mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
6.4 KiB
174 lines
6.4 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "perf_precomp.hpp" |
|
#include "opencv2/ts/gpu_perf.hpp" |
|
|
|
using namespace std; |
|
using namespace testing; |
|
using namespace perf; |
|
|
|
/////////////////////////////////////////////////////////////// |
|
// HOG |
|
|
|
DEF_PARAM_TEST_1(Image, string); |
|
|
|
PERF_TEST_P(Image, ObjDetect_HOG, |
|
Values<string>("gpu/hog/road.png", |
|
"gpu/caltech/image_00000009_0.png", |
|
"gpu/caltech/image_00000032_0.png", |
|
"gpu/caltech/image_00000165_0.png", |
|
"gpu/caltech/image_00000261_0.png", |
|
"gpu/caltech/image_00000469_0.png", |
|
"gpu/caltech/image_00000527_0.png", |
|
"gpu/caltech/image_00000574_0.png")) |
|
{ |
|
declare.time(300.0); |
|
|
|
const cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
const cv::gpu::GpuMat d_img(img); |
|
std::vector<cv::Rect> gpu_found_locations; |
|
|
|
cv::gpu::HOGDescriptor d_hog; |
|
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
|
|
|
TEST_CYCLE() d_hog.detectMultiScale(d_img, gpu_found_locations); |
|
|
|
SANITY_CHECK(gpu_found_locations); |
|
} |
|
else |
|
{ |
|
std::vector<cv::Rect> cpu_found_locations; |
|
|
|
cv::HOGDescriptor hog; |
|
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
|
|
|
TEST_CYCLE() hog.detectMultiScale(img, cpu_found_locations); |
|
|
|
SANITY_CHECK(cpu_found_locations); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////// |
|
// HaarClassifier |
|
|
|
typedef pair<string, string> pair_string; |
|
DEF_PARAM_TEST_1(ImageAndCascade, pair_string); |
|
|
|
PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier, |
|
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml"))) |
|
{ |
|
const cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::CascadeClassifier_GPU d_cascade; |
|
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second))); |
|
|
|
const cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat objects_buffer; |
|
int detections_num = 0; |
|
|
|
TEST_CYCLE() detections_num = d_cascade.detectMultiScale(d_img, objects_buffer); |
|
|
|
std::vector<cv::Rect> gpu_rects(detections_num); |
|
cv::Mat gpu_rects_mat(1, detections_num, cv::DataType<cv::Rect>::type, &gpu_rects[0]); |
|
objects_buffer.colRange(0, detections_num).download(gpu_rects_mat); |
|
cv::groupRectangles(gpu_rects, 3, 0.2); |
|
SANITY_CHECK(gpu_rects); |
|
} |
|
else |
|
{ |
|
cv::CascadeClassifier cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml"))); |
|
|
|
std::vector<cv::Rect> cpu_rects; |
|
|
|
TEST_CYCLE() cascade.detectMultiScale(img, cpu_rects); |
|
|
|
SANITY_CHECK(cpu_rects); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////// |
|
// LBP cascade |
|
|
|
PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier, |
|
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml"))) |
|
{ |
|
const cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::CascadeClassifier_GPU d_cascade; |
|
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second))); |
|
|
|
const cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat objects_buffer; |
|
int detections_num = 0; |
|
|
|
TEST_CYCLE() detections_num = d_cascade.detectMultiScale(d_img, objects_buffer); |
|
|
|
std::vector<cv::Rect> gpu_rects(detections_num); |
|
cv::Mat gpu_rects_mat(1, detections_num, cv::DataType<cv::Rect>::type, &gpu_rects[0]); |
|
objects_buffer.colRange(0, detections_num).download(gpu_rects_mat); |
|
cv::groupRectangles(gpu_rects, 3, 0.2); |
|
SANITY_CHECK(gpu_rects); |
|
} |
|
else |
|
{ |
|
cv::CascadeClassifier cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml"))); |
|
|
|
std::vector<cv::Rect> cpu_rects; |
|
|
|
TEST_CYCLE() cascade.detectMultiScale(img, cpu_rects); |
|
|
|
SANITY_CHECK(cpu_rects); |
|
} |
|
}
|
|
|