|
|
|
v_store(dst + i , v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1)), |
|
v_reinterpret_as_u16(v_rshr_pack<16>(v_res2, v_res3)))); |
|
v_store(dst + i + 2*VECSZ, v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res4, v_res5)), |
|
v_reinterpret_as_u16(v_rshr_pack<16>(v_res6, v_res7)))); |
|
} |
|
#endif |
|
for (; i < len; i++) |
|
{ |
|
ufixedpoint32 val = m[0] * src[0][i]; |
|
for (int j = 1; j < n; j++) |
|
{ |
|
val = val + m[j] * src[j][i]; |
|
} |
|
dst[i] = val; |
|
} |
|
} |
|
template <typename ET, typename FT> |
|
void vlineSmoothONa_yzy_a(const FT* const * src, const FT* m, int n, ET* dst, int len) |
|
{ |
|
int pre_shift = n / 2; |
|
for (int i = 0; i < len; i++) |
|
{ |
|
typename FT::WT val = m[pre_shift] * src[pre_shift][i]; |
|
for (int j = 0; j < pre_shift; j++) |
|
val = val + m[j] * src[j][i] + m[j] * src[(n - 1 - j)][i]; |
|
dst[i] = val; |
|
} |
|
} |
|
template <> |
|
void vlineSmoothONa_yzy_a<uint8_t, ufixedpoint16>(const ufixedpoint16* const * src, const ufixedpoint16* m, int n, uint8_t* dst, int len) |
|
{ |
|
int i = 0; |
|
#if CV_SIMD |
|
int pre_shift = n / 2; |
|
static const v_int16 v_128 = v_reinterpret_as_s16(vx_setall_u16((uint16_t)1 << 15)); |
|
v_int32 v_128_4 = vx_setall_s32(128 << 16); |
|
const int VECSZ = v_uint16::nlanes; |
|
if (len >= VECSZ) |
|
{ |
|
ufixedpoint16 msum = m[0] + m[pre_shift] + m[n - 1]; |
|
for (int j = 1; j < pre_shift; j++) |
|
msum = msum + m[j] + m[n - 1 - j]; |
|
ufixedpoint32 val[] = { msum * ufixedpoint16((uint8_t)128) }; |
|
v_128_4 = vx_setall_s32(*((int32_t*)val)); |
|
} |
|
for (; i <= len - 4*VECSZ; i += 4*VECSZ) |
|
{ |
|
v_int16 v_src00, v_src10, v_src20, v_src30, v_src01, v_src11, v_src21, v_src31; |
|
v_int32 v_res0, v_res1, v_res2, v_res3, v_res4, v_res5, v_res6, v_res7; |
|
v_int16 v_tmp0, v_tmp1, v_tmp2, v_tmp3, v_tmp4, v_tmp5, v_tmp6, v_tmp7; |
|
|
|
v_int16 v_mul = v_reinterpret_as_s16(vx_setall_u16(*((uint16_t*)(m + pre_shift)))); |
|
const int16_t* srcp = (const int16_t*)src[pre_shift] + i; |
|
v_src00 = vx_load(srcp); |
|
v_src10 = vx_load(srcp + VECSZ); |
|
v_src20 = vx_load(srcp + 2*VECSZ); |
|
v_src30 = vx_load(srcp + 3*VECSZ); |
|
v_mul_expand(v_add_wrap(v_src00, v_128), v_mul, v_res0, v_res1); |
|
v_mul_expand(v_add_wrap(v_src10, v_128), v_mul, v_res2, v_res3); |
|
v_mul_expand(v_add_wrap(v_src20, v_128), v_mul, v_res4, v_res5); |
|
v_mul_expand(v_add_wrap(v_src30, v_128), v_mul, v_res6, v_res7); |
|
|
|
int j = 0; |
|
for (; j < pre_shift; j++) |
|
{ |
|
v_mul = v_reinterpret_as_s16(vx_setall_u16(*((uint16_t*)(m + j)))); |
|
|
|
const int16_t* srcj0 = (const int16_t*)src[j] + i; |
|
const int16_t* srcj1 = (const int16_t*)src[n - 1 - j] + i; |
|
v_src00 = vx_load(srcj0); |
|
v_src10 = vx_load(srcj0 + VECSZ); |
|
v_src20 = vx_load(srcj0 + 2*VECSZ); |
|
v_src30 = vx_load(srcj0 + 3*VECSZ); |
|
v_src01 = vx_load(srcj1); |
|
v_src11 = vx_load(srcj1 + VECSZ); |
|
v_src21 = vx_load(srcj1 + 2*VECSZ); |
|
v_src31 = vx_load(srcj1 + 3*VECSZ); |
|
v_zip(v_add_wrap(v_src00, v_128), v_add_wrap(v_src01, v_128), v_tmp0, v_tmp1); |
|
v_res0 += v_dotprod(v_tmp0, v_mul); |
|
v_res1 += v_dotprod(v_tmp1, v_mul); |
|
v_zip(v_add_wrap(v_src10, v_128), v_add_wrap(v_src11, v_128), v_tmp2, v_tmp3); |
|
v_res2 += v_dotprod(v_tmp2, v_mul); |
|
v_res3 += v_dotprod(v_tmp3, v_mul); |
|
v_zip(v_add_wrap(v_src20, v_128), v_add_wrap(v_src21, v_128), v_tmp4, v_tmp5); |
|
v_res4 += v_dotprod(v_tmp4, v_mul); |
|
v_res5 += v_dotprod(v_tmp5, v_mul); |
|
v_zip(v_add_wrap(v_src30, v_128), v_add_wrap(v_src31, v_128), v_tmp6, v_tmp7); |
|
v_res6 += v_dotprod(v_tmp6, v_mul); |
|
v_res7 += v_dotprod(v_tmp7, v_mul); |
|
} |
|
|
|
v_res0 += v_128_4; |
|
v_res1 += v_128_4; |
|
v_res2 += v_128_4; |
|
v_res3 += v_128_4; |
|
v_res4 += v_128_4; |
|
v_res5 += v_128_4; |
|
v_res6 += v_128_4; |
|
v_res7 += v_128_4; |
|
|
|
v_store(dst + i , v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res0, v_res1)), |
|
v_reinterpret_as_u16(v_rshr_pack<16>(v_res2, v_res3)))); |
|
v_store(dst + i + 2*VECSZ, v_pack(v_reinterpret_as_u16(v_rshr_pack<16>(v_res4, v_res5)), |
|
v_reinterpret_as_u16(v_rshr_pack<16>(v_res6, v_res7)))); |
|
} |
|
#endif |
|
for (; i < len; i++) |
|
{ |
|
ufixedpoint32 val = m[0] * src[0][i]; |
|
for (int j = 1; j < n; j++) |
|
{ |
|
val = val + m[j] * src[j][i]; |
|
} |
|
dst[i] = val; |
|
} |
|
} |
|
template <typename ET, typename FT> |
|
class fixedSmoothInvoker : public ParallelLoopBody |
|
{ |
|
public: |
|
fixedSmoothInvoker(const ET* _src, size_t _src_stride, ET* _dst, size_t _dst_stride, |
|
int _width, int _height, int _cn, const FT* _kx, int _kxlen, const FT* _ky, int _kylen, int _borderType) : ParallelLoopBody(), |
|
src(_src), dst(_dst), src_stride(_src_stride), dst_stride(_dst_stride), |
|
width(_width), height(_height), cn(_cn), kx(_kx), ky(_ky), kxlen(_kxlen), kylen(_kylen), borderType(_borderType) |
|
{ |
|
if (kxlen == 1) |
|
{ |
|
if (kx[0] == FT::one()) |
|
hlineSmoothFunc = hlineSmooth1N1; |
|
else |
|
hlineSmoothFunc = hlineSmooth1N; |
|
} |
|
else if (kxlen == 3) |
|
{ |
|
if (kx[0] == (FT::one()>>2)&&kx[1] == (FT::one()>>1)&&kx[2] == (FT::one()>>2)) |
|
hlineSmoothFunc = hlineSmooth3N121; |
|
else if ((kx[0] - kx[2]).isZero()) |
|
hlineSmoothFunc = hlineSmooth3Naba; |
|
else |
|
hlineSmoothFunc = hlineSmooth3N; |
|
} |
|
else if (kxlen == 5) |
|
{ |
|
if (kx[2] == (FT::one()*(uint8_t)3>>3) && |
|
kx[1] == (FT::one()>>2) && kx[3] == (FT::one()>>2) && |
|
kx[0] == (FT::one()>>4) && kx[4] == (FT::one()>>4)) |
|
hlineSmoothFunc = hlineSmooth5N14641; |
|
else if (kx[0] == kx[4] && kx[1] == kx[3]) |
|
hlineSmoothFunc = hlineSmooth5Nabcba; |
|
else |
|
hlineSmoothFunc = hlineSmooth5N; |
|
} |
|
else if (kxlen % 2 == 1) |
|
{ |
|
hlineSmoothFunc = hlineSmoothONa_yzy_a; |
|
for (int i = 0; i < kxlen / 2; i++) |
|
if (!(kx[i] == kx[kxlen - 1 - i])) |
|
{ |
|
hlineSmoothFunc = hlineSmooth; |
|
break; |
|
} |
|
} |
|
else |
|
hlineSmoothFunc = hlineSmooth; |
|
if (kylen == 1) |
|
{ |
|
if (ky[0] == FT::one()) |
|
vlineSmoothFunc = vlineSmooth1N1; |
|
else |
|
vlineSmoothFunc = vlineSmooth1N; |
|
} |
|
else if (kylen == 3) |
|
{ |
|
if (ky[0] == (FT::one() >> 2) && ky[1] == (FT::one() >> 1) && ky[2] == (FT::one() >> 2)) |
|
vlineSmoothFunc = vlineSmooth3N121; |
|
else |
|
vlineSmoothFunc = vlineSmooth3N; |
|
} |
|
else if (kylen == 5) |
|
{ |
|
if (ky[2] == (FT::one() * (uint8_t)3 >> 3) && |
|
ky[1] == (FT::one() >> 2) && ky[3] == (FT::one() >> 2) && |
|
ky[0] == (FT::one() >> 4) && ky[4] == (FT::one() >> 4)) |
|
vlineSmoothFunc = vlineSmooth5N14641; |
|
else |
|
vlineSmoothFunc = vlineSmooth5N; |
|
} |
|
else if (kylen % 2 == 1) |
|
{ |
|
vlineSmoothFunc = vlineSmoothONa_yzy_a; |
|
for (int i = 0; i < kylen / 2; i++) |
|
if (!(ky[i] == ky[kylen - 1 - i])) |
|
{ |
|
vlineSmoothFunc = vlineSmooth; |
|
break; |
|
} |
|
} |
|
else |
|
vlineSmoothFunc = vlineSmooth; |
|
} |
|
virtual void operator() (const Range& range) const CV_OVERRIDE |
|
{ |
|
AutoBuffer<FT> _buf(width*cn*kylen); |
|
FT* buf = _buf.data(); |
|
AutoBuffer<FT*> _ptrs(kylen*2); |
|
FT** ptrs = _ptrs.data(); |
|
|
|
if (kylen == 1) |
|
{ |
|
ptrs[0] = buf; |
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[0], width, borderType); |
|
vlineSmoothFunc(ptrs, ky, kylen, dst + i * dst_stride, width*cn); |
|
} |
|
} |
|
else if (borderType != BORDER_CONSTANT)// If BORDER_CONSTANT out of border values are equal to zero and could be skipped |
|
{ |
|
int pre_shift = kylen / 2; |
|
int post_shift = kylen - pre_shift - 1; |
|
// First line evaluation |
|
int idst = range.start; |
|
int ifrom = max(0, idst - pre_shift); |
|
int ito = idst + post_shift + 1; |
|
int i = ifrom; |
|
int bufline = 0; |
|
for (; i < min(ito, height); i++, bufline++) |
|
{ |
|
ptrs[bufline+kylen] = ptrs[bufline] = buf + bufline * width*cn; |
|
hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); |
|
} |
|
for (; i < ito; i++, bufline++) |
|
{ |
|
int src_idx = borderInterpolate(i, height, borderType); |
|
if (src_idx < ifrom) |
|
{ |
|
ptrs[bufline + kylen] = ptrs[bufline] = buf + bufline * width*cn; |
|
hlineSmoothFunc(src + src_idx * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); |
|
} |
|
else |
|
{ |
|
ptrs[bufline + kylen] = ptrs[bufline] = ptrs[src_idx - ifrom]; |
|
} |
|
} |
|
for (int j = idst - pre_shift; j < 0; j++) |
|
{ |
|
int src_idx = borderInterpolate(j, height, borderType); |
|
if (src_idx >= ito) |
|
{ |
|
ptrs[2*kylen + j] = ptrs[kylen + j] = buf + (kylen + j) * width*cn; |
|
hlineSmoothFunc(src + src_idx * src_stride, cn, kx, kxlen, ptrs[kylen + j], width, borderType); |
|
} |
|
else |
|
{ |
|
ptrs[2*kylen + j] = ptrs[kylen + j] = ptrs[src_idx]; |
|
} |
|
} |
|
vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn); idst++; |
|
|
|
// border mode dependent part evaluation |
|
// i points to last src row to evaluate in convolution |
|
bufline %= kylen; ito = min(height, range.end + post_shift); |
|
for (; i < min(kylen, ito); i++, idst++) |
|
{ |
|
ptrs[bufline + kylen] = ptrs[bufline] = buf + bufline * width*cn; |
|
hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); |
|
bufline = (bufline + 1) % kylen; |
|
vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn); |
|
} |
|
// Points inside the border |
|
for (; i < ito; i++, idst++) |
|
{ |
|
hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); |
|
bufline = (bufline + 1) % kylen; |
|
vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn); |
|
} |
|
// Points that could fall below border |
|
for (; i < range.end + post_shift; i++, idst++) |
|
{ |
|
int src_idx = borderInterpolate(i, height, borderType); |
|
if ((i - src_idx) > kylen) |
|
hlineSmoothFunc(src + src_idx * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); |
|
else |
|
ptrs[bufline + kylen] = ptrs[bufline] = ptrs[(bufline + kylen - (i - src_idx)) % kylen]; |
|
bufline = (bufline + 1) % kylen; |
|
vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn); |
|
} |
|
} |
|
else |
|
{ |
|
int pre_shift = kylen / 2; |
|
int post_shift = kylen - pre_shift - 1; |
|
// First line evaluation |
|
int idst = range.start; |
|
int ifrom = idst - pre_shift; |
|
int ito = min(idst + post_shift + 1, height); |
|
int i = max(0, ifrom); |
|
int bufline = 0; |
|
for (; i < ito; i++, bufline++) |
|
{ |
|
ptrs[bufline + kylen] = ptrs[bufline] = buf + bufline * width*cn; |
|
hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); |
|
} |
|
|
|
if (bufline == 1) |
|
vlineSmooth1N(ptrs, ky - min(ifrom, 0), bufline, dst + idst*dst_stride, width*cn); |
|
else if (bufline == 3) |
|
vlineSmooth3N(ptrs, ky - min(ifrom, 0), bufline, dst + idst*dst_stride, width*cn); |
|
else if (bufline == 5) |
|
vlineSmooth5N(ptrs, ky - min(ifrom, 0), bufline, dst + idst*dst_stride, width*cn); |
|
else |
|
vlineSmooth(ptrs, ky - min(ifrom, 0), bufline, dst + idst*dst_stride, width*cn); |
|
idst++; |
|
|
|
// border mode dependent part evaluation |
|
// i points to last src row to evaluate in convolution |
|
bufline %= kylen; ito = min(height, range.end + post_shift); |
|
for (; i < min(kylen, ito); i++, idst++) |
|
{ |
|
ptrs[bufline + kylen] = ptrs[bufline] = buf + bufline * width*cn; |
|
hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); |
|
bufline++; |
|
if (bufline == 3) |
|
vlineSmooth3N(ptrs, ky + kylen - bufline, i + 1, dst + idst*dst_stride, width*cn); |
|
else if (bufline == 5) |
|
vlineSmooth5N(ptrs, ky + kylen - bufline, i + 1, dst + idst*dst_stride, width*cn); |
|
else |
|
vlineSmooth(ptrs, ky + kylen - bufline, i + 1, dst + idst*dst_stride, width*cn); |
|
bufline %= kylen; |
|
} |
|
// Points inside the border |
|
if (i - max(0, ifrom) >= kylen) |
|
{ |
|
for (; i < ito; i++, idst++) |
|
{ |
|
hlineSmoothFunc(src + i * src_stride, cn, kx, kxlen, ptrs[bufline], width, borderType); |
|
bufline = (bufline + 1) % kylen; |
|
vlineSmoothFunc(ptrs + bufline, ky, kylen, dst + idst*dst_stride, width*cn); |
|
} |
|
|
|
// Points that could fall below border |
|
// i points to first src row to evaluate in convolution |
|
bufline = (bufline + 1) % kylen; |
|
for (i = idst - pre_shift; i < range.end - pre_shift; i++, idst++, bufline++) |
|
if (height - i == 3) |
|
vlineSmooth3N(ptrs + bufline, ky, height - i, dst + idst*dst_stride, width*cn); |
|
else if (height - i == 5) |
|
vlineSmooth5N(ptrs + bufline, ky, height - i, dst + idst*dst_stride, width*cn); |
|
else |
|
vlineSmooth(ptrs + bufline, ky, height - i, dst + idst*dst_stride, width*cn); |
|
} |
|
else |
|
{ |
|
// i points to first src row to evaluate in convolution |
|
for (i = idst - pre_shift; i < min(range.end - pre_shift, 0); i++, idst++) |
|
if (height == 3) |
|
vlineSmooth3N(ptrs, ky - i, height, dst + idst*dst_stride, width*cn); |
|
else if (height == 5) |
|
vlineSmooth5N(ptrs, ky - i, height, dst + idst*dst_stride, width*cn); |
|
else |
|
vlineSmooth(ptrs, ky - i, height, dst + idst*dst_stride, width*cn); |
|
for (; i < range.end - pre_shift; i++, idst++) |
|
if (height - i == 3) |
|
vlineSmooth3N(ptrs + i - max(0, ifrom), ky, height - i, dst + idst*dst_stride, width*cn); |
|
else if (height - i == 5) |
|
vlineSmooth5N(ptrs + i - max(0, ifrom), ky, height - i, dst + idst*dst_stride, width*cn); |
|
else |
|
vlineSmooth(ptrs + i - max(0, ifrom), ky, height - i, dst + idst*dst_stride, width*cn); |
|
} |
|
} |
|
} |
|
private: |
|
const ET* src; |
|
ET* dst; |
|
size_t src_stride, dst_stride; |
|
int width, height, cn; |
|
const FT *kx, *ky; |
|
int kxlen, kylen; |
|
int borderType; |
|
void(*hlineSmoothFunc)(const ET* src, int cn, const FT* m, int n, FT* dst, int len, int borderType); |
|
void(*vlineSmoothFunc)(const FT* const * src, const FT* m, int n, ET* dst, int len); |
|
|
|
fixedSmoothInvoker(const fixedSmoothInvoker&); |
|
fixedSmoothInvoker& operator=(const fixedSmoothInvoker&); |
|
}; |
|
|
|
} // namespace anon |
|
|
|
void GaussianBlurFixedPoint(const Mat& src, /*const*/ Mat& dst, |
|
const uint16_t/*ufixedpoint16*/* fkx, int fkx_size, |
|
const uint16_t/*ufixedpoint16*/* fky, int fky_size, |
|
int borderType) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_Assert(src.depth() == CV_8U && ((borderType & BORDER_ISOLATED) || !src.isSubmatrix())); |
|
fixedSmoothInvoker<uint8_t, ufixedpoint16> invoker( |
|
src.ptr<uint8_t>(), src.step1(), |
|
dst.ptr<uint8_t>(), dst.step1(), dst.cols, dst.rows, dst.channels(), |
|
(const ufixedpoint16*)fkx, fkx_size, (const ufixedpoint16*)fky, fky_size, |
|
borderType & ~BORDER_ISOLATED); |
|
{ |
|
// TODO AVX guard (external call) |
|
parallel_for_(Range(0, dst.rows), invoker, std::max(1, std::min(getNumThreads(), getNumberOfCPUs()))); |
|
} |
|
} |
|
|
|
#endif |
|
CV_CPU_OPTIMIZATION_NAMESPACE_END |
|
} // namespace
|
|
|