mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
786 lines
29 KiB
786 lines
29 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
// auxiliary functions |
|
// 1. nbayes |
|
void nbayes_check_data( CvMLData* _data ) |
|
{ |
|
if( _data->get_missing() ) |
|
CV_Error( CV_StsBadArg, "missing values are not supported" ); |
|
const CvMat* var_types = _data->get_var_types(); |
|
bool is_classifier = var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL; |
|
if( ( fabs( cvNorm( var_types, 0, CV_L1 ) - |
|
(var_types->rows + var_types->cols - 2)*CV_VAR_ORDERED - CV_VAR_CATEGORICAL ) > FLT_EPSILON ) || |
|
!is_classifier ) |
|
CV_Error( CV_StsBadArg, "incorrect types of predictors or responses" ); |
|
} |
|
bool nbayes_train( CvNormalBayesClassifier* nbayes, CvMLData* _data ) |
|
{ |
|
nbayes_check_data( _data ); |
|
const CvMat* values = _data->get_values(); |
|
const CvMat* responses = _data->get_responses(); |
|
const CvMat* train_sidx = _data->get_train_sample_idx(); |
|
const CvMat* var_idx = _data->get_var_idx(); |
|
return nbayes->train( values, responses, var_idx, train_sidx ); |
|
} |
|
float nbayes_calc_error( CvNormalBayesClassifier* nbayes, CvMLData* _data, int type, vector<float> *resp ) |
|
{ |
|
float err = 0; |
|
nbayes_check_data( _data ); |
|
const CvMat* values = _data->get_values(); |
|
const CvMat* response = _data->get_responses(); |
|
const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx(); |
|
int* sidx = sample_idx ? sample_idx->data.i : 0; |
|
int r_step = CV_IS_MAT_CONT(response->type) ? |
|
1 : response->step / CV_ELEM_SIZE(response->type); |
|
int sample_count = sample_idx ? sample_idx->cols : 0; |
|
sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? values->rows : sample_count; |
|
float* pred_resp = 0; |
|
if( resp && (sample_count > 0) ) |
|
{ |
|
resp->resize( sample_count ); |
|
pred_resp = &((*resp)[0]); |
|
} |
|
|
|
for( int i = 0; i < sample_count; i++ ) |
|
{ |
|
CvMat sample; |
|
int si = sidx ? sidx[i] : i; |
|
cvGetRow( values, &sample, si ); |
|
float r = (float)nbayes->predict( &sample, 0 ); |
|
if( pred_resp ) |
|
pred_resp[i] = r; |
|
int d = fabs((double)r - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1; |
|
err += d; |
|
} |
|
err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX; |
|
return err; |
|
} |
|
|
|
// 2. knearest |
|
void knearest_check_data_and_get_predictors( CvMLData* _data, CvMat* _predictors ) |
|
{ |
|
const CvMat* values = _data->get_values(); |
|
const CvMat* var_idx = _data->get_var_idx(); |
|
if( var_idx->cols + var_idx->rows != values->cols ) |
|
CV_Error( CV_StsBadArg, "var_idx is not supported" ); |
|
if( _data->get_missing() ) |
|
CV_Error( CV_StsBadArg, "missing values are not supported" ); |
|
int resp_idx = _data->get_response_idx(); |
|
if( resp_idx == 0) |
|
cvGetCols( values, _predictors, 1, values->cols ); |
|
else if( resp_idx == values->cols - 1 ) |
|
cvGetCols( values, _predictors, 0, values->cols - 1 ); |
|
else |
|
CV_Error( CV_StsBadArg, "responses must be in the first or last column; other cases are not supported" ); |
|
} |
|
bool knearest_train( CvKNearest* knearest, CvMLData* _data ) |
|
{ |
|
const CvMat* responses = _data->get_responses(); |
|
const CvMat* train_sidx = _data->get_train_sample_idx(); |
|
bool is_regression = _data->get_var_type( _data->get_response_idx() ) == CV_VAR_ORDERED; |
|
CvMat predictors; |
|
knearest_check_data_and_get_predictors( _data, &predictors ); |
|
return knearest->train( &predictors, responses, train_sidx, is_regression ); |
|
} |
|
float knearest_calc_error( CvKNearest* knearest, CvMLData* _data, int k, int type, vector<float> *resp ) |
|
{ |
|
float err = 0; |
|
const CvMat* response = _data->get_responses(); |
|
const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx(); |
|
int* sidx = sample_idx ? sample_idx->data.i : 0; |
|
int r_step = CV_IS_MAT_CONT(response->type) ? |
|
1 : response->step / CV_ELEM_SIZE(response->type); |
|
bool is_regression = _data->get_var_type( _data->get_response_idx() ) == CV_VAR_ORDERED; |
|
CvMat predictors; |
|
knearest_check_data_and_get_predictors( _data, &predictors ); |
|
int sample_count = sample_idx ? sample_idx->cols : 0; |
|
sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? predictors.rows : sample_count; |
|
float* pred_resp = 0; |
|
if( resp && (sample_count > 0) ) |
|
{ |
|
resp->resize( sample_count ); |
|
pred_resp = &((*resp)[0]); |
|
} |
|
if ( !is_regression ) |
|
{ |
|
for( int i = 0; i < sample_count; i++ ) |
|
{ |
|
CvMat sample; |
|
int si = sidx ? sidx[i] : i; |
|
cvGetRow( &predictors, &sample, si ); |
|
float r = knearest->find_nearest( &sample, k ); |
|
if( pred_resp ) |
|
pred_resp[i] = r; |
|
int d = fabs((double)r - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1; |
|
err += d; |
|
} |
|
err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX; |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < sample_count; i++ ) |
|
{ |
|
CvMat sample; |
|
int si = sidx ? sidx[i] : i; |
|
cvGetRow( &predictors, &sample, si ); |
|
float r = knearest->find_nearest( &sample, k ); |
|
if( pred_resp ) |
|
pred_resp[i] = r; |
|
float d = r - response->data.fl[si*r_step]; |
|
err += d*d; |
|
} |
|
err = sample_count ? err / (float)sample_count : -FLT_MAX; |
|
} |
|
return err; |
|
} |
|
|
|
// 3. svm |
|
int str_to_svm_type(string& str) |
|
{ |
|
if( !str.compare("C_SVC") ) |
|
return CvSVM::C_SVC; |
|
if( !str.compare("NU_SVC") ) |
|
return CvSVM::NU_SVC; |
|
if( !str.compare("ONE_CLASS") ) |
|
return CvSVM::ONE_CLASS; |
|
if( !str.compare("EPS_SVR") ) |
|
return CvSVM::EPS_SVR; |
|
if( !str.compare("NU_SVR") ) |
|
return CvSVM::NU_SVR; |
|
CV_Error( CV_StsBadArg, "incorrect svm type string" ); |
|
return -1; |
|
} |
|
int str_to_svm_kernel_type( string& str ) |
|
{ |
|
if( !str.compare("LINEAR") ) |
|
return CvSVM::LINEAR; |
|
if( !str.compare("POLY") ) |
|
return CvSVM::POLY; |
|
if( !str.compare("RBF") ) |
|
return CvSVM::RBF; |
|
if( !str.compare("SIGMOID") ) |
|
return CvSVM::SIGMOID; |
|
CV_Error( CV_StsBadArg, "incorrect svm type string" ); |
|
return -1; |
|
} |
|
void svm_check_data( CvMLData* _data ) |
|
{ |
|
if( _data->get_missing() ) |
|
CV_Error( CV_StsBadArg, "missing values are not supported" ); |
|
const CvMat* var_types = _data->get_var_types(); |
|
for( int i = 0; i < var_types->cols-1; i++ ) |
|
if (var_types->data.ptr[i] == CV_VAR_CATEGORICAL) |
|
{ |
|
char msg[50]; |
|
sprintf( msg, "incorrect type of %d-predictor", i ); |
|
CV_Error( CV_StsBadArg, msg ); |
|
} |
|
} |
|
bool svm_train( CvSVM* svm, CvMLData* _data, CvSVMParams _params ) |
|
{ |
|
svm_check_data(_data); |
|
const CvMat* _train_data = _data->get_values(); |
|
const CvMat* _responses = _data->get_responses(); |
|
const CvMat* _var_idx = _data->get_var_idx(); |
|
const CvMat* _sample_idx = _data->get_train_sample_idx(); |
|
return svm->train( _train_data, _responses, _var_idx, _sample_idx, _params ); |
|
} |
|
bool svm_train_auto( CvSVM* svm, CvMLData* _data, CvSVMParams _params, |
|
int k_fold, CvParamGrid C_grid, CvParamGrid gamma_grid, |
|
CvParamGrid p_grid, CvParamGrid nu_grid, CvParamGrid coef_grid, |
|
CvParamGrid degree_grid ) |
|
{ |
|
svm_check_data(_data); |
|
const CvMat* _train_data = _data->get_values(); |
|
const CvMat* _responses = _data->get_responses(); |
|
const CvMat* _var_idx = _data->get_var_idx(); |
|
const CvMat* _sample_idx = _data->get_train_sample_idx(); |
|
return svm->train_auto( _train_data, _responses, _var_idx, |
|
_sample_idx, _params, k_fold, C_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid ); |
|
} |
|
float svm_calc_error( CvSVM* svm, CvMLData* _data, int type, vector<float> *resp ) |
|
{ |
|
svm_check_data(_data); |
|
float err = 0; |
|
const CvMat* values = _data->get_values(); |
|
const CvMat* response = _data->get_responses(); |
|
const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx(); |
|
const CvMat* var_types = _data->get_var_types(); |
|
int* sidx = sample_idx ? sample_idx->data.i : 0; |
|
int r_step = CV_IS_MAT_CONT(response->type) ? |
|
1 : response->step / CV_ELEM_SIZE(response->type); |
|
bool is_classifier = var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL; |
|
int sample_count = sample_idx ? sample_idx->cols : 0; |
|
sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? values->rows : sample_count; |
|
float* pred_resp = 0; |
|
if( resp && (sample_count > 0) ) |
|
{ |
|
resp->resize( sample_count ); |
|
pred_resp = &((*resp)[0]); |
|
} |
|
if ( is_classifier ) |
|
{ |
|
for( int i = 0; i < sample_count; i++ ) |
|
{ |
|
CvMat sample; |
|
int si = sidx ? sidx[i] : i; |
|
cvGetRow( values, &sample, si ); |
|
float r = svm->predict( &sample ); |
|
if( pred_resp ) |
|
pred_resp[i] = r; |
|
int d = fabs((double)r - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1; |
|
err += d; |
|
} |
|
err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX; |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < sample_count; i++ ) |
|
{ |
|
CvMat sample; |
|
int si = sidx ? sidx[i] : i; |
|
cvGetRow( values, &sample, si ); |
|
float r = svm->predict( &sample ); |
|
if( pred_resp ) |
|
pred_resp[i] = r; |
|
float d = r - response->data.fl[si*r_step]; |
|
err += d*d; |
|
} |
|
err = sample_count ? err / (float)sample_count : -FLT_MAX; |
|
} |
|
return err; |
|
} |
|
|
|
// 4. em |
|
// 5. ann |
|
int str_to_ann_train_method( string& str ) |
|
{ |
|
if( !str.compare("BACKPROP") ) |
|
return CvANN_MLP_TrainParams::BACKPROP; |
|
if( !str.compare("RPROP") ) |
|
return CvANN_MLP_TrainParams::RPROP; |
|
CV_Error( CV_StsBadArg, "incorrect ann train method string" ); |
|
return -1; |
|
} |
|
void ann_check_data_and_get_predictors( CvMLData* _data, CvMat* _inputs ) |
|
{ |
|
const CvMat* values = _data->get_values(); |
|
const CvMat* var_idx = _data->get_var_idx(); |
|
if( var_idx->cols + var_idx->rows != values->cols ) |
|
CV_Error( CV_StsBadArg, "var_idx is not supported" ); |
|
if( _data->get_missing() ) |
|
CV_Error( CV_StsBadArg, "missing values are not supported" ); |
|
int resp_idx = _data->get_response_idx(); |
|
if( resp_idx == 0) |
|
cvGetCols( values, _inputs, 1, values->cols ); |
|
else if( resp_idx == values->cols - 1 ) |
|
cvGetCols( values, _inputs, 0, values->cols - 1 ); |
|
else |
|
CV_Error( CV_StsBadArg, "outputs must be in the first or last column; other cases are not supported" ); |
|
} |
|
void ann_get_new_responses( CvMLData* _data, Mat& new_responses, map<int, int>& cls_map ) |
|
{ |
|
const CvMat* train_sidx = _data->get_train_sample_idx(); |
|
int* train_sidx_ptr = train_sidx->data.i; |
|
const CvMat* responses = _data->get_responses(); |
|
float* responses_ptr = responses->data.fl; |
|
int r_step = CV_IS_MAT_CONT(responses->type) ? |
|
1 : responses->step / CV_ELEM_SIZE(responses->type); |
|
int cls_count = 0; |
|
// construct cls_map |
|
cls_map.clear(); |
|
for( int si = 0; si < train_sidx->cols; si++ ) |
|
{ |
|
int sidx = train_sidx_ptr[si]; |
|
int r = cvRound(responses_ptr[sidx*r_step]); |
|
CV_DbgAssert( fabs(responses_ptr[sidx*r_step]-r) < FLT_EPSILON ); |
|
int cls_map_size = (int)cls_map.size(); |
|
cls_map[r]; |
|
if ( (int)cls_map.size() > cls_map_size ) |
|
cls_map[r] = cls_count++; |
|
} |
|
new_responses.create( responses->rows, cls_count, CV_32F ); |
|
new_responses.setTo( 0 ); |
|
for( int si = 0; si < train_sidx->cols; si++ ) |
|
{ |
|
int sidx = train_sidx_ptr[si]; |
|
int r = cvRound(responses_ptr[sidx*r_step]); |
|
int cidx = cls_map[r]; |
|
new_responses.ptr<float>(sidx)[cidx] = 1; |
|
} |
|
} |
|
int ann_train( CvANN_MLP* ann, CvMLData* _data, Mat& new_responses, CvANN_MLP_TrainParams _params, int flags = 0 ) |
|
{ |
|
const CvMat* train_sidx = _data->get_train_sample_idx(); |
|
CvMat predictors; |
|
ann_check_data_and_get_predictors( _data, &predictors ); |
|
CvMat _new_responses = CvMat( new_responses ); |
|
return ann->train( &predictors, &_new_responses, 0, train_sidx, _params, flags ); |
|
} |
|
float ann_calc_error( CvANN_MLP* ann, CvMLData* _data, map<int, int>& cls_map, int type , vector<float> *resp_labels ) |
|
{ |
|
float err = 0; |
|
const CvMat* responses = _data->get_responses(); |
|
const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx(); |
|
int* sidx = sample_idx ? sample_idx->data.i : 0; |
|
int r_step = CV_IS_MAT_CONT(responses->type) ? |
|
1 : responses->step / CV_ELEM_SIZE(responses->type); |
|
CvMat predictors; |
|
ann_check_data_and_get_predictors( _data, &predictors ); |
|
int sample_count = sample_idx ? sample_idx->cols : 0; |
|
sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? predictors.rows : sample_count; |
|
float* pred_resp = 0; |
|
vector<float> innresp; |
|
if( sample_count > 0 ) |
|
{ |
|
if( resp_labels ) |
|
{ |
|
resp_labels->resize( sample_count ); |
|
pred_resp = &((*resp_labels)[0]); |
|
} |
|
else |
|
{ |
|
innresp.resize( sample_count ); |
|
pred_resp = &(innresp[0]); |
|
} |
|
} |
|
int cls_count = (int)cls_map.size(); |
|
Mat output( 1, cls_count, CV_32FC1 ); |
|
CvMat _output = CvMat(output); |
|
for( int i = 0; i < sample_count; i++ ) |
|
{ |
|
CvMat sample; |
|
int si = sidx ? sidx[i] : i; |
|
cvGetRow( &predictors, &sample, si ); |
|
ann->predict( &sample, &_output ); |
|
CvPoint best_cls = {0,0}; |
|
cvMinMaxLoc( &_output, 0, 0, 0, &best_cls, 0 ); |
|
int r = cvRound(responses->data.fl[si*r_step]); |
|
CV_DbgAssert( fabs(responses->data.fl[si*r_step]-r) < FLT_EPSILON ); |
|
r = cls_map[r]; |
|
int d = best_cls.x == r ? 0 : 1; |
|
err += d; |
|
pred_resp[i] = (float)best_cls.x; |
|
} |
|
err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX; |
|
return err; |
|
} |
|
|
|
// 6. dtree |
|
// 7. boost |
|
int str_to_boost_type( string& str ) |
|
{ |
|
if ( !str.compare("DISCRETE") ) |
|
return CvBoost::DISCRETE; |
|
if ( !str.compare("REAL") ) |
|
return CvBoost::REAL; |
|
if ( !str.compare("LOGIT") ) |
|
return CvBoost::LOGIT; |
|
if ( !str.compare("GENTLE") ) |
|
return CvBoost::GENTLE; |
|
CV_Error( CV_StsBadArg, "incorrect boost type string" ); |
|
return -1; |
|
} |
|
|
|
// 8. rtrees |
|
// 9. ertrees |
|
|
|
// ---------------------------------- MLBaseTest --------------------------------------------------- |
|
|
|
CV_MLBaseTest::CV_MLBaseTest(const char* _modelName) |
|
{ |
|
int64 seeds[] = { CV_BIG_INT(0x00009fff4f9c8d52), |
|
CV_BIG_INT(0x0000a17166072c7c), |
|
CV_BIG_INT(0x0201b32115cd1f9a), |
|
CV_BIG_INT(0x0513cb37abcd1234), |
|
CV_BIG_INT(0x0001a2b3c4d5f678) |
|
}; |
|
|
|
int seedCount = sizeof(seeds)/sizeof(seeds[0]); |
|
RNG& rng = theRNG(); |
|
|
|
initSeed = rng.state; |
|
|
|
rng.state = seeds[rng(seedCount)]; |
|
|
|
modelName = _modelName; |
|
nbayes = 0; |
|
knearest = 0; |
|
svm = 0; |
|
ann = 0; |
|
dtree = 0; |
|
boost = 0; |
|
rtrees = 0; |
|
ertrees = 0; |
|
if( !modelName.compare(CV_NBAYES) ) |
|
nbayes = new CvNormalBayesClassifier; |
|
else if( !modelName.compare(CV_KNEAREST) ) |
|
knearest = new CvKNearest; |
|
else if( !modelName.compare(CV_SVM) ) |
|
svm = new CvSVM; |
|
else if( !modelName.compare(CV_ANN) ) |
|
ann = new CvANN_MLP; |
|
else if( !modelName.compare(CV_DTREE) ) |
|
dtree = new CvDTree; |
|
else if( !modelName.compare(CV_BOOST) ) |
|
boost = new CvBoost; |
|
else if( !modelName.compare(CV_RTREES) ) |
|
rtrees = new CvRTrees; |
|
else if( !modelName.compare(CV_ERTREES) ) |
|
ertrees = new CvERTrees; |
|
} |
|
|
|
CV_MLBaseTest::~CV_MLBaseTest() |
|
{ |
|
if( validationFS.isOpened() ) |
|
validationFS.release(); |
|
if( nbayes ) |
|
delete nbayes; |
|
if( knearest ) |
|
delete knearest; |
|
if( svm ) |
|
delete svm; |
|
if( ann ) |
|
delete ann; |
|
if( dtree ) |
|
delete dtree; |
|
if( boost ) |
|
delete boost; |
|
if( rtrees ) |
|
delete rtrees; |
|
if( ertrees ) |
|
delete ertrees; |
|
theRNG().state = initSeed; |
|
} |
|
|
|
int CV_MLBaseTest::read_params( CvFileStorage* _fs ) |
|
{ |
|
if( !_fs ) |
|
test_case_count = -1; |
|
else |
|
{ |
|
CvFileNode* fn = cvGetRootFileNode( _fs, 0 ); |
|
fn = (CvFileNode*)cvGetSeqElem( fn->data.seq, 0 ); |
|
fn = cvGetFileNodeByName( _fs, fn, "run_params" ); |
|
CvSeq* dataSetNamesSeq = cvGetFileNodeByName( _fs, fn, modelName.c_str() )->data.seq; |
|
test_case_count = dataSetNamesSeq ? dataSetNamesSeq->total : -1; |
|
if( test_case_count > 0 ) |
|
{ |
|
dataSetNames.resize( test_case_count ); |
|
vector<string>::iterator it = dataSetNames.begin(); |
|
for( int i = 0; i < test_case_count; i++, it++ ) |
|
*it = ((CvFileNode*)cvGetSeqElem( dataSetNamesSeq, i ))->data.str.ptr; |
|
} |
|
} |
|
return cvtest::TS::OK;; |
|
} |
|
|
|
void CV_MLBaseTest::run( int start_from ) |
|
{ |
|
string filename = ts->get_data_path(); |
|
filename += get_validation_filename(); |
|
validationFS.open( filename, FileStorage::READ ); |
|
read_params( *validationFS ); |
|
|
|
int code = cvtest::TS::OK; |
|
start_from = 0; |
|
for (int i = 0; i < test_case_count; i++) |
|
{ |
|
int temp_code = run_test_case( i ); |
|
if (temp_code == cvtest::TS::OK) |
|
temp_code = validate_test_results( i ); |
|
if (temp_code != cvtest::TS::OK) |
|
code = temp_code; |
|
} |
|
if ( test_case_count <= 0) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "validation file is not determined or not correct" ); |
|
code = cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
ts->set_failed_test_info( code ); |
|
} |
|
|
|
int CV_MLBaseTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int trainSampleCount, respIdx; |
|
string varTypes; |
|
clear(); |
|
|
|
string dataPath = ts->get_data_path(); |
|
if ( dataPath.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "data path is empty" ); |
|
return cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
|
|
string dataName = dataSetNames[test_case_idx], |
|
filename = dataPath + dataName + ".data"; |
|
if ( data.read_csv( filename.c_str() ) != 0) |
|
{ |
|
char msg[100]; |
|
sprintf( msg, "file %s can not be read", filename.c_str() ); |
|
ts->printf( cvtest::TS::LOG, msg ); |
|
return cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
|
|
FileNode dataParamsNode = validationFS.getFirstTopLevelNode()["validation"][modelName][dataName]["data_params"]; |
|
CV_DbgAssert( !dataParamsNode.empty() ); |
|
|
|
CV_DbgAssert( !dataParamsNode["LS"].empty() ); |
|
dataParamsNode["LS"] >> trainSampleCount; |
|
CvTrainTestSplit spl( trainSampleCount ); |
|
data.set_train_test_split( &spl ); |
|
|
|
CV_DbgAssert( !dataParamsNode["resp_idx"].empty() ); |
|
dataParamsNode["resp_idx"] >> respIdx; |
|
data.set_response_idx( respIdx ); |
|
|
|
CV_DbgAssert( !dataParamsNode["types"].empty() ); |
|
dataParamsNode["types"] >> varTypes; |
|
data.set_var_types( varTypes.c_str() ); |
|
|
|
return cvtest::TS::OK; |
|
} |
|
|
|
string& CV_MLBaseTest::get_validation_filename() |
|
{ |
|
return validationFN; |
|
} |
|
|
|
int CV_MLBaseTest::train( int testCaseIdx ) |
|
{ |
|
bool is_trained = false; |
|
FileNode modelParamsNode = |
|
validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["model_params"]; |
|
|
|
if( !modelName.compare(CV_NBAYES) ) |
|
is_trained = nbayes_train( nbayes, &data ); |
|
else if( !modelName.compare(CV_KNEAREST) ) |
|
{ |
|
assert( 0 ); |
|
//is_trained = knearest->train( &data ); |
|
} |
|
else if( !modelName.compare(CV_SVM) ) |
|
{ |
|
string svm_type_str, kernel_type_str; |
|
modelParamsNode["svm_type"] >> svm_type_str; |
|
modelParamsNode["kernel_type"] >> kernel_type_str; |
|
CvSVMParams params; |
|
params.svm_type = str_to_svm_type( svm_type_str ); |
|
params.kernel_type = str_to_svm_kernel_type( kernel_type_str ); |
|
modelParamsNode["degree"] >> params.degree; |
|
modelParamsNode["gamma"] >> params.gamma; |
|
modelParamsNode["coef0"] >> params.coef0; |
|
modelParamsNode["C"] >> params.C; |
|
modelParamsNode["nu"] >> params.nu; |
|
modelParamsNode["p"] >> params.p; |
|
is_trained = svm_train( svm, &data, params ); |
|
} |
|
else if( !modelName.compare(CV_EM) ) |
|
{ |
|
assert( 0 ); |
|
} |
|
else if( !modelName.compare(CV_ANN) ) |
|
{ |
|
string train_method_str; |
|
double param1, param2; |
|
modelParamsNode["train_method"] >> train_method_str; |
|
modelParamsNode["param1"] >> param1; |
|
modelParamsNode["param2"] >> param2; |
|
Mat new_responses; |
|
ann_get_new_responses( &data, new_responses, cls_map ); |
|
int layer_sz[] = { data.get_values()->cols - 1, 100, 100, (int)cls_map.size() }; |
|
CvMat layer_sizes = |
|
cvMat( 1, (int)(sizeof(layer_sz)/sizeof(layer_sz[0])), CV_32S, layer_sz ); |
|
ann->create( &layer_sizes ); |
|
is_trained = ann_train( ann, &data, new_responses, CvANN_MLP_TrainParams(cvTermCriteria(CV_TERMCRIT_ITER,300,0.01), |
|
str_to_ann_train_method(train_method_str), param1, param2) ) >= 0; |
|
} |
|
else if( !modelName.compare(CV_DTREE) ) |
|
{ |
|
int MAX_DEPTH, MIN_SAMPLE_COUNT, MAX_CATEGORIES, CV_FOLDS; |
|
float REG_ACCURACY = 0; |
|
bool USE_SURROGATE, IS_PRUNED; |
|
modelParamsNode["max_depth"] >> MAX_DEPTH; |
|
modelParamsNode["min_sample_count"] >> MIN_SAMPLE_COUNT; |
|
modelParamsNode["use_surrogate"] >> USE_SURROGATE; |
|
modelParamsNode["max_categories"] >> MAX_CATEGORIES; |
|
modelParamsNode["cv_folds"] >> CV_FOLDS; |
|
modelParamsNode["is_pruned"] >> IS_PRUNED; |
|
is_trained = dtree->train( &data, |
|
CvDTreeParams(MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY, USE_SURROGATE, |
|
MAX_CATEGORIES, CV_FOLDS, false, IS_PRUNED, 0 )) != 0; |
|
} |
|
else if( !modelName.compare(CV_BOOST) ) |
|
{ |
|
int BOOST_TYPE, WEAK_COUNT, MAX_DEPTH; |
|
float WEIGHT_TRIM_RATE; |
|
bool USE_SURROGATE; |
|
string typeStr; |
|
modelParamsNode["type"] >> typeStr; |
|
BOOST_TYPE = str_to_boost_type( typeStr ); |
|
modelParamsNode["weak_count"] >> WEAK_COUNT; |
|
modelParamsNode["weight_trim_rate"] >> WEIGHT_TRIM_RATE; |
|
modelParamsNode["max_depth"] >> MAX_DEPTH; |
|
modelParamsNode["use_surrogate"] >> USE_SURROGATE; |
|
is_trained = boost->train( &data, |
|
CvBoostParams(BOOST_TYPE, WEAK_COUNT, WEIGHT_TRIM_RATE, MAX_DEPTH, USE_SURROGATE, 0) ) != 0; |
|
} |
|
else if( !modelName.compare(CV_RTREES) ) |
|
{ |
|
int MAX_DEPTH, MIN_SAMPLE_COUNT, MAX_CATEGORIES, CV_FOLDS, NACTIVE_VARS, MAX_TREES_NUM; |
|
float REG_ACCURACY = 0, OOB_EPS = 0.0; |
|
bool USE_SURROGATE, IS_PRUNED; |
|
modelParamsNode["max_depth"] >> MAX_DEPTH; |
|
modelParamsNode["min_sample_count"] >> MIN_SAMPLE_COUNT; |
|
modelParamsNode["use_surrogate"] >> USE_SURROGATE; |
|
modelParamsNode["max_categories"] >> MAX_CATEGORIES; |
|
modelParamsNode["cv_folds"] >> CV_FOLDS; |
|
modelParamsNode["is_pruned"] >> IS_PRUNED; |
|
modelParamsNode["nactive_vars"] >> NACTIVE_VARS; |
|
modelParamsNode["max_trees_num"] >> MAX_TREES_NUM; |
|
is_trained = rtrees->train( &data, CvRTParams( MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY, |
|
USE_SURROGATE, MAX_CATEGORIES, 0, true, // (calc_var_importance == true) <=> RF processes variable importance |
|
NACTIVE_VARS, MAX_TREES_NUM, OOB_EPS, CV_TERMCRIT_ITER)) != 0; |
|
} |
|
else if( !modelName.compare(CV_ERTREES) ) |
|
{ |
|
int MAX_DEPTH, MIN_SAMPLE_COUNT, MAX_CATEGORIES, CV_FOLDS, NACTIVE_VARS, MAX_TREES_NUM; |
|
float REG_ACCURACY = 0, OOB_EPS = 0.0; |
|
bool USE_SURROGATE, IS_PRUNED; |
|
modelParamsNode["max_depth"] >> MAX_DEPTH; |
|
modelParamsNode["min_sample_count"] >> MIN_SAMPLE_COUNT; |
|
modelParamsNode["use_surrogate"] >> USE_SURROGATE; |
|
modelParamsNode["max_categories"] >> MAX_CATEGORIES; |
|
modelParamsNode["cv_folds"] >> CV_FOLDS; |
|
modelParamsNode["is_pruned"] >> IS_PRUNED; |
|
modelParamsNode["nactive_vars"] >> NACTIVE_VARS; |
|
modelParamsNode["max_trees_num"] >> MAX_TREES_NUM; |
|
is_trained = ertrees->train( &data, CvRTParams( MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY, |
|
USE_SURROGATE, MAX_CATEGORIES, 0, false, // (calc_var_importance == true) <=> RF processes variable importance |
|
NACTIVE_VARS, MAX_TREES_NUM, OOB_EPS, CV_TERMCRIT_ITER)) != 0; |
|
} |
|
|
|
if( !is_trained ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "in test case %d model training was failed", testCaseIdx ); |
|
return cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
return cvtest::TS::OK; |
|
} |
|
|
|
float CV_MLBaseTest::get_error( int testCaseIdx, int type, vector<float> *resp ) |
|
{ |
|
float err = 0; |
|
if( !modelName.compare(CV_NBAYES) ) |
|
err = nbayes_calc_error( nbayes, &data, type, resp ); |
|
else if( !modelName.compare(CV_KNEAREST) ) |
|
{ |
|
assert( 0 ); |
|
testCaseIdx = 0; |
|
/*int k = 2; |
|
validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["model_params"]["k"] >> k; |
|
err = knearest->calc_error( &data, k, type, resp );*/ |
|
} |
|
else if( !modelName.compare(CV_SVM) ) |
|
err = svm_calc_error( svm, &data, type, resp ); |
|
else if( !modelName.compare(CV_EM) ) |
|
assert( 0 ); |
|
else if( !modelName.compare(CV_ANN) ) |
|
err = ann_calc_error( ann, &data, cls_map, type, resp ); |
|
else if( !modelName.compare(CV_DTREE) ) |
|
err = dtree->calc_error( &data, type, resp ); |
|
else if( !modelName.compare(CV_BOOST) ) |
|
err = boost->calc_error( &data, type, resp ); |
|
else if( !modelName.compare(CV_RTREES) ) |
|
err = rtrees->calc_error( &data, type, resp ); |
|
else if( !modelName.compare(CV_ERTREES) ) |
|
err = ertrees->calc_error( &data, type, resp ); |
|
return err; |
|
} |
|
|
|
void CV_MLBaseTest::save( const char* filename ) |
|
{ |
|
if( !modelName.compare(CV_NBAYES) ) |
|
nbayes->save( filename ); |
|
else if( !modelName.compare(CV_KNEAREST) ) |
|
knearest->save( filename ); |
|
else if( !modelName.compare(CV_SVM) ) |
|
svm->save( filename ); |
|
else if( !modelName.compare(CV_ANN) ) |
|
ann->save( filename ); |
|
else if( !modelName.compare(CV_DTREE) ) |
|
dtree->save( filename ); |
|
else if( !modelName.compare(CV_BOOST) ) |
|
boost->save( filename ); |
|
else if( !modelName.compare(CV_RTREES) ) |
|
rtrees->save( filename ); |
|
else if( !modelName.compare(CV_ERTREES) ) |
|
ertrees->save( filename ); |
|
} |
|
|
|
void CV_MLBaseTest::load( const char* filename ) |
|
{ |
|
if( !modelName.compare(CV_NBAYES) ) |
|
nbayes->load( filename ); |
|
else if( !modelName.compare(CV_KNEAREST) ) |
|
knearest->load( filename ); |
|
else if( !modelName.compare(CV_SVM) ) |
|
svm->load( filename ); |
|
else if( !modelName.compare(CV_ANN) ) |
|
ann->load( filename ); |
|
else if( !modelName.compare(CV_DTREE) ) |
|
dtree->load( filename ); |
|
else if( !modelName.compare(CV_BOOST) ) |
|
boost->load( filename ); |
|
else if( !modelName.compare(CV_RTREES) ) |
|
rtrees->load( filename ); |
|
else if( !modelName.compare(CV_ERTREES) ) |
|
ertrees->load( filename ); |
|
} |
|
|
|
/* End of file. */
|
|
|