mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3514 lines
119 KiB
3514 lines
119 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels.hpp" |
|
#include "opencv2/core/opencl/runtime/opencl_clamdblas.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
/****************************************************************************************\ |
|
* GEMM * |
|
\****************************************************************************************/ |
|
|
|
static void |
|
GEMM_CopyBlock( const uchar* src, size_t src_step, |
|
uchar* dst, size_t dst_step, |
|
Size size, size_t pix_size ) |
|
{ |
|
int j; |
|
size.width *= (int)(pix_size / sizeof(int)); |
|
|
|
for( ; size.height--; src += src_step, dst += dst_step ) |
|
{ |
|
j=0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; j <= size.width - 4; j += 4 ) |
|
{ |
|
int t0 = ((const int*)src)[j]; |
|
int t1 = ((const int*)src)[j+1]; |
|
((int*)dst)[j] = t0; |
|
((int*)dst)[j+1] = t1; |
|
t0 = ((const int*)src)[j+2]; |
|
t1 = ((const int*)src)[j+3]; |
|
((int*)dst)[j+2] = t0; |
|
((int*)dst)[j+3] = t1; |
|
} |
|
#endif |
|
for( ; j < size.width; j++ ) |
|
((int*)dst)[j] = ((const int*)src)[j]; |
|
} |
|
} |
|
|
|
|
|
static void |
|
GEMM_TransposeBlock( const uchar* src, size_t src_step, |
|
uchar* dst, size_t dst_step, |
|
Size size, size_t pix_size ) |
|
{ |
|
int i, j; |
|
for( i = 0; i < size.width; i++, dst += dst_step, src += pix_size ) |
|
{ |
|
const uchar* _src = src; |
|
switch( pix_size ) |
|
{ |
|
case sizeof(int): |
|
for( j = 0; j < size.height; j++, _src += src_step ) |
|
((int*)dst)[j] = ((int*)_src)[0]; |
|
break; |
|
case sizeof(int)*2: |
|
for( j = 0; j < size.height*2; j += 2, _src += src_step ) |
|
{ |
|
int t0 = ((int*)_src)[0]; |
|
int t1 = ((int*)_src)[1]; |
|
((int*)dst)[j] = t0; |
|
((int*)dst)[j+1] = t1; |
|
} |
|
break; |
|
case sizeof(int)*4: |
|
for( j = 0; j < size.height*4; j += 4, _src += src_step ) |
|
{ |
|
int t0 = ((int*)_src)[0]; |
|
int t1 = ((int*)_src)[1]; |
|
((int*)dst)[j] = t0; |
|
((int*)dst)[j+1] = t1; |
|
t0 = ((int*)_src)[2]; |
|
t1 = ((int*)_src)[3]; |
|
((int*)dst)[j+2] = t0; |
|
((int*)dst)[j+3] = t1; |
|
} |
|
break; |
|
default: |
|
assert(0); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
|
|
template<typename T, typename WT> static void |
|
GEMMSingleMul( const T* a_data, size_t a_step, |
|
const T* b_data, size_t b_step, |
|
const T* c_data, size_t c_step, |
|
T* d_data, size_t d_step, |
|
Size a_size, Size d_size, |
|
double alpha, double beta, int flags ) |
|
{ |
|
int i, j, k, n = a_size.width, m = d_size.width, drows = d_size.height; |
|
const T *_a_data = a_data, *_b_data = b_data, *_c_data = c_data; |
|
cv::AutoBuffer<T> _a_buf; |
|
T* a_buf = 0; |
|
size_t a_step0, a_step1, c_step0, c_step1, t_step; |
|
|
|
a_step /= sizeof(a_data[0]); |
|
b_step /= sizeof(b_data[0]); |
|
c_step /= sizeof(c_data[0]); |
|
d_step /= sizeof(d_data[0]); |
|
a_step0 = a_step; |
|
a_step1 = 1; |
|
|
|
if( !c_data ) |
|
c_step0 = c_step1 = 0; |
|
else if( !(flags & GEMM_3_T) ) |
|
c_step0 = c_step, c_step1 = 1; |
|
else |
|
c_step0 = 1, c_step1 = c_step; |
|
|
|
if( flags & GEMM_1_T ) |
|
{ |
|
CV_SWAP( a_step0, a_step1, t_step ); |
|
n = a_size.height; |
|
if( a_step > 1 && n > 1 ) |
|
{ |
|
_a_buf.allocate(n); |
|
a_buf = _a_buf; |
|
} |
|
} |
|
|
|
if( n == 1 ) /* external product */ |
|
{ |
|
cv::AutoBuffer<T> _b_buf; |
|
T* b_buf = 0; |
|
|
|
if( a_step > 1 && a_size.height > 1 ) |
|
{ |
|
_a_buf.allocate(drows); |
|
a_buf = _a_buf; |
|
for( k = 0; k < drows; k++ ) |
|
a_buf[k] = a_data[a_step*k]; |
|
a_data = a_buf; |
|
} |
|
|
|
if( b_step > 1 ) |
|
{ |
|
_b_buf.allocate(d_size.width); |
|
b_buf = _b_buf; |
|
for( j = 0; j < d_size.width; j++ ) |
|
b_buf[j] = b_data[j*b_step]; |
|
b_data = b_buf; |
|
} |
|
|
|
for( i = 0; i < drows; i++, _c_data += c_step0, d_data += d_step ) |
|
{ |
|
WT al = WT(a_data[i])*alpha; |
|
c_data = _c_data; |
|
for( j = 0; j <= d_size.width - 2; j += 2, c_data += 2*c_step1 ) |
|
{ |
|
WT s0 = al*WT(b_data[j]); |
|
WT s1 = al*WT(b_data[j+1]); |
|
if( !c_data ) |
|
{ |
|
d_data[j] = T(s0); |
|
d_data[j+1] = T(s1); |
|
} |
|
else |
|
{ |
|
d_data[j] = T(s0 + WT(c_data[0])*beta); |
|
d_data[j+1] = T(s1 + WT(c_data[c_step1])*beta); |
|
} |
|
} |
|
|
|
for( ; j < d_size.width; j++, c_data += c_step1 ) |
|
{ |
|
WT s0 = al*WT(b_data[j]); |
|
if( !c_data ) |
|
d_data[j] = T(s0); |
|
else |
|
d_data[j] = T(s0 + WT(c_data[0])*beta); |
|
} |
|
} |
|
} |
|
else if( flags & GEMM_2_T ) /* A * Bt */ |
|
{ |
|
for( i = 0; i < drows; i++, _a_data += a_step0, _c_data += c_step0, d_data += d_step ) |
|
{ |
|
a_data = _a_data; |
|
b_data = _b_data; |
|
c_data = _c_data; |
|
|
|
if( a_buf ) |
|
{ |
|
for( k = 0; k < n; k++ ) |
|
a_buf[k] = a_data[a_step1*k]; |
|
a_data = a_buf; |
|
} |
|
|
|
for( j = 0; j < d_size.width; j++, b_data += b_step, |
|
c_data += c_step1 ) |
|
{ |
|
WT s0(0), s1(0), s2(0), s3(0); |
|
k = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; k <= n - 4; k += 4 ) |
|
{ |
|
s0 += WT(a_data[k])*WT(b_data[k]); |
|
s1 += WT(a_data[k+1])*WT(b_data[k+1]); |
|
s2 += WT(a_data[k+2])*WT(b_data[k+2]); |
|
s3 += WT(a_data[k+3])*WT(b_data[k+3]); |
|
} |
|
#endif |
|
for( ; k < n; k++ ) |
|
s0 += WT(a_data[k])*WT(b_data[k]); |
|
s0 = (s0+s1+s2+s3)*alpha; |
|
|
|
if( !c_data ) |
|
d_data[j] = T(s0); |
|
else |
|
d_data[j] = T(s0 + WT(c_data[0])*beta); |
|
} |
|
} |
|
} |
|
else if( d_size.width*sizeof(d_data[0]) <= 1600 ) |
|
{ |
|
for( i = 0; i < drows; i++, _a_data += a_step0, |
|
_c_data += c_step0, |
|
d_data += d_step ) |
|
{ |
|
a_data = _a_data, c_data = _c_data; |
|
|
|
if( a_buf ) |
|
{ |
|
for( k = 0; k < n; k++ ) |
|
a_buf[k] = a_data[a_step1*k]; |
|
a_data = a_buf; |
|
} |
|
|
|
for( j = 0; j <= m - 4; j += 4, c_data += 4*c_step1 ) |
|
{ |
|
const T* b = _b_data + j; |
|
WT s0(0), s1(0), s2(0), s3(0); |
|
|
|
for( k = 0; k < n; k++, b += b_step ) |
|
{ |
|
WT a(a_data[k]); |
|
s0 += a * WT(b[0]); s1 += a * WT(b[1]); |
|
s2 += a * WT(b[2]); s3 += a * WT(b[3]); |
|
} |
|
|
|
if( !c_data ) |
|
{ |
|
d_data[j] = T(s0*alpha); |
|
d_data[j+1] = T(s1*alpha); |
|
d_data[j+2] = T(s2*alpha); |
|
d_data[j+3] = T(s3*alpha); |
|
} |
|
else |
|
{ |
|
s0 = s0*alpha; s1 = s1*alpha; |
|
s2 = s2*alpha; s3 = s3*alpha; |
|
d_data[j] = T(s0 + WT(c_data[0])*beta); |
|
d_data[j+1] = T(s1 + WT(c_data[c_step1])*beta); |
|
d_data[j+2] = T(s2 + WT(c_data[c_step1*2])*beta); |
|
d_data[j+3] = T(s3 + WT(c_data[c_step1*3])*beta); |
|
} |
|
} |
|
|
|
for( ; j < m; j++, c_data += c_step1 ) |
|
{ |
|
const T* b = _b_data + j; |
|
WT s0(0); |
|
|
|
for( k = 0; k < n; k++, b += b_step ) |
|
s0 += WT(a_data[k]) * WT(b[0]); |
|
|
|
s0 = s0*alpha; |
|
if( !c_data ) |
|
d_data[j] = T(s0); |
|
else |
|
d_data[j] = T(s0 + WT(c_data[0])*beta); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
cv::AutoBuffer<WT> _d_buf(m); |
|
WT* d_buf = _d_buf; |
|
|
|
for( i = 0; i < drows; i++, _a_data += a_step0, _c_data += c_step0, d_data += d_step ) |
|
{ |
|
a_data = _a_data; |
|
b_data = _b_data; |
|
c_data = _c_data; |
|
|
|
if( a_buf ) |
|
{ |
|
for( k = 0; k < n; k++ ) |
|
a_buf[k] = _a_data[a_step1*k]; |
|
a_data = a_buf; |
|
} |
|
|
|
for( j = 0; j < m; j++ ) |
|
d_buf[j] = WT(0); |
|
|
|
for( k = 0; k < n; k++, b_data += b_step ) |
|
{ |
|
WT al(a_data[k]); |
|
j=0; |
|
#if CV_ENABLE_UNROLLED |
|
for(; j <= m - 4; j += 4 ) |
|
{ |
|
WT t0 = d_buf[j] + WT(b_data[j])*al; |
|
WT t1 = d_buf[j+1] + WT(b_data[j+1])*al; |
|
d_buf[j] = t0; |
|
d_buf[j+1] = t1; |
|
t0 = d_buf[j+2] + WT(b_data[j+2])*al; |
|
t1 = d_buf[j+3] + WT(b_data[j+3])*al; |
|
d_buf[j+2] = t0; |
|
d_buf[j+3] = t1; |
|
} |
|
#endif |
|
for( ; j < m; j++ ) |
|
d_buf[j] += WT(b_data[j])*al; |
|
} |
|
|
|
if( !c_data ) |
|
for( j = 0; j < m; j++ ) |
|
d_data[j] = T(d_buf[j]*alpha); |
|
else |
|
for( j = 0; j < m; j++, c_data += c_step1 ) |
|
{ |
|
WT t = d_buf[j]*alpha; |
|
d_data[j] = T(t + WT(c_data[0])*beta); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
template<typename T, typename WT> static void |
|
GEMMBlockMul( const T* a_data, size_t a_step, |
|
const T* b_data, size_t b_step, |
|
WT* d_data, size_t d_step, |
|
Size a_size, Size d_size, int flags ) |
|
{ |
|
int i, j, k, n = a_size.width, m = d_size.width; |
|
const T *_a_data = a_data, *_b_data = b_data; |
|
cv::AutoBuffer<T> _a_buf; |
|
T* a_buf = 0; |
|
size_t a_step0, a_step1, t_step; |
|
int do_acc = flags & 16; |
|
|
|
a_step /= sizeof(a_data[0]); |
|
b_step /= sizeof(b_data[0]); |
|
d_step /= sizeof(d_data[0]); |
|
|
|
a_step0 = a_step; |
|
a_step1 = 1; |
|
|
|
if( flags & GEMM_1_T ) |
|
{ |
|
CV_SWAP( a_step0, a_step1, t_step ); |
|
n = a_size.height; |
|
_a_buf.allocate(n); |
|
a_buf = _a_buf; |
|
} |
|
|
|
if( flags & GEMM_2_T ) |
|
{ |
|
/* second operand is transposed */ |
|
for( i = 0; i < d_size.height; i++, _a_data += a_step0, d_data += d_step ) |
|
{ |
|
a_data = _a_data; b_data = _b_data; |
|
|
|
if( a_buf ) |
|
{ |
|
for( k = 0; k < n; k++ ) |
|
a_buf[k] = a_data[a_step1*k]; |
|
a_data = a_buf; |
|
} |
|
|
|
for( j = 0; j < d_size.width; j++, b_data += b_step ) |
|
{ |
|
WT s0 = do_acc ? d_data[j]:WT(0), s1(0); |
|
for( k = 0; k <= n - 2; k += 2 ) |
|
{ |
|
s0 += WT(a_data[k])*WT(b_data[k]); |
|
s1 += WT(a_data[k+1])*WT(b_data[k+1]); |
|
} |
|
|
|
for( ; k < n; k++ ) |
|
s0 += WT(a_data[k])*WT(b_data[k]); |
|
|
|
d_data[j] = s0 + s1; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( i = 0; i < d_size.height; i++, _a_data += a_step0, d_data += d_step ) |
|
{ |
|
a_data = _a_data, b_data = _b_data; |
|
|
|
if( a_buf ) |
|
{ |
|
for( k = 0; k < n; k++ ) |
|
a_buf[k] = a_data[a_step1*k]; |
|
a_data = a_buf; |
|
} |
|
|
|
for( j = 0; j <= m - 4; j += 4 ) |
|
{ |
|
WT s0, s1, s2, s3; |
|
const T* b = b_data + j; |
|
|
|
if( do_acc ) |
|
{ |
|
s0 = d_data[j]; s1 = d_data[j+1]; |
|
s2 = d_data[j+2]; s3 = d_data[j+3]; |
|
} |
|
else |
|
s0 = s1 = s2 = s3 = WT(0); |
|
|
|
for( k = 0; k < n; k++, b += b_step ) |
|
{ |
|
WT a(a_data[k]); |
|
s0 += a * WT(b[0]); s1 += a * WT(b[1]); |
|
s2 += a * WT(b[2]); s3 += a * WT(b[3]); |
|
} |
|
|
|
d_data[j] = s0; d_data[j+1] = s1; |
|
d_data[j+2] = s2; d_data[j+3] = s3; |
|
} |
|
|
|
for( ; j < m; j++ ) |
|
{ |
|
const T* b = b_data + j; |
|
WT s0 = do_acc ? d_data[j] : WT(0); |
|
|
|
for( k = 0; k < n; k++, b += b_step ) |
|
s0 += WT(a_data[k]) * WT(b[0]); |
|
|
|
d_data[j] = s0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
template<typename T, typename WT> static void |
|
GEMMStore( const T* c_data, size_t c_step, |
|
const WT* d_buf, size_t d_buf_step, |
|
T* d_data, size_t d_step, Size d_size, |
|
double alpha, double beta, int flags ) |
|
{ |
|
const T* _c_data = c_data; |
|
int j; |
|
size_t c_step0, c_step1; |
|
|
|
c_step /= sizeof(c_data[0]); |
|
d_buf_step /= sizeof(d_buf[0]); |
|
d_step /= sizeof(d_data[0]); |
|
|
|
if( !c_data ) |
|
c_step0 = c_step1 = 0; |
|
else if( !(flags & GEMM_3_T) ) |
|
c_step0 = c_step, c_step1 = 1; |
|
else |
|
c_step0 = 1, c_step1 = c_step; |
|
|
|
for( ; d_size.height--; _c_data += c_step0, d_buf += d_buf_step, d_data += d_step ) |
|
{ |
|
if( _c_data ) |
|
{ |
|
c_data = _c_data; |
|
j=0; |
|
#if CV_ENABLE_UNROLLED |
|
for(; j <= d_size.width - 4; j += 4, c_data += 4*c_step1 ) |
|
{ |
|
WT t0 = alpha*d_buf[j]; |
|
WT t1 = alpha*d_buf[j+1]; |
|
t0 += beta*WT(c_data[0]); |
|
t1 += beta*WT(c_data[c_step1]); |
|
d_data[j] = T(t0); |
|
d_data[j+1] = T(t1); |
|
t0 = alpha*d_buf[j+2]; |
|
t1 = alpha*d_buf[j+3]; |
|
t0 += beta*WT(c_data[c_step1*2]); |
|
t1 += beta*WT(c_data[c_step1*3]); |
|
d_data[j+2] = T(t0); |
|
d_data[j+3] = T(t1); |
|
} |
|
#endif |
|
for( ; j < d_size.width; j++, c_data += c_step1 ) |
|
{ |
|
WT t0 = alpha*d_buf[j]; |
|
d_data[j] = T(t0 + WT(c_data[0])*beta); |
|
} |
|
} |
|
else |
|
{ |
|
j = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; j <= d_size.width - 4; j += 4 ) |
|
{ |
|
WT t0 = alpha*d_buf[j]; |
|
WT t1 = alpha*d_buf[j+1]; |
|
d_data[j] = T(t0); |
|
d_data[j+1] = T(t1); |
|
t0 = alpha*d_buf[j+2]; |
|
t1 = alpha*d_buf[j+3]; |
|
d_data[j+2] = T(t0); |
|
d_data[j+3] = T(t1); |
|
} |
|
#endif |
|
for( ; j < d_size.width; j++ ) |
|
d_data[j] = T(alpha*d_buf[j]); |
|
} |
|
} |
|
} |
|
|
|
|
|
typedef void (*GEMMSingleMulFunc)( const void* src1, size_t step1, |
|
const void* src2, size_t step2, const void* src3, size_t step3, |
|
void* dst, size_t dststep, Size srcsize, Size dstsize, |
|
double alpha, double beta, int flags ); |
|
|
|
typedef void (*GEMMBlockMulFunc)( const void* src1, size_t step1, |
|
const void* src2, size_t step2, void* dst, size_t dststep, |
|
Size srcsize, Size dstsize, int flags ); |
|
|
|
typedef void (*GEMMStoreFunc)( const void* src1, size_t step1, |
|
const void* src2, size_t step2, void* dst, size_t dststep, |
|
Size dstsize, double alpha, double beta, int flags ); |
|
|
|
static void GEMMSingleMul_32f( const float* a_data, size_t a_step, |
|
const float* b_data, size_t b_step, |
|
const float* c_data, size_t c_step, |
|
float* d_data, size_t d_step, |
|
Size a_size, Size d_size, |
|
double alpha, double beta, int flags ) |
|
{ |
|
GEMMSingleMul<float,double>(a_data, a_step, b_data, b_step, c_data, |
|
c_step, d_data, d_step, a_size, d_size, |
|
alpha, beta, flags); |
|
} |
|
|
|
static void GEMMSingleMul_64f( const double* a_data, size_t a_step, |
|
const double* b_data, size_t b_step, |
|
const double* c_data, size_t c_step, |
|
double* d_data, size_t d_step, |
|
Size a_size, Size d_size, |
|
double alpha, double beta, int flags ) |
|
{ |
|
GEMMSingleMul<double,double>(a_data, a_step, b_data, b_step, c_data, |
|
c_step, d_data, d_step, a_size, d_size, |
|
alpha, beta, flags); |
|
} |
|
|
|
|
|
static void GEMMSingleMul_32fc( const Complexf* a_data, size_t a_step, |
|
const Complexf* b_data, size_t b_step, |
|
const Complexf* c_data, size_t c_step, |
|
Complexf* d_data, size_t d_step, |
|
Size a_size, Size d_size, |
|
double alpha, double beta, int flags ) |
|
{ |
|
GEMMSingleMul<Complexf,Complexd>(a_data, a_step, b_data, b_step, c_data, |
|
c_step, d_data, d_step, a_size, d_size, |
|
alpha, beta, flags); |
|
} |
|
|
|
static void GEMMSingleMul_64fc( const Complexd* a_data, size_t a_step, |
|
const Complexd* b_data, size_t b_step, |
|
const Complexd* c_data, size_t c_step, |
|
Complexd* d_data, size_t d_step, |
|
Size a_size, Size d_size, |
|
double alpha, double beta, int flags ) |
|
{ |
|
GEMMSingleMul<Complexd,Complexd>(a_data, a_step, b_data, b_step, c_data, |
|
c_step, d_data, d_step, a_size, d_size, |
|
alpha, beta, flags); |
|
} |
|
|
|
static void GEMMBlockMul_32f( const float* a_data, size_t a_step, |
|
const float* b_data, size_t b_step, |
|
double* d_data, size_t d_step, |
|
Size a_size, Size d_size, int flags ) |
|
{ |
|
GEMMBlockMul(a_data, a_step, b_data, b_step, d_data, d_step, a_size, d_size, flags); |
|
} |
|
|
|
|
|
static void GEMMBlockMul_64f( const double* a_data, size_t a_step, |
|
const double* b_data, size_t b_step, |
|
double* d_data, size_t d_step, |
|
Size a_size, Size d_size, int flags ) |
|
{ |
|
GEMMBlockMul(a_data, a_step, b_data, b_step, d_data, d_step, a_size, d_size, flags); |
|
} |
|
|
|
|
|
static void GEMMBlockMul_32fc( const Complexf* a_data, size_t a_step, |
|
const Complexf* b_data, size_t b_step, |
|
Complexd* d_data, size_t d_step, |
|
Size a_size, Size d_size, int flags ) |
|
{ |
|
GEMMBlockMul(a_data, a_step, b_data, b_step, d_data, d_step, a_size, d_size, flags); |
|
} |
|
|
|
|
|
static void GEMMBlockMul_64fc( const Complexd* a_data, size_t a_step, |
|
const Complexd* b_data, size_t b_step, |
|
Complexd* d_data, size_t d_step, |
|
Size a_size, Size d_size, int flags ) |
|
{ |
|
GEMMBlockMul(a_data, a_step, b_data, b_step, d_data, d_step, a_size, d_size, flags); |
|
} |
|
|
|
|
|
static void GEMMStore_32f( const float* c_data, size_t c_step, |
|
const double* d_buf, size_t d_buf_step, |
|
float* d_data, size_t d_step, Size d_size, |
|
double alpha, double beta, int flags ) |
|
{ |
|
GEMMStore(c_data, c_step, d_buf, d_buf_step, d_data, d_step, d_size, alpha, beta, flags); |
|
} |
|
|
|
|
|
static void GEMMStore_64f( const double* c_data, size_t c_step, |
|
const double* d_buf, size_t d_buf_step, |
|
double* d_data, size_t d_step, Size d_size, |
|
double alpha, double beta, int flags ) |
|
{ |
|
GEMMStore(c_data, c_step, d_buf, d_buf_step, d_data, d_step, d_size, alpha, beta, flags); |
|
} |
|
|
|
|
|
static void GEMMStore_32fc( const Complexf* c_data, size_t c_step, |
|
const Complexd* d_buf, size_t d_buf_step, |
|
Complexf* d_data, size_t d_step, Size d_size, |
|
double alpha, double beta, int flags ) |
|
{ |
|
GEMMStore(c_data, c_step, d_buf, d_buf_step, d_data, d_step, d_size, alpha, beta, flags); |
|
} |
|
|
|
|
|
static void GEMMStore_64fc( const Complexd* c_data, size_t c_step, |
|
const Complexd* d_buf, size_t d_buf_step, |
|
Complexd* d_data, size_t d_step, Size d_size, |
|
double alpha, double beta, int flags ) |
|
{ |
|
GEMMStore(c_data, c_step, d_buf, d_buf_step, d_data, d_step, d_size, alpha, beta, flags); |
|
} |
|
|
|
#ifdef HAVE_CLAMDBLAS |
|
|
|
static bool ocl_gemm( InputArray matA, InputArray matB, double alpha, |
|
InputArray matC, double beta, OutputArray matD, int flags ) |
|
{ |
|
int type = matA.type(), esz = CV_ELEM_SIZE(type); |
|
bool haveC = matC.kind() != cv::_InputArray::NONE; |
|
Size sizeA = matA.size(), sizeB = matB.size(), sizeC = haveC ? matC.size() : Size(0, 0); |
|
bool atrans = (flags & GEMM_1_T) != 0, btrans = (flags & GEMM_2_T) != 0, ctrans = (flags & GEMM_3_T) != 0; |
|
|
|
if (atrans) |
|
sizeA = Size(sizeA.height, sizeA.width); |
|
if (btrans) |
|
sizeB = Size(sizeB.height, sizeB.width); |
|
if (haveC && ctrans) |
|
sizeC = Size(sizeC.height, sizeC.width); |
|
|
|
Size sizeD(sizeB.width, sizeA.height); |
|
|
|
CV_Assert( matB.type() == type && (!haveC || matC.type() == type) ); |
|
CV_Assert( sizeA.width == sizeB.height && (!haveC || sizeC == sizeD) ); |
|
|
|
matD.create(sizeD, type); |
|
if ( matA.offset() % esz != 0 || matA.step() % esz != 0 || |
|
matB.offset() % esz != 0 || matB.step() % esz != 0 || |
|
(haveC && (matC.offset() % esz != 0 || matC.step() % esz != 0)) ) |
|
return false; |
|
|
|
UMat A = matA.getUMat(), B = matB.getUMat(), D = matD.getUMat(); |
|
if (haveC) |
|
ctrans ? transpose(matC, D) : matC.copyTo(D); |
|
else |
|
D.setTo(Scalar::all(0)); |
|
|
|
int M = sizeD.height, N = sizeD.width, K = sizeA.width; |
|
int lda = (int)A.step / esz, ldb = (int)B.step / esz, ldc = (int)D.step / esz; |
|
int offa = (int)A.offset / esz, offb = (int)B.offset / esz, offc = (int)D.offset / esz; |
|
|
|
cl_command_queue clq = (cl_command_queue)ocl::Queue::getDefault().ptr(); |
|
clAmdBlasTranspose transA = atrans ? clAmdBlasTrans : clAmdBlasNoTrans; |
|
clAmdBlasTranspose transB = btrans ? clAmdBlasTrans : clAmdBlasNoTrans; |
|
clAmdBlasOrder order = clAmdBlasRowMajor; |
|
clAmdBlasStatus status = clAmdBlasSuccess; |
|
|
|
if (type == CV_32FC1) |
|
status = clAmdBlasSgemmEx(order, transA, transB, M, N, K, |
|
(cl_float)alpha, (const cl_mem)A.handle(ACCESS_READ), offa, lda, |
|
(const cl_mem)B.handle(ACCESS_READ), offb, ldb, |
|
(cl_float)beta, (cl_mem)D.handle(ACCESS_RW), offc, ldc, |
|
1, &clq, 0, NULL, NULL); |
|
else if (type == CV_64FC1) |
|
status = clAmdBlasDgemmEx(order, transA, transB, M, N, K, |
|
alpha, (const cl_mem)A.handle(ACCESS_READ), offa, lda, |
|
(const cl_mem)B.handle(ACCESS_READ), offb, ldb, |
|
beta, (cl_mem)D.handle(ACCESS_RW), offc, ldc, |
|
1, &clq, 0, NULL, NULL); |
|
else if (type == CV_32FC2) |
|
{ |
|
cl_float2 alpha_2 = { { (cl_float)alpha, 0 } }; |
|
cl_float2 beta_2 = { { (cl_float)beta, 0 } }; |
|
status = clAmdBlasCgemmEx(order, transA, transB, M, N, K, |
|
alpha_2, (const cl_mem)A.handle(ACCESS_READ), offa, lda, |
|
(const cl_mem)B.handle(ACCESS_READ), offb, ldb, |
|
beta_2, (cl_mem)D.handle(ACCESS_RW), offc, ldc, |
|
1, &clq, 0, NULL, NULL); |
|
} |
|
else if (type == CV_64FC2) |
|
{ |
|
cl_double2 alpha_2 = { { alpha, 0 } }; |
|
cl_double2 beta_2 = { { beta, 0 } }; |
|
status = clAmdBlasZgemmEx(order, transA, transB, M, N, K, |
|
alpha_2, (const cl_mem)A.handle(ACCESS_READ), offa, lda, |
|
(const cl_mem)B.handle(ACCESS_READ), offb, ldb, |
|
beta_2, (cl_mem)D.handle(ACCESS_RW), offc, ldc, |
|
1, &clq, 0, NULL, NULL); |
|
} |
|
else |
|
CV_Error(Error::StsUnsupportedFormat, ""); |
|
|
|
return status == clAmdBlasSuccess; |
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
void cv::gemm( InputArray matA, InputArray matB, double alpha, |
|
InputArray matC, double beta, OutputArray _matD, int flags ) |
|
{ |
|
#ifdef HAVE_CLAMDBLAS |
|
CV_OCL_RUN(ocl::haveAmdBlas() && matA.dims() <= 2 && matB.dims() <= 2 && matC.dims() <= 2 && _matD.isUMat(), |
|
ocl_gemm(matA, matB, alpha, matC, beta, _matD, flags)) |
|
#endif |
|
|
|
const int block_lin_size = 128; |
|
const int block_size = block_lin_size * block_lin_size; |
|
|
|
static double zero[] = {0,0,0,0}; |
|
static float zerof[] = {0,0,0,0}; |
|
|
|
Mat A = matA.getMat(), B = matB.getMat(), C = beta != 0 ? matC.getMat() : Mat(); |
|
Size a_size = A.size(), d_size; |
|
int i, len = 0, type = A.type(); |
|
|
|
CV_Assert( type == B.type() && (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); |
|
|
|
switch( flags & (GEMM_1_T|GEMM_2_T) ) |
|
{ |
|
case 0: |
|
d_size = Size( B.cols, a_size.height ); |
|
len = B.rows; |
|
CV_Assert( a_size.width == len ); |
|
break; |
|
case 1: |
|
d_size = Size( B.cols, a_size.width ); |
|
len = B.rows; |
|
CV_Assert( a_size.height == len ); |
|
break; |
|
case 2: |
|
d_size = Size( B.rows, a_size.height ); |
|
len = B.cols; |
|
CV_Assert( a_size.width == len ); |
|
break; |
|
case 3: |
|
d_size = Size( B.rows, a_size.width ); |
|
len = B.cols; |
|
CV_Assert( a_size.height == len ); |
|
break; |
|
} |
|
|
|
if( C.data ) |
|
{ |
|
CV_Assert( C.type() == type && |
|
(((flags&GEMM_3_T) == 0 && C.rows == d_size.height && C.cols == d_size.width) || |
|
((flags&GEMM_3_T) != 0 && C.rows == d_size.width && C.cols == d_size.height))); |
|
} |
|
|
|
_matD.create( d_size.height, d_size.width, type ); |
|
Mat D = _matD.getMat(); |
|
if( (flags & GEMM_3_T) != 0 && C.data == D.data ) |
|
{ |
|
transpose( C, C ); |
|
flags &= ~GEMM_3_T; |
|
} |
|
|
|
if( flags == 0 && 2 <= len && len <= 4 && (len == d_size.width || len == d_size.height) ) |
|
{ |
|
if( type == CV_32F ) |
|
{ |
|
float* d = (float*)D.data; |
|
const float *a = (const float*)A.data, |
|
*b = (const float*)B.data, |
|
*c = (const float*)C.data; |
|
size_t d_step = D.step/sizeof(d[0]), |
|
a_step = A.step/sizeof(a[0]), |
|
b_step = B.step/sizeof(b[0]), |
|
c_step = C.data ? C.step/sizeof(c[0]) : 0; |
|
|
|
if( !c ) |
|
c = zerof; |
|
|
|
switch( len ) |
|
{ |
|
case 2: |
|
if( len == d_size.width && b != d ) |
|
{ |
|
for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step ) |
|
{ |
|
float t0 = a[0]*b[0] + a[1]*b[b_step]; |
|
float t1 = a[0]*b[1] + a[1]*b[b_step+1]; |
|
d[0] = (float)(t0*alpha + c[0]*beta); |
|
d[1] = (float)(t1*alpha + c[1]*beta); |
|
} |
|
} |
|
else if( a != d ) |
|
{ |
|
int c_step0 = 1; |
|
if( c == zerof ) |
|
{ |
|
c_step0 = 0; |
|
c_step = 1; |
|
} |
|
|
|
for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 ) |
|
{ |
|
float t0 = a[0]*b[0] + a[1]*b[b_step]; |
|
float t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step]; |
|
d[0] = (float)(t0*alpha + c[0]*beta); |
|
d[d_step] = (float)(t1*alpha + c[c_step]*beta); |
|
} |
|
} |
|
else |
|
break; |
|
return; |
|
case 3: |
|
if( len == d_size.width && b != d ) |
|
{ |
|
for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step ) |
|
{ |
|
float t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2]; |
|
float t1 = a[0]*b[1] + a[1]*b[b_step+1] + a[2]*b[b_step*2+1]; |
|
float t2 = a[0]*b[2] + a[1]*b[b_step+2] + a[2]*b[b_step*2+2]; |
|
d[0] = (float)(t0*alpha + c[0]*beta); |
|
d[1] = (float)(t1*alpha + c[1]*beta); |
|
d[2] = (float)(t2*alpha + c[2]*beta); |
|
} |
|
} |
|
else if( a != d ) |
|
{ |
|
int c_step0 = 1; |
|
if( c == zerof ) |
|
{ |
|
c_step0 = 0; |
|
c_step = 1; |
|
} |
|
|
|
for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 ) |
|
{ |
|
float t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2]; |
|
float t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step] + a[a_step+2]*b[b_step*2]; |
|
float t2 = a[a_step*2]*b[0] + a[a_step*2+1]*b[b_step] + a[a_step*2+2]*b[b_step*2]; |
|
|
|
d[0] = (float)(t0*alpha + c[0]*beta); |
|
d[d_step] = (float)(t1*alpha + c[c_step]*beta); |
|
d[d_step*2] = (float)(t2*alpha + c[c_step*2]*beta); |
|
} |
|
} |
|
else |
|
break; |
|
return; |
|
case 4: |
|
if( len == d_size.width && b != d ) |
|
{ |
|
for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step ) |
|
{ |
|
float t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2] + a[3]*b[b_step*3]; |
|
float t1 = a[0]*b[1] + a[1]*b[b_step+1] + a[2]*b[b_step*2+1] + a[3]*b[b_step*3+1]; |
|
float t2 = a[0]*b[2] + a[1]*b[b_step+2] + a[2]*b[b_step*2+2] + a[3]*b[b_step*3+2]; |
|
float t3 = a[0]*b[3] + a[1]*b[b_step+3] + a[2]*b[b_step*2+3] + a[3]*b[b_step*3+3]; |
|
d[0] = (float)(t0*alpha + c[0]*beta); |
|
d[1] = (float)(t1*alpha + c[1]*beta); |
|
d[2] = (float)(t2*alpha + c[2]*beta); |
|
d[3] = (float)(t3*alpha + c[3]*beta); |
|
} |
|
} |
|
else if( len <= 16 && a != d ) |
|
{ |
|
int c_step0 = 1; |
|
if( c == zerof ) |
|
{ |
|
c_step0 = 0; |
|
c_step = 1; |
|
} |
|
|
|
for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 ) |
|
{ |
|
float t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2] + a[3]*b[b_step*3]; |
|
float t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step] + |
|
a[a_step+2]*b[b_step*2] + a[a_step+3]*b[b_step*3]; |
|
float t2 = a[a_step*2]*b[0] + a[a_step*2+1]*b[b_step] + |
|
a[a_step*2+2]*b[b_step*2] + a[a_step*2+3]*b[b_step*3]; |
|
float t3 = a[a_step*3]*b[0] + a[a_step*3+1]*b[b_step] + |
|
a[a_step*3+2]*b[b_step*2] + a[a_step*3+3]*b[b_step*3]; |
|
d[0] = (float)(t0*alpha + c[0]*beta); |
|
d[d_step] = (float)(t1*alpha + c[c_step]*beta); |
|
d[d_step*2] = (float)(t2*alpha + c[c_step*2]*beta); |
|
d[d_step*3] = (float)(t3*alpha + c[c_step*3]*beta); |
|
} |
|
} |
|
else |
|
break; |
|
return; |
|
} |
|
} |
|
|
|
if( type == CV_64F ) |
|
{ |
|
double* d = (double*)D.data; |
|
const double *a = (const double*)A.data, |
|
*b = (const double*)B.data, |
|
*c = (const double*)C.data; |
|
size_t d_step = D.step/sizeof(d[0]), |
|
a_step = A.step/sizeof(a[0]), |
|
b_step = B.step/sizeof(b[0]), |
|
c_step = C.data ? C.step/sizeof(c[0]) : 0; |
|
if( !c ) |
|
c = zero; |
|
|
|
switch( len ) |
|
{ |
|
case 2: |
|
if( len == d_size.width && b != d ) |
|
{ |
|
for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step ) |
|
{ |
|
double t0 = a[0]*b[0] + a[1]*b[b_step]; |
|
double t1 = a[0]*b[1] + a[1]*b[b_step+1]; |
|
d[0] = t0*alpha + c[0]*beta; |
|
d[1] = t1*alpha + c[1]*beta; |
|
} |
|
} |
|
else if( a != d ) |
|
{ |
|
int c_step0 = 1; |
|
if( c == zero ) |
|
{ |
|
c_step0 = 0; |
|
c_step = 1; |
|
} |
|
|
|
for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 ) |
|
{ |
|
double t0 = a[0]*b[0] + a[1]*b[b_step]; |
|
double t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step]; |
|
d[0] = t0*alpha + c[0]*beta; |
|
d[d_step] = t1*alpha + c[c_step]*beta; |
|
} |
|
} |
|
else |
|
break; |
|
return; |
|
case 3: |
|
if( len == d_size.width && b != d ) |
|
{ |
|
for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step ) |
|
{ |
|
double t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2]; |
|
double t1 = a[0]*b[1] + a[1]*b[b_step+1] + a[2]*b[b_step*2+1]; |
|
double t2 = a[0]*b[2] + a[1]*b[b_step+2] + a[2]*b[b_step*2+2]; |
|
d[0] = t0*alpha + c[0]*beta; |
|
d[1] = t1*alpha + c[1]*beta; |
|
d[2] = t2*alpha + c[2]*beta; |
|
} |
|
} |
|
else if( a != d ) |
|
{ |
|
int c_step0 = 1; |
|
if( c == zero ) |
|
{ |
|
c_step0 = 0; |
|
c_step = 1; |
|
} |
|
|
|
for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 ) |
|
{ |
|
double t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2]; |
|
double t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step] + a[a_step+2]*b[b_step*2]; |
|
double t2 = a[a_step*2]*b[0] + a[a_step*2+1]*b[b_step] + a[a_step*2+2]*b[b_step*2]; |
|
|
|
d[0] = t0*alpha + c[0]*beta; |
|
d[d_step] = t1*alpha + c[c_step]*beta; |
|
d[d_step*2] = t2*alpha + c[c_step*2]*beta; |
|
} |
|
} |
|
else |
|
break; |
|
return; |
|
case 4: |
|
if( len == d_size.width && b != d ) |
|
{ |
|
for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step ) |
|
{ |
|
double t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2] + a[3]*b[b_step*3]; |
|
double t1 = a[0]*b[1] + a[1]*b[b_step+1] + a[2]*b[b_step*2+1] + a[3]*b[b_step*3+1]; |
|
double t2 = a[0]*b[2] + a[1]*b[b_step+2] + a[2]*b[b_step*2+2] + a[3]*b[b_step*3+2]; |
|
double t3 = a[0]*b[3] + a[1]*b[b_step+3] + a[2]*b[b_step*2+3] + a[3]*b[b_step*3+3]; |
|
d[0] = t0*alpha + c[0]*beta; |
|
d[1] = t1*alpha + c[1]*beta; |
|
d[2] = t2*alpha + c[2]*beta; |
|
d[3] = t3*alpha + c[3]*beta; |
|
} |
|
} |
|
else if( d_size.width <= 16 && a != d ) |
|
{ |
|
int c_step0 = 1; |
|
if( c == zero ) |
|
{ |
|
c_step0 = 0; |
|
c_step = 1; |
|
} |
|
|
|
for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 ) |
|
{ |
|
double t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2] + a[3]*b[b_step*3]; |
|
double t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step] + |
|
a[a_step+2]*b[b_step*2] + a[a_step+3]*b[b_step*3]; |
|
double t2 = a[a_step*2]*b[0] + a[a_step*2+1]*b[b_step] + |
|
a[a_step*2+2]*b[b_step*2] + a[a_step*2+3]*b[b_step*3]; |
|
double t3 = a[a_step*3]*b[0] + a[a_step*3+1]*b[b_step] + |
|
a[a_step*3+2]*b[b_step*2] + a[a_step*3+3]*b[b_step*3]; |
|
d[0] = t0*alpha + c[0]*beta; |
|
d[d_step] = t1*alpha + c[c_step]*beta; |
|
d[d_step*2] = t2*alpha + c[c_step*2]*beta; |
|
d[d_step*3] = t3*alpha + c[c_step*3]*beta; |
|
} |
|
} |
|
else |
|
break; |
|
return; |
|
} |
|
} |
|
} |
|
|
|
{ |
|
size_t b_step = B.step; |
|
GEMMSingleMulFunc singleMulFunc; |
|
GEMMBlockMulFunc blockMulFunc; |
|
GEMMStoreFunc storeFunc; |
|
Mat *matD = &D, tmat; |
|
const uchar* Cdata = C.data; |
|
size_t Cstep = C.data ? (size_t)C.step : 0; |
|
AutoBuffer<uchar> buf; |
|
|
|
if( type == CV_32FC1 ) |
|
{ |
|
singleMulFunc = (GEMMSingleMulFunc)GEMMSingleMul_32f; |
|
blockMulFunc = (GEMMBlockMulFunc)GEMMBlockMul_32f; |
|
storeFunc = (GEMMStoreFunc)GEMMStore_32f; |
|
} |
|
else if( type == CV_64FC1 ) |
|
{ |
|
singleMulFunc = (GEMMSingleMulFunc)GEMMSingleMul_64f; |
|
blockMulFunc = (GEMMBlockMulFunc)GEMMBlockMul_64f; |
|
storeFunc = (GEMMStoreFunc)GEMMStore_64f; |
|
} |
|
else if( type == CV_32FC2 ) |
|
{ |
|
singleMulFunc = (GEMMSingleMulFunc)GEMMSingleMul_32fc; |
|
blockMulFunc = (GEMMBlockMulFunc)GEMMBlockMul_32fc; |
|
storeFunc = (GEMMStoreFunc)GEMMStore_32fc; |
|
} |
|
else |
|
{ |
|
CV_Assert( type == CV_64FC2 ); |
|
singleMulFunc = (GEMMSingleMulFunc)GEMMSingleMul_64fc; |
|
blockMulFunc = (GEMMBlockMulFunc)GEMMBlockMul_64fc; |
|
storeFunc = (GEMMStoreFunc)GEMMStore_64fc; |
|
} |
|
|
|
if( D.data == A.data || D.data == B.data ) |
|
{ |
|
buf.allocate(d_size.width*d_size.height*CV_ELEM_SIZE(type)); |
|
tmat = Mat(d_size.height, d_size.width, type, (uchar*)buf ); |
|
matD = &tmat; |
|
} |
|
|
|
if( (d_size.width == 1 || len == 1) && !(flags & GEMM_2_T) && B.isContinuous() ) |
|
{ |
|
b_step = d_size.width == 1 ? 0 : CV_ELEM_SIZE(type); |
|
flags |= GEMM_2_T; |
|
} |
|
|
|
/*if( (d_size.width | d_size.height | len) >= 16 && icvBLAS_GEMM_32f_p != 0 ) |
|
{ |
|
blas_func = type == CV_32FC1 ? (icvBLAS_GEMM_32f_t)icvBLAS_GEMM_32f_p : |
|
type == CV_64FC1 ? (icvBLAS_GEMM_32f_t)icvBLAS_GEMM_64f_p : |
|
type == CV_32FC2 ? (icvBLAS_GEMM_32f_t)icvBLAS_GEMM_32fc_p : |
|
type == CV_64FC2 ? (icvBLAS_GEMM_32f_t)icvBLAS_GEMM_64fc_p : 0; |
|
} |
|
|
|
if( blas_func ) |
|
{ |
|
const char* transa = flags & GEMM_1_T ? "t" : "n"; |
|
const char* transb = flags & GEMM_2_T ? "t" : "n"; |
|
int lda, ldb, ldd; |
|
|
|
if( C->data.ptr ) |
|
{ |
|
if( C->data.ptr != D->data.ptr ) |
|
{ |
|
if( !(flags & GEMM_3_T) ) |
|
cvCopy( C, D ); |
|
else |
|
cvTranspose( C, D ); |
|
} |
|
} |
|
|
|
if( CV_MAT_DEPTH(type) == CV_32F ) |
|
{ |
|
Complex32f _alpha, _beta; |
|
|
|
lda = A->step/sizeof(float); |
|
ldb = b_step/sizeof(float); |
|
ldd = D->step/sizeof(float); |
|
_alpha.re = (float)alpha; |
|
_alpha.im = 0; |
|
_beta.re = C->data.ptr ? (float)beta : 0; |
|
_beta.im = 0; |
|
if( CV_MAT_CN(type) == 2 ) |
|
lda /= 2, ldb /= 2, ldd /= 2; |
|
|
|
blas_func( transb, transa, &d_size.width, &d_size.height, &len, |
|
&_alpha, B->data.ptr, &ldb, A->data.ptr, &lda, |
|
&_beta, D->data.ptr, &ldd ); |
|
} |
|
else |
|
{ |
|
CvComplex64f _alpha, _beta; |
|
|
|
lda = A->step/sizeof(double); |
|
ldb = b_step/sizeof(double); |
|
ldd = D->step/sizeof(double); |
|
_alpha.re = alpha; |
|
_alpha.im = 0; |
|
_beta.re = C->data.ptr ? beta : 0; |
|
_beta.im = 0; |
|
if( CV_MAT_CN(type) == 2 ) |
|
lda /= 2, ldb /= 2, ldd /= 2; |
|
|
|
blas_func( transb, transa, &d_size.width, &d_size.height, &len, |
|
&_alpha, B->data.ptr, &ldb, A->data.ptr, &lda, |
|
&_beta, D->data.ptr, &ldd ); |
|
} |
|
} |
|
else*/ if( ((d_size.height <= block_lin_size/2 || d_size.width <= block_lin_size/2) && |
|
len <= 10000) || len <= 10 || |
|
(d_size.width <= block_lin_size && |
|
d_size.height <= block_lin_size && len <= block_lin_size) ) |
|
{ |
|
singleMulFunc( A.data, A.step, B.data, b_step, Cdata, Cstep, |
|
matD->data, matD->step, a_size, d_size, alpha, beta, flags ); |
|
} |
|
else |
|
{ |
|
int is_a_t = flags & GEMM_1_T; |
|
int is_b_t = flags & GEMM_2_T; |
|
int elem_size = CV_ELEM_SIZE(type); |
|
int dk0_1, dk0_2; |
|
int a_buf_size = 0, b_buf_size, d_buf_size; |
|
uchar* a_buf = 0; |
|
uchar* b_buf = 0; |
|
uchar* d_buf = 0; |
|
int j, k, di = 0, dj = 0, dk = 0; |
|
int dm0, dn0, dk0; |
|
size_t a_step0, a_step1, b_step0, b_step1, c_step0, c_step1; |
|
int work_elem_size = elem_size << (CV_MAT_DEPTH(type) == CV_32F ? 1 : 0); |
|
|
|
if( !is_a_t ) |
|
a_step0 = A.step, a_step1 = elem_size; |
|
else |
|
a_step0 = elem_size, a_step1 = A.step; |
|
|
|
if( !is_b_t ) |
|
b_step0 = b_step, b_step1 = elem_size; |
|
else |
|
b_step0 = elem_size, b_step1 = b_step; |
|
|
|
if( !C.data ) |
|
{ |
|
c_step0 = c_step1 = 0; |
|
flags &= ~GEMM_3_T; |
|
} |
|
else if( !(flags & GEMM_3_T) ) |
|
c_step0 = C.step, c_step1 = elem_size; |
|
else |
|
c_step0 = elem_size, c_step1 = C.step; |
|
|
|
dm0 = std::min( block_lin_size, d_size.height ); |
|
dn0 = std::min( block_lin_size, d_size.width ); |
|
dk0_1 = block_size / dm0; |
|
dk0_2 = block_size / dn0; |
|
dk0 = std::min( dk0_1, dk0_2 ); |
|
dk0 = std::min( dk0, len ); |
|
if( dk0*dm0 > block_size ) |
|
dm0 = block_size / dk0; |
|
if( dk0*dn0 > block_size ) |
|
dn0 = block_size / dk0; |
|
|
|
dk0_1 = (dn0+dn0/8+2) & -2; |
|
b_buf_size = (dk0+dk0/8+1)*dk0_1*elem_size; |
|
d_buf_size = (dk0+dk0/8+1)*dk0_1*work_elem_size; |
|
|
|
if( is_a_t ) |
|
{ |
|
a_buf_size = (dm0+dm0/8+1)*((dk0+dk0/8+2)&-2)*elem_size; |
|
flags &= ~GEMM_1_T; |
|
} |
|
|
|
buf.allocate(a_buf_size + b_buf_size + d_buf_size); |
|
d_buf = (uchar*)buf; |
|
b_buf = d_buf + d_buf_size; |
|
|
|
if( is_a_t ) |
|
a_buf = b_buf + b_buf_size; |
|
|
|
for( i = 0; i < d_size.height; i += di ) |
|
{ |
|
di = dm0; |
|
if( i + di >= d_size.height || 8*(i + di) + di > 8*d_size.height ) |
|
di = d_size.height - i; |
|
|
|
for( j = 0; j < d_size.width; j += dj ) |
|
{ |
|
uchar* _d = matD->data + i*matD->step + j*elem_size; |
|
const uchar* _c = Cdata + i*c_step0 + j*c_step1; |
|
size_t _d_step = matD->step; |
|
dj = dn0; |
|
|
|
if( j + dj >= d_size.width || 8*(j + dj) + dj > 8*d_size.width ) |
|
dj = d_size.width - j; |
|
|
|
flags &= 15; |
|
if( dk0 < len ) |
|
{ |
|
_d = d_buf; |
|
_d_step = dj*work_elem_size; |
|
} |
|
|
|
for( k = 0; k < len; k += dk ) |
|
{ |
|
const uchar* _a = A.data + i*a_step0 + k*a_step1; |
|
size_t _a_step = A.step; |
|
const uchar* _b = B.data + k*b_step0 + j*b_step1; |
|
size_t _b_step = b_step; |
|
Size a_bl_size; |
|
|
|
dk = dk0; |
|
if( k + dk >= len || 8*(k + dk) + dk > 8*len ) |
|
dk = len - k; |
|
|
|
if( !is_a_t ) |
|
a_bl_size.width = dk, a_bl_size.height = di; |
|
else |
|
a_bl_size.width = di, a_bl_size.height = dk; |
|
|
|
if( a_buf && is_a_t ) |
|
{ |
|
_a_step = dk*elem_size; |
|
GEMM_TransposeBlock( _a, A.step, a_buf, _a_step, a_bl_size, elem_size ); |
|
std::swap( a_bl_size.width, a_bl_size.height ); |
|
_a = a_buf; |
|
} |
|
|
|
if( dj < d_size.width ) |
|
{ |
|
Size b_size; |
|
if( !is_b_t ) |
|
b_size.width = dj, b_size.height = dk; |
|
else |
|
b_size.width = dk, b_size.height = dj; |
|
|
|
_b_step = b_size.width*elem_size; |
|
GEMM_CopyBlock( _b, b_step, b_buf, _b_step, b_size, elem_size ); |
|
_b = b_buf; |
|
} |
|
|
|
if( dk0 < len ) |
|
blockMulFunc( _a, _a_step, _b, _b_step, _d, _d_step, |
|
a_bl_size, Size(dj,di), flags ); |
|
else |
|
singleMulFunc( _a, _a_step, _b, _b_step, _c, Cstep, |
|
_d, _d_step, a_bl_size, Size(dj,di), alpha, beta, flags ); |
|
flags |= 16; |
|
} |
|
|
|
if( dk0 < len ) |
|
storeFunc( _c, Cstep, _d, _d_step, |
|
matD->data + i*matD->step + j*elem_size, |
|
matD->step, Size(dj,di), alpha, beta, flags ); |
|
} |
|
} |
|
} |
|
|
|
if( matD != &D ) |
|
matD->copyTo(D); |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Transform * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T, typename WT> static void |
|
transform_( const T* src, T* dst, const WT* m, int len, int scn, int dcn ) |
|
{ |
|
int x; |
|
|
|
if( scn == 2 && dcn == 2 ) |
|
{ |
|
for( x = 0; x < len*2; x += 2 ) |
|
{ |
|
WT v0 = src[x], v1 = src[x+1]; |
|
T t0 = saturate_cast<T>(m[0]*v0 + m[1]*v1 + m[2]); |
|
T t1 = saturate_cast<T>(m[3]*v0 + m[4]*v1 + m[5]); |
|
dst[x] = t0; dst[x+1] = t1; |
|
} |
|
} |
|
else if( scn == 3 && dcn == 3 ) |
|
{ |
|
for( x = 0; x < len*3; x += 3 ) |
|
{ |
|
WT v0 = src[x], v1 = src[x+1], v2 = src[x+2]; |
|
T t0 = saturate_cast<T>(m[0]*v0 + m[1]*v1 + m[2]*v2 + m[3]); |
|
T t1 = saturate_cast<T>(m[4]*v0 + m[5]*v1 + m[6]*v2 + m[7]); |
|
T t2 = saturate_cast<T>(m[8]*v0 + m[9]*v1 + m[10]*v2 + m[11]); |
|
dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2; |
|
} |
|
} |
|
else if( scn == 3 && dcn == 1 ) |
|
{ |
|
for( x = 0; x < len; x++, src += 3 ) |
|
dst[x] = saturate_cast<T>(m[0]*src[0] + m[1]*src[1] + m[2]*src[2] + m[3]); |
|
} |
|
else if( scn == 4 && dcn == 4 ) |
|
{ |
|
for( x = 0; x < len*4; x += 4 ) |
|
{ |
|
WT v0 = src[x], v1 = src[x+1], v2 = src[x+2], v3 = src[x+3]; |
|
T t0 = saturate_cast<T>(m[0]*v0 + m[1]*v1 + m[2]*v2 + m[3]*v3 + m[4]); |
|
T t1 = saturate_cast<T>(m[5]*v0 + m[6]*v1 + m[7]*v2 + m[8]*v3 + m[9]); |
|
dst[x] = t0; dst[x+1] = t1; |
|
t0 = saturate_cast<T>(m[10]*v0 + m[11]*v1 + m[12]*v2 + m[13]*v3 + m[14]); |
|
t1 = saturate_cast<T>(m[15]*v0 + m[16]*v1 + m[17]*v2 + m[18]*v3 + m[19]); |
|
dst[x+2] = t0; dst[x+3] = t1; |
|
} |
|
} |
|
else |
|
{ |
|
for( x = 0; x < len; x++, src += scn, dst += dcn ) |
|
{ |
|
const WT* _m = m; |
|
int j, k; |
|
for( j = 0; j < dcn; j++, _m += scn + 1 ) |
|
{ |
|
WT s = _m[scn]; |
|
for( k = 0; k < scn; k++ ) |
|
s += _m[k]*src[k]; |
|
dst[j] = saturate_cast<T>(s); |
|
} |
|
} |
|
} |
|
} |
|
|
|
#if CV_SSE2 |
|
|
|
static inline void |
|
load3x3Matrix( const float* m, __m128& m0, __m128& m1, __m128& m2, __m128& m3 ) |
|
{ |
|
m0 = _mm_setr_ps(m[0], m[4], m[8], 0); |
|
m1 = _mm_setr_ps(m[1], m[5], m[9], 0); |
|
m2 = _mm_setr_ps(m[2], m[6], m[10], 0); |
|
m3 = _mm_setr_ps(m[3], m[7], m[11], 0); |
|
} |
|
|
|
static inline void |
|
load4x4Matrix( const float* m, __m128& m0, __m128& m1, __m128& m2, __m128& m3, __m128& m4 ) |
|
{ |
|
m0 = _mm_setr_ps(m[0], m[5], m[10], m[15]); |
|
m1 = _mm_setr_ps(m[1], m[6], m[11], m[16]); |
|
m2 = _mm_setr_ps(m[2], m[7], m[12], m[17]); |
|
m3 = _mm_setr_ps(m[3], m[8], m[13], m[18]); |
|
m4 = _mm_setr_ps(m[4], m[9], m[14], m[19]); |
|
} |
|
|
|
#endif |
|
|
|
static void |
|
transform_8u( const uchar* src, uchar* dst, const float* m, int len, int scn, int dcn ) |
|
{ |
|
#if CV_SSE2 |
|
const int BITS = 10, SCALE = 1 << BITS; |
|
const float MAX_M = (float)(1 << (15 - BITS)); |
|
|
|
if( USE_SSE2 && scn == 3 && dcn == 3 && |
|
std::abs(m[0]) < MAX_M && std::abs(m[1]) < MAX_M && std::abs(m[2]) < MAX_M && std::abs(m[3]) < MAX_M*256 && |
|
std::abs(m[4]) < MAX_M && std::abs(m[5]) < MAX_M && std::abs(m[6]) < MAX_M && std::abs(m[7]) < MAX_M*256 && |
|
std::abs(m[8]) < MAX_M && std::abs(m[9]) < MAX_M && std::abs(m[10]) < MAX_M && std::abs(m[11]) < MAX_M*256 ) |
|
{ |
|
// faster fixed-point transformation |
|
short m00 = saturate_cast<short>(m[0]*SCALE), m01 = saturate_cast<short>(m[1]*SCALE), |
|
m02 = saturate_cast<short>(m[2]*SCALE), m10 = saturate_cast<short>(m[4]*SCALE), |
|
m11 = saturate_cast<short>(m[5]*SCALE), m12 = saturate_cast<short>(m[6]*SCALE), |
|
m20 = saturate_cast<short>(m[8]*SCALE), m21 = saturate_cast<short>(m[9]*SCALE), |
|
m22 = saturate_cast<short>(m[10]*SCALE); |
|
int m03 = saturate_cast<int>((m[3]+0.5f)*SCALE), m13 = saturate_cast<int>((m[7]+0.5f)*SCALE ), |
|
m23 = saturate_cast<int>((m[11]+0.5f)*SCALE); |
|
|
|
__m128i m0 = _mm_setr_epi16(0, m00, m01, m02, m00, m01, m02, 0); |
|
__m128i m1 = _mm_setr_epi16(0, m10, m11, m12, m10, m11, m12, 0); |
|
__m128i m2 = _mm_setr_epi16(0, m20, m21, m22, m20, m21, m22, 0); |
|
__m128i m3 = _mm_setr_epi32(m03, m13, m23, 0); |
|
int x = 0; |
|
|
|
for( ; x <= (len - 8)*3; x += 8*3 ) |
|
{ |
|
__m128i z = _mm_setzero_si128(), t0, t1, t2, r0, r1; |
|
__m128i v0 = _mm_loadl_epi64((const __m128i*)(src + x)); |
|
__m128i v1 = _mm_loadl_epi64((const __m128i*)(src + x + 8)); |
|
__m128i v2 = _mm_loadl_epi64((const __m128i*)(src + x + 16)), v3; |
|
v0 = _mm_unpacklo_epi8(v0, z); // b0 g0 r0 b1 g1 r1 b2 g2 |
|
v1 = _mm_unpacklo_epi8(v1, z); // r2 b3 g3 r3 b4 g4 r4 b5 |
|
v2 = _mm_unpacklo_epi8(v2, z); // g5 r5 b6 g6 r6 b7 g7 r7 |
|
|
|
v3 = _mm_srli_si128(v2, 2); // ? b6 g6 r6 b7 g7 r7 0 |
|
v2 = _mm_or_si128(_mm_slli_si128(v2, 10), _mm_srli_si128(v1, 6)); // ? b4 g4 r4 b5 g5 r5 ? |
|
v1 = _mm_or_si128(_mm_slli_si128(v1, 6), _mm_srli_si128(v0, 10)); // ? b2 g2 r2 b3 g3 r3 ? |
|
v0 = _mm_slli_si128(v0, 2); // 0 b0 g0 r0 b1 g1 r1 ? |
|
|
|
// process pixels 0 & 1 |
|
t0 = _mm_madd_epi16(v0, m0); // a0 b0 a1 b1 |
|
t1 = _mm_madd_epi16(v0, m1); // c0 d0 c1 d1 |
|
t2 = _mm_madd_epi16(v0, m2); // e0 f0 e1 f1 |
|
v0 = _mm_unpacklo_epi32(t0, t1); // a0 c0 b0 d0 |
|
t0 = _mm_unpackhi_epi32(t0, t1); // a1 b1 c1 d1 |
|
t1 = _mm_unpacklo_epi32(t2, z); // e0 0 f0 0 |
|
t2 = _mm_unpackhi_epi32(t2, z); // e1 0 f1 0 |
|
r0 = _mm_add_epi32(_mm_add_epi32(_mm_unpacklo_epi64(v0, t1), _mm_unpackhi_epi64(v0,t1)), m3); // B0 G0 R0 0 |
|
r1 = _mm_add_epi32(_mm_add_epi32(_mm_unpacklo_epi64(t0, t2), _mm_unpackhi_epi64(t0,t2)), m3); // B1 G1 R1 0 |
|
r0 = _mm_srai_epi32(r0, BITS); |
|
r1 = _mm_srai_epi32(r1, BITS); |
|
v0 = _mm_packus_epi16(_mm_packs_epi32(_mm_slli_si128(r0, 4), r1), z); // 0 B0 G0 R0 B1 G1 R1 0 |
|
|
|
// process pixels 2 & 3 |
|
t0 = _mm_madd_epi16(v1, m0); // a0 b0 a1 b1 |
|
t1 = _mm_madd_epi16(v1, m1); // c0 d0 c1 d1 |
|
t2 = _mm_madd_epi16(v1, m2); // e0 f0 e1 f1 |
|
v1 = _mm_unpacklo_epi32(t0, t1); // a0 c0 b0 d0 |
|
t0 = _mm_unpackhi_epi32(t0, t1); // a1 b1 c1 d1 |
|
t1 = _mm_unpacklo_epi32(t2, z); // e0 0 f0 0 |
|
t2 = _mm_unpackhi_epi32(t2, z); // e1 0 f1 0 |
|
r0 = _mm_add_epi32(_mm_add_epi32(_mm_unpacklo_epi64(v1, t1), _mm_unpackhi_epi64(v1,t1)), m3); // B2 G2 R2 0 |
|
r1 = _mm_add_epi32(_mm_add_epi32(_mm_unpacklo_epi64(t0, t2), _mm_unpackhi_epi64(t0,t2)), m3); // B3 G3 R3 0 |
|
r0 = _mm_srai_epi32(r0, BITS); |
|
r1 = _mm_srai_epi32(r1, BITS); |
|
v1 = _mm_packus_epi16(_mm_packs_epi32(_mm_slli_si128(r0, 4), r1), z); // 0 B2 G2 R2 B3 G3 R3 0 |
|
|
|
// process pixels 4 & 5 |
|
t0 = _mm_madd_epi16(v2, m0); // a0 b0 a1 b1 |
|
t1 = _mm_madd_epi16(v2, m1); // c0 d0 c1 d1 |
|
t2 = _mm_madd_epi16(v2, m2); // e0 f0 e1 f1 |
|
v2 = _mm_unpacklo_epi32(t0, t1); // a0 c0 b0 d0 |
|
t0 = _mm_unpackhi_epi32(t0, t1); // a1 b1 c1 d1 |
|
t1 = _mm_unpacklo_epi32(t2, z); // e0 0 f0 0 |
|
t2 = _mm_unpackhi_epi32(t2, z); // e1 0 f1 0 |
|
r0 = _mm_add_epi32(_mm_add_epi32(_mm_unpacklo_epi64(v2, t1), _mm_unpackhi_epi64(v2,t1)), m3); // B4 G4 R4 0 |
|
r1 = _mm_add_epi32(_mm_add_epi32(_mm_unpacklo_epi64(t0, t2), _mm_unpackhi_epi64(t0,t2)), m3); // B5 G5 R5 0 |
|
r0 = _mm_srai_epi32(r0, BITS); |
|
r1 = _mm_srai_epi32(r1, BITS); |
|
v2 = _mm_packus_epi16(_mm_packs_epi32(_mm_slli_si128(r0, 4), r1), z); // 0 B4 G4 R4 B5 G5 R5 0 |
|
|
|
// process pixels 6 & 7 |
|
t0 = _mm_madd_epi16(v3, m0); // a0 b0 a1 b1 |
|
t1 = _mm_madd_epi16(v3, m1); // c0 d0 c1 d1 |
|
t2 = _mm_madd_epi16(v3, m2); // e0 f0 e1 f1 |
|
v3 = _mm_unpacklo_epi32(t0, t1); // a0 c0 b0 d0 |
|
t0 = _mm_unpackhi_epi32(t0, t1); // a1 b1 c1 d1 |
|
t1 = _mm_unpacklo_epi32(t2, z); // e0 0 f0 0 |
|
t2 = _mm_unpackhi_epi32(t2, z); // e1 0 f1 0 |
|
r0 = _mm_add_epi32(_mm_add_epi32(_mm_unpacklo_epi64(v3, t1), _mm_unpackhi_epi64(v3,t1)), m3); // B6 G6 R6 0 |
|
r1 = _mm_add_epi32(_mm_add_epi32(_mm_unpacklo_epi64(t0, t2), _mm_unpackhi_epi64(t0,t2)), m3); // B7 G7 R7 0 |
|
r0 = _mm_srai_epi32(r0, BITS); |
|
r1 = _mm_srai_epi32(r1, BITS); |
|
v3 = _mm_packus_epi16(_mm_packs_epi32(_mm_slli_si128(r0, 4), r1), z); // 0 B6 G6 R6 B7 G7 R7 0 |
|
|
|
v0 = _mm_or_si128(_mm_srli_si128(v0, 1), _mm_slli_si128(v1, 5)); |
|
v1 = _mm_or_si128(_mm_srli_si128(v1, 3), _mm_slli_si128(v2, 3)); |
|
v2 = _mm_or_si128(_mm_srli_si128(v2, 5), _mm_slli_si128(v3, 1)); |
|
_mm_storel_epi64((__m128i*)(dst + x), v0); |
|
_mm_storel_epi64((__m128i*)(dst + x + 8), v1); |
|
_mm_storel_epi64((__m128i*)(dst + x + 16), v2); |
|
} |
|
|
|
for( ; x < len*3; x += 3 ) |
|
{ |
|
int v0 = src[x], v1 = src[x+1], v2 = src[x+2]; |
|
uchar t0 = saturate_cast<uchar>((m00*v0 + m01*v1 + m02*v2 + m03)>>BITS); |
|
uchar t1 = saturate_cast<uchar>((m10*v0 + m11*v1 + m12*v2 + m13)>>BITS); |
|
uchar t2 = saturate_cast<uchar>((m20*v0 + m21*v1 + m22*v2 + m23)>>BITS); |
|
dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2; |
|
} |
|
return; |
|
} |
|
#endif |
|
|
|
transform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
static void |
|
transform_16u( const ushort* src, ushort* dst, const float* m, int len, int scn, int dcn ) |
|
{ |
|
#if CV_SSE2 |
|
if( USE_SSE2 && scn == 3 && dcn == 3 ) |
|
{ |
|
__m128 m0, m1, m2, m3; |
|
__m128i delta = _mm_setr_epi16(0,-32768,-32768,-32768,-32768,-32768,-32768,0); |
|
load3x3Matrix(m, m0, m1, m2, m3); |
|
m3 = _mm_sub_ps(m3, _mm_setr_ps(32768.f, 32768.f, 32768.f, 0.f)); |
|
|
|
int x = 0; |
|
for( ; x <= (len - 4)*3; x += 4*3 ) |
|
{ |
|
__m128i z = _mm_setzero_si128(); |
|
__m128i v0 = _mm_loadu_si128((const __m128i*)(src + x)), v1; |
|
__m128i v2 = _mm_loadl_epi64((const __m128i*)(src + x + 8)), v3; |
|
v1 = _mm_unpacklo_epi16(_mm_srli_si128(v0, 6), z); // b1 g1 r1 |
|
v3 = _mm_unpacklo_epi16(_mm_srli_si128(v2, 2), z); // b3 g3 r3 |
|
v2 = _mm_or_si128(_mm_srli_si128(v0, 12), _mm_slli_si128(v2, 4)); |
|
v0 = _mm_unpacklo_epi16(v0, z); // b0 g0 r0 |
|
v2 = _mm_unpacklo_epi16(v2, z); // b2 g2 r2 |
|
__m128 x0 = _mm_cvtepi32_ps(v0), x1 = _mm_cvtepi32_ps(v1); |
|
__m128 x2 = _mm_cvtepi32_ps(v2), x3 = _mm_cvtepi32_ps(v3); |
|
__m128 y0 = _mm_add_ps(_mm_add_ps(_mm_add_ps( |
|
_mm_mul_ps(m0, _mm_shuffle_ps(x0,x0,_MM_SHUFFLE(0,0,0,0))), |
|
_mm_mul_ps(m1, _mm_shuffle_ps(x0,x0,_MM_SHUFFLE(1,1,1,1)))), |
|
_mm_mul_ps(m2, _mm_shuffle_ps(x0,x0,_MM_SHUFFLE(2,2,2,2)))), m3); |
|
__m128 y1 = _mm_add_ps(_mm_add_ps(_mm_add_ps( |
|
_mm_mul_ps(m0, _mm_shuffle_ps(x1,x1,_MM_SHUFFLE(0,0,0,0))), |
|
_mm_mul_ps(m1, _mm_shuffle_ps(x1,x1,_MM_SHUFFLE(1,1,1,1)))), |
|
_mm_mul_ps(m2, _mm_shuffle_ps(x1,x1,_MM_SHUFFLE(2,2,2,2)))), m3); |
|
__m128 y2 = _mm_add_ps(_mm_add_ps(_mm_add_ps( |
|
_mm_mul_ps(m0, _mm_shuffle_ps(x2,x2,_MM_SHUFFLE(0,0,0,0))), |
|
_mm_mul_ps(m1, _mm_shuffle_ps(x2,x2,_MM_SHUFFLE(1,1,1,1)))), |
|
_mm_mul_ps(m2, _mm_shuffle_ps(x2,x2,_MM_SHUFFLE(2,2,2,2)))), m3); |
|
__m128 y3 = _mm_add_ps(_mm_add_ps(_mm_add_ps( |
|
_mm_mul_ps(m0, _mm_shuffle_ps(x3,x3,_MM_SHUFFLE(0,0,0,0))), |
|
_mm_mul_ps(m1, _mm_shuffle_ps(x3,x3,_MM_SHUFFLE(1,1,1,1)))), |
|
_mm_mul_ps(m2, _mm_shuffle_ps(x3,x3,_MM_SHUFFLE(2,2,2,2)))), m3); |
|
v0 = _mm_cvtps_epi32(y0); v1 = _mm_cvtps_epi32(y1); |
|
v2 = _mm_cvtps_epi32(y2); v3 = _mm_cvtps_epi32(y3); |
|
|
|
v0 = _mm_add_epi16(_mm_packs_epi32(_mm_slli_si128(v0,4), v1), delta); // 0 b0 g0 r0 b1 g1 r1 0 |
|
v2 = _mm_add_epi16(_mm_packs_epi32(_mm_slli_si128(v2,4), v3), delta); // 0 b2 g2 r2 b3 g3 r3 0 |
|
v1 = _mm_or_si128(_mm_srli_si128(v0,2), _mm_slli_si128(v2,10)); // b0 g0 r0 b1 g1 r1 b2 g2 |
|
v2 = _mm_srli_si128(v2, 6); // r2 b3 g3 r3 0 0 0 0 |
|
_mm_storeu_si128((__m128i*)(dst + x), v1); |
|
_mm_storel_epi64((__m128i*)(dst + x + 8), v2); |
|
} |
|
|
|
for( ; x < len*3; x += 3 ) |
|
{ |
|
float v0 = src[x], v1 = src[x+1], v2 = src[x+2]; |
|
ushort t0 = saturate_cast<ushort>(m[0]*v0 + m[1]*v1 + m[2]*v2 + m[3]); |
|
ushort t1 = saturate_cast<ushort>(m[4]*v0 + m[5]*v1 + m[6]*v2 + m[7]); |
|
ushort t2 = saturate_cast<ushort>(m[8]*v0 + m[9]*v1 + m[10]*v2 + m[11]); |
|
dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2; |
|
} |
|
return; |
|
} |
|
#endif |
|
|
|
transform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
|
|
static void |
|
transform_32f( const float* src, float* dst, const float* m, int len, int scn, int dcn ) |
|
{ |
|
#if CV_SSE2 |
|
if( USE_SSE2 ) |
|
{ |
|
int x = 0; |
|
if( scn == 3 && dcn == 3 ) |
|
{ |
|
__m128 m0, m1, m2, m3; |
|
load3x3Matrix(m, m0, m1, m2, m3); |
|
|
|
for( ; x < (len - 1)*3; x += 3 ) |
|
{ |
|
__m128 x0 = _mm_loadu_ps(src + x); |
|
__m128 y0 = _mm_add_ps(_mm_add_ps(_mm_add_ps( |
|
_mm_mul_ps(m0, _mm_shuffle_ps(x0,x0,_MM_SHUFFLE(0,0,0,0))), |
|
_mm_mul_ps(m1, _mm_shuffle_ps(x0,x0,_MM_SHUFFLE(1,1,1,1)))), |
|
_mm_mul_ps(m2, _mm_shuffle_ps(x0,x0,_MM_SHUFFLE(2,2,2,2)))), m3); |
|
_mm_storel_pi((__m64*)(dst + x), y0); |
|
_mm_store_ss(dst + x + 2, _mm_movehl_ps(y0,y0)); |
|
} |
|
|
|
for( ; x < len*3; x += 3 ) |
|
{ |
|
float v0 = src[x], v1 = src[x+1], v2 = src[x+2]; |
|
float t0 = saturate_cast<float>(m[0]*v0 + m[1]*v1 + m[2]*v2 + m[3]); |
|
float t1 = saturate_cast<float>(m[4]*v0 + m[5]*v1 + m[6]*v2 + m[7]); |
|
float t2 = saturate_cast<float>(m[8]*v0 + m[9]*v1 + m[10]*v2 + m[11]); |
|
dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2; |
|
} |
|
return; |
|
} |
|
|
|
if( scn == 4 && dcn == 4 ) |
|
{ |
|
__m128 m0, m1, m2, m3, m4; |
|
load4x4Matrix(m, m0, m1, m2, m3, m4); |
|
|
|
for( ; x < len*4; x += 4 ) |
|
{ |
|
__m128 x0 = _mm_loadu_ps(src + x); |
|
__m128 y0 = _mm_add_ps(_mm_add_ps(_mm_add_ps(_mm_add_ps( |
|
_mm_mul_ps(m0, _mm_shuffle_ps(x0,x0,_MM_SHUFFLE(0,0,0,0))), |
|
_mm_mul_ps(m1, _mm_shuffle_ps(x0,x0,_MM_SHUFFLE(1,1,1,1)))), |
|
_mm_mul_ps(m2, _mm_shuffle_ps(x0,x0,_MM_SHUFFLE(2,2,2,2)))), |
|
_mm_mul_ps(m3, _mm_shuffle_ps(x0,x0,_MM_SHUFFLE(3,3,3,3)))), m4); |
|
_mm_storeu_ps(dst + x, y0); |
|
} |
|
return; |
|
} |
|
} |
|
#endif |
|
|
|
transform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
|
|
static void |
|
transform_8s(const schar* src, schar* dst, const float* m, int len, int scn, int dcn) |
|
{ |
|
transform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
static void |
|
transform_16s(const short* src, short* dst, const float* m, int len, int scn, int dcn) |
|
{ |
|
transform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
static void |
|
transform_32s(const int* src, int* dst, const double* m, int len, int scn, int dcn) |
|
{ |
|
transform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
static void |
|
transform_64f(const double* src, double* dst, const double* m, int len, int scn, int dcn) |
|
{ |
|
transform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
template<typename T, typename WT> static void |
|
diagtransform_( const T* src, T* dst, const WT* m, int len, int cn, int ) |
|
{ |
|
int x; |
|
|
|
if( cn == 2 ) |
|
{ |
|
for( x = 0; x < len*2; x += 2 ) |
|
{ |
|
T t0 = saturate_cast<T>(m[0]*src[x] + m[2]); |
|
T t1 = saturate_cast<T>(m[4]*src[x+1] + m[5]); |
|
dst[x] = t0; dst[x+1] = t1; |
|
} |
|
} |
|
else if( cn == 3 ) |
|
{ |
|
for( x = 0; x < len*3; x += 3 ) |
|
{ |
|
T t0 = saturate_cast<T>(m[0]*src[x] + m[3]); |
|
T t1 = saturate_cast<T>(m[5]*src[x+1] + m[7]); |
|
T t2 = saturate_cast<T>(m[10]*src[x+2] + m[11]); |
|
dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2; |
|
} |
|
} |
|
else if( cn == 4 ) |
|
{ |
|
for( x = 0; x < len*4; x += 4 ) |
|
{ |
|
T t0 = saturate_cast<T>(m[0]*src[x] + m[4]); |
|
T t1 = saturate_cast<T>(m[6]*src[x+1] + m[9]); |
|
dst[x] = t0; dst[x+1] = t1; |
|
t0 = saturate_cast<T>(m[12]*src[x+2] + m[14]); |
|
t1 = saturate_cast<T>(m[18]*src[x+3] + m[19]); |
|
dst[x+2] = t0; dst[x+3] = t1; |
|
} |
|
} |
|
else |
|
{ |
|
for( x = 0; x < len; x++, src += cn, dst += cn ) |
|
{ |
|
const WT* _m = m; |
|
for( int j = 0; j < cn; j++, _m += cn + 1 ) |
|
dst[j] = saturate_cast<T>(src[j]*_m[j] + _m[cn]); |
|
} |
|
} |
|
} |
|
|
|
static void |
|
diagtransform_8u(const uchar* src, uchar* dst, const float* m, int len, int scn, int dcn) |
|
{ |
|
diagtransform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
static void |
|
diagtransform_8s(const schar* src, schar* dst, const float* m, int len, int scn, int dcn) |
|
{ |
|
diagtransform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
static void |
|
diagtransform_16u(const ushort* src, ushort* dst, const float* m, int len, int scn, int dcn) |
|
{ |
|
diagtransform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
static void |
|
diagtransform_16s(const short* src, short* dst, const float* m, int len, int scn, int dcn) |
|
{ |
|
diagtransform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
static void |
|
diagtransform_32s(const int* src, int* dst, const double* m, int len, int scn, int dcn) |
|
{ |
|
diagtransform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
static void |
|
diagtransform_32f(const float* src, float* dst, const float* m, int len, int scn, int dcn) |
|
{ |
|
diagtransform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
static void |
|
diagtransform_64f(const double* src, double* dst, const double* m, int len, int scn, int dcn) |
|
{ |
|
diagtransform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
|
|
typedef void (*TransformFunc)( const uchar* src, uchar* dst, const uchar* m, int, int, int ); |
|
|
|
static TransformFunc getTransformFunc(int depth) |
|
{ |
|
static TransformFunc transformTab[] = |
|
{ |
|
(TransformFunc)transform_8u, (TransformFunc)transform_8s, (TransformFunc)transform_16u, |
|
(TransformFunc)transform_16s, (TransformFunc)transform_32s, (TransformFunc)transform_32f, |
|
(TransformFunc)transform_64f, 0 |
|
}; |
|
|
|
return transformTab[depth]; |
|
} |
|
|
|
static TransformFunc getDiagTransformFunc(int depth) |
|
{ |
|
static TransformFunc diagTransformTab[] = |
|
{ |
|
(TransformFunc)diagtransform_8u, (TransformFunc)diagtransform_8s, (TransformFunc)diagtransform_16u, |
|
(TransformFunc)diagtransform_16s, (TransformFunc)diagtransform_32s, (TransformFunc)diagtransform_32f, |
|
(TransformFunc)diagtransform_64f, 0 |
|
}; |
|
|
|
return diagTransformTab[depth]; |
|
} |
|
|
|
} |
|
|
|
void cv::transform( InputArray _src, OutputArray _dst, InputArray _mtx ) |
|
{ |
|
Mat src = _src.getMat(), m = _mtx.getMat(); |
|
int depth = src.depth(), scn = src.channels(), dcn = m.rows; |
|
CV_Assert( scn == m.cols || scn + 1 == m.cols ); |
|
bool isDiag = false; |
|
|
|
_dst.create( src.size(), CV_MAKETYPE(depth, dcn) ); |
|
Mat dst = _dst.getMat(); |
|
|
|
int mtype = depth == CV_32S || depth == CV_64F ? CV_64F : CV_32F; |
|
AutoBuffer<double> _mbuf; |
|
double* mbuf; |
|
|
|
if( !m.isContinuous() || m.type() != mtype || m.cols != scn + 1 ) |
|
{ |
|
_mbuf.allocate(dcn*(scn+1)); |
|
mbuf = (double*)_mbuf; |
|
Mat tmp(dcn, scn+1, mtype, mbuf); |
|
memset(tmp.data, 0, tmp.total()*tmp.elemSize()); |
|
if( m.cols == scn+1 ) |
|
m.convertTo(tmp, mtype); |
|
else |
|
{ |
|
Mat tmppart = tmp.colRange(0, m.cols); |
|
m.convertTo(tmppart, mtype); |
|
} |
|
m = tmp; |
|
} |
|
else |
|
mbuf = (double*)m.data; |
|
|
|
if( scn == dcn ) |
|
{ |
|
int i, j; |
|
double eps = mtype == CV_32F ? FLT_EPSILON : DBL_EPSILON; |
|
|
|
if( scn == 1 ) |
|
{ |
|
double alpha, beta; |
|
if( mtype == CV_32F ) |
|
alpha = m.at<float>(0), beta = m.at<float>(1); |
|
else |
|
alpha = m.at<double>(0), beta = m.at<double>(1); |
|
src.convertTo(dst, dst.type(), alpha, beta); |
|
return; |
|
} |
|
|
|
for( i = 0, isDiag = true; isDiag && i < scn; i++ ) |
|
{ |
|
for( j = 0; isDiag && j < scn; j++ ) |
|
{ |
|
double v = mtype == CV_32F ? m.at<float>(i, j) : m.at<double>(i, j); |
|
if( i != j && fabs(v) > eps ) |
|
isDiag = false; |
|
} |
|
} |
|
} |
|
|
|
TransformFunc func = isDiag ? getDiagTransformFunc(depth): getTransformFunc(depth); |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
size_t i, total = it.size; |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
func( ptrs[0], ptrs[1], (uchar*)mbuf, (int)total, scn, dcn ); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Perspective Transform * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static void |
|
perspectiveTransform_( const T* src, T* dst, const double* m, int len, int scn, int dcn ) |
|
{ |
|
const double eps = FLT_EPSILON; |
|
int i; |
|
|
|
if( scn == 2 && dcn == 2 ) |
|
{ |
|
for( i = 0; i < len*2; i += 2 ) |
|
{ |
|
T x = src[i], y = src[i + 1]; |
|
double w = x*m[6] + y*m[7] + m[8]; |
|
|
|
if( fabs(w) > eps ) |
|
{ |
|
w = 1./w; |
|
dst[i] = (T)((x*m[0] + y*m[1] + m[2])*w); |
|
dst[i+1] = (T)((x*m[3] + y*m[4] + m[5])*w); |
|
} |
|
else |
|
dst[i] = dst[i+1] = (T)0; |
|
} |
|
} |
|
else if( scn == 3 && dcn == 3 ) |
|
{ |
|
for( i = 0; i < len*3; i += 3 ) |
|
{ |
|
T x = src[i], y = src[i + 1], z = src[i + 2]; |
|
double w = x*m[12] + y*m[13] + z*m[14] + m[15]; |
|
|
|
if( fabs(w) > eps ) |
|
{ |
|
w = 1./w; |
|
dst[i] = (T)((x*m[0] + y*m[1] + z*m[2] + m[3]) * w); |
|
dst[i+1] = (T)((x*m[4] + y*m[5] + z*m[6] + m[7]) * w); |
|
dst[i+2] = (T)((x*m[8] + y*m[9] + z*m[10] + m[11]) * w); |
|
} |
|
else |
|
dst[i] = dst[i+1] = dst[i+2] = (T)0; |
|
} |
|
} |
|
else if( scn == 3 && dcn == 2 ) |
|
{ |
|
for( i = 0; i < len; i++, src += 3, dst += 2 ) |
|
{ |
|
T x = src[0], y = src[1], z = src[2]; |
|
double w = x*m[8] + y*m[9] + z*m[10] + m[11]; |
|
|
|
if( fabs(w) > eps ) |
|
{ |
|
w = 1./w; |
|
dst[0] = (T)((x*m[0] + y*m[1] + z*m[2] + m[3])*w); |
|
dst[1] = (T)((x*m[4] + y*m[5] + z*m[6] + m[7])*w); |
|
} |
|
else |
|
dst[0] = dst[1] = (T)0; |
|
} |
|
} |
|
else |
|
{ |
|
for( i = 0; i < len; i++, src += scn, dst += dcn ) |
|
{ |
|
const double* _m = m + dcn*(scn + 1); |
|
double w = _m[scn]; |
|
int j, k; |
|
for( k = 0; k < scn; k++ ) |
|
w += _m[k]*src[k]; |
|
if( fabs(w) > eps ) |
|
{ |
|
_m = m; |
|
for( j = 0; j < dcn; j++, _m += scn + 1 ) |
|
{ |
|
double s = _m[scn]; |
|
for( k = 0; k < scn; k++ ) |
|
s += _m[k]*src[k]; |
|
dst[j] = (T)(s*w); |
|
} |
|
} |
|
else |
|
for( j = 0; j < dcn; j++ ) |
|
dst[j] = 0; |
|
} |
|
} |
|
} |
|
|
|
|
|
static void |
|
perspectiveTransform_32f(const float* src, float* dst, const double* m, int len, int scn, int dcn) |
|
{ |
|
perspectiveTransform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
static void |
|
perspectiveTransform_64f(const double* src, double* dst, const double* m, int len, int scn, int dcn) |
|
{ |
|
perspectiveTransform_(src, dst, m, len, scn, dcn); |
|
} |
|
|
|
} |
|
|
|
void cv::perspectiveTransform( InputArray _src, OutputArray _dst, InputArray _mtx ) |
|
{ |
|
Mat src = _src.getMat(), m = _mtx.getMat(); |
|
int depth = src.depth(), scn = src.channels(), dcn = m.rows-1; |
|
CV_Assert( scn + 1 == m.cols && (depth == CV_32F || depth == CV_64F)); |
|
|
|
_dst.create( src.size(), CV_MAKETYPE(depth, dcn) ); |
|
Mat dst = _dst.getMat(); |
|
|
|
const int mtype = CV_64F; |
|
AutoBuffer<double> _mbuf; |
|
double* mbuf = _mbuf; |
|
|
|
if( !m.isContinuous() || m.type() != mtype ) |
|
{ |
|
_mbuf.allocate((dcn+1)*(scn+1)); |
|
Mat tmp(dcn+1, scn+1, mtype, (double*)_mbuf); |
|
m.convertTo(tmp, mtype); |
|
m = tmp; |
|
} |
|
else |
|
mbuf = (double*)m.data; |
|
|
|
TransformFunc func = depth == CV_32F ? |
|
(TransformFunc)perspectiveTransform_32f : |
|
(TransformFunc)perspectiveTransform_64f; |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
size_t i, total = it.size; |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
func( ptrs[0], ptrs[1], (uchar*)mbuf, (int)total, scn, dcn ); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* ScaleAdd * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
static void scaleAdd_32f(const float* src1, const float* src2, float* dst, |
|
int len, float* _alpha) |
|
{ |
|
float alpha = *_alpha; |
|
int i = 0; |
|
#if CV_SSE2 |
|
if( USE_SSE2 ) |
|
{ |
|
__m128 a4 = _mm_set1_ps(alpha); |
|
if( (((size_t)src1|(size_t)src2|(size_t)dst) & 15) == 0 ) |
|
for( ; i <= len - 8; i += 8 ) |
|
{ |
|
__m128 x0, x1, y0, y1, t0, t1; |
|
x0 = _mm_load_ps(src1 + i); x1 = _mm_load_ps(src1 + i + 4); |
|
y0 = _mm_load_ps(src2 + i); y1 = _mm_load_ps(src2 + i + 4); |
|
t0 = _mm_add_ps(_mm_mul_ps(x0, a4), y0); |
|
t1 = _mm_add_ps(_mm_mul_ps(x1, a4), y1); |
|
_mm_store_ps(dst + i, t0); |
|
_mm_store_ps(dst + i + 4, t1); |
|
} |
|
else |
|
for( ; i <= len - 8; i += 8 ) |
|
{ |
|
__m128 x0, x1, y0, y1, t0, t1; |
|
x0 = _mm_loadu_ps(src1 + i); x1 = _mm_loadu_ps(src1 + i + 4); |
|
y0 = _mm_loadu_ps(src2 + i); y1 = _mm_loadu_ps(src2 + i + 4); |
|
t0 = _mm_add_ps(_mm_mul_ps(x0, a4), y0); |
|
t1 = _mm_add_ps(_mm_mul_ps(x1, a4), y1); |
|
_mm_storeu_ps(dst + i, t0); |
|
_mm_storeu_ps(dst + i + 4, t1); |
|
} |
|
} |
|
else |
|
#endif |
|
//vz why do we need unroll here? |
|
for( ; i <= len - 4; i += 4 ) |
|
{ |
|
float t0, t1; |
|
t0 = src1[i]*alpha + src2[i]; |
|
t1 = src1[i+1]*alpha + src2[i+1]; |
|
dst[i] = t0; dst[i+1] = t1; |
|
t0 = src1[i+2]*alpha + src2[i+2]; |
|
t1 = src1[i+3]*alpha + src2[i+3]; |
|
dst[i+2] = t0; dst[i+3] = t1; |
|
} |
|
for(; i < len; i++ ) |
|
dst[i] = src1[i]*alpha + src2[i]; |
|
} |
|
|
|
|
|
static void scaleAdd_64f(const double* src1, const double* src2, double* dst, |
|
int len, double* _alpha) |
|
{ |
|
double alpha = *_alpha; |
|
int i = 0; |
|
#if CV_SSE2 |
|
if( USE_SSE2 && (((size_t)src1|(size_t)src2|(size_t)dst) & 15) == 0 ) |
|
{ |
|
__m128d a2 = _mm_set1_pd(alpha); |
|
for( ; i <= len - 4; i += 4 ) |
|
{ |
|
__m128d x0, x1, y0, y1, t0, t1; |
|
x0 = _mm_load_pd(src1 + i); x1 = _mm_load_pd(src1 + i + 2); |
|
y0 = _mm_load_pd(src2 + i); y1 = _mm_load_pd(src2 + i + 2); |
|
t0 = _mm_add_pd(_mm_mul_pd(x0, a2), y0); |
|
t1 = _mm_add_pd(_mm_mul_pd(x1, a2), y1); |
|
_mm_store_pd(dst + i, t0); |
|
_mm_store_pd(dst + i + 2, t1); |
|
} |
|
} |
|
else |
|
#endif |
|
//vz why do we need unroll here? |
|
for( ; i <= len - 4; i += 4 ) |
|
{ |
|
double t0, t1; |
|
t0 = src1[i]*alpha + src2[i]; |
|
t1 = src1[i+1]*alpha + src2[i+1]; |
|
dst[i] = t0; dst[i+1] = t1; |
|
t0 = src1[i+2]*alpha + src2[i+2]; |
|
t1 = src1[i+3]*alpha + src2[i+3]; |
|
dst[i+2] = t0; dst[i+3] = t1; |
|
} |
|
for(; i < len; i++ ) |
|
dst[i] = src1[i]*alpha + src2[i]; |
|
} |
|
|
|
typedef void (*ScaleAddFunc)(const uchar* src1, const uchar* src2, uchar* dst, int len, const void* alpha); |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_scaleAdd( InputArray _src1, double alpha, InputArray _src2, OutputArray _dst, int type ) |
|
{ |
|
int depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), wdepth = std::max(depth, CV_32F), |
|
kercn = ocl::predictOptimalVectorWidth(_src1, _src2, _dst); |
|
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; |
|
Size size = _src1.size(); |
|
|
|
if ( (!doubleSupport && depth == CV_64F) || size != _src2.size() ) |
|
return false; |
|
|
|
char cvt[2][50]; |
|
ocl::Kernel k("KF", ocl::core::arithm_oclsrc, |
|
format("-D OP_SCALE_ADD -D BINARY_OP -D dstT=%s -D workT=%s -D convertToWT1=%s" |
|
" -D srcT1=dstT -D srcT2=dstT -D convertToDT=%s -D workT1=%s -D wdepth=%d%s", |
|
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)), |
|
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)), |
|
ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]), |
|
ocl::convertTypeStr(wdepth, depth, kercn, cvt[1]), |
|
ocl::typeToStr(wdepth), wdepth, |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "")); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src1 = _src1.getUMat(), src2 = _src2.getUMat(); |
|
_dst.create(size, type); |
|
UMat dst = _dst.getUMat(); |
|
|
|
ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1), |
|
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2), |
|
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn); |
|
|
|
if (wdepth == CV_32F) |
|
k.args(src1arg, src2arg, dstarg, (float)alpha); |
|
else |
|
k.args(src1arg, src2arg, dstarg, alpha); |
|
|
|
size_t globalsize[2] = { dst.cols * cn / kercn, dst.rows }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
void cv::scaleAdd( InputArray _src1, double alpha, InputArray _src2, OutputArray _dst ) |
|
{ |
|
int type = _src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
CV_Assert( type == _src2.type() ); |
|
|
|
CV_OCL_RUN(_src1.dims() <= 2 && _src2.dims() <= 2 && _dst.isUMat(), |
|
ocl_scaleAdd(_src1, alpha, _src2, _dst, type)) |
|
|
|
if( depth < CV_32F ) |
|
{ |
|
addWeighted(_src1, alpha, _src2, 1, 0, _dst, depth); |
|
return; |
|
} |
|
|
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(); |
|
CV_Assert(src1.size == src2.size); |
|
|
|
_dst.create(src1.dims, src1.size, src1.type()); |
|
Mat dst = _dst.getMat(); |
|
|
|
float falpha = (float)alpha; |
|
void* palpha = depth == CV_32F ? (void*)&falpha : (void*)α |
|
|
|
ScaleAddFunc func = depth == CV_32F ? (ScaleAddFunc)scaleAdd_32f : (ScaleAddFunc)scaleAdd_64f; |
|
|
|
if( src1.isContinuous() && src2.isContinuous() && dst.isContinuous() ) |
|
{ |
|
size_t len = src1.total()*cn; |
|
func(src1.data, src2.data, dst.data, (int)len, palpha); |
|
return; |
|
} |
|
|
|
const Mat* arrays[] = {&src1, &src2, &dst, 0}; |
|
uchar* ptrs[3]; |
|
NAryMatIterator it(arrays, ptrs); |
|
size_t i, len = it.size*cn; |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
func( ptrs[0], ptrs[1], ptrs[2], (int)len, palpha ); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Covariation Matrix * |
|
\****************************************************************************************/ |
|
|
|
void cv::calcCovarMatrix( const Mat* data, int nsamples, Mat& covar, Mat& _mean, int flags, int ctype ) |
|
{ |
|
CV_Assert( data && nsamples > 0 ); |
|
Size size = data[0].size(); |
|
int sz = size.width * size.height, esz = (int)data[0].elemSize(); |
|
int type = data[0].type(); |
|
Mat mean; |
|
ctype = std::max(std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), _mean.depth()), CV_32F); |
|
|
|
if( (flags & CV_COVAR_USE_AVG) != 0 ) |
|
{ |
|
CV_Assert( _mean.size() == size ); |
|
if( _mean.isContinuous() && _mean.type() == ctype ) |
|
mean = _mean.reshape(1, 1); |
|
else |
|
{ |
|
_mean.convertTo(mean, ctype); |
|
mean = mean.reshape(1, 1); |
|
} |
|
} |
|
|
|
Mat _data(nsamples, sz, type); |
|
|
|
for( int i = 0; i < nsamples; i++ ) |
|
{ |
|
CV_Assert( data[i].size() == size && data[i].type() == type ); |
|
if( data[i].isContinuous() ) |
|
memcpy( _data.ptr(i), data[i].data, sz*esz ); |
|
else |
|
{ |
|
Mat dataRow(size.height, size.width, type, _data.ptr(i)); |
|
data[i].copyTo(dataRow); |
|
} |
|
} |
|
|
|
calcCovarMatrix( _data, covar, mean, (flags & ~(CV_COVAR_ROWS|CV_COVAR_COLS)) | CV_COVAR_ROWS, ctype ); |
|
if( (flags & CV_COVAR_USE_AVG) == 0 ) |
|
_mean = mean.reshape(1, size.height); |
|
} |
|
|
|
void cv::calcCovarMatrix( InputArray _src, OutputArray _covar, InputOutputArray _mean, int flags, int ctype ) |
|
{ |
|
if(_src.kind() == _InputArray::STD_VECTOR_MAT) |
|
{ |
|
std::vector<cv::Mat> src; |
|
_src.getMatVector(src); |
|
|
|
CV_Assert( src.size() > 0 ); |
|
|
|
Size size = src[0].size(); |
|
int type = src[0].type(); |
|
|
|
ctype = std::max(std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), _mean.depth()), CV_32F); |
|
|
|
Mat _data(static_cast<int>(src.size()), size.area(), type); |
|
|
|
int i = 0; |
|
for(std::vector<cv::Mat>::iterator each = src.begin(); each != src.end(); each++, i++ ) |
|
{ |
|
CV_Assert( (*each).size() == size && (*each).type() == type ); |
|
Mat dataRow(size.height, size.width, type, _data.ptr(i)); |
|
(*each).copyTo(dataRow); |
|
} |
|
|
|
Mat mean; |
|
if( (flags & CV_COVAR_USE_AVG) != 0 ) |
|
{ |
|
CV_Assert( _mean.size() == size ); |
|
|
|
if( mean.type() != ctype ) |
|
{ |
|
mean = _mean.getMat(); |
|
_mean.create(mean.size(), ctype); |
|
Mat tmp = _mean.getMat(); |
|
mean.convertTo(tmp, ctype); |
|
mean = tmp; |
|
} |
|
|
|
mean = _mean.getMat().reshape(1, 1); |
|
} |
|
|
|
calcCovarMatrix( _data, _covar, mean, (flags & ~(CV_COVAR_ROWS|CV_COVAR_COLS)) | CV_COVAR_ROWS, ctype ); |
|
|
|
if( (flags & CV_COVAR_USE_AVG) == 0 ) |
|
{ |
|
mean = mean.reshape(1, size.height); |
|
mean.copyTo(_mean); |
|
} |
|
return; |
|
} |
|
|
|
Mat data = _src.getMat(), mean; |
|
CV_Assert( ((flags & CV_COVAR_ROWS) != 0) ^ ((flags & CV_COVAR_COLS) != 0) ); |
|
bool takeRows = (flags & CV_COVAR_ROWS) != 0; |
|
int type = data.type(); |
|
int nsamples = takeRows ? data.rows : data.cols; |
|
CV_Assert( nsamples > 0 ); |
|
Size size = takeRows ? Size(data.cols, 1) : Size(1, data.rows); |
|
|
|
if( (flags & CV_COVAR_USE_AVG) != 0 ) |
|
{ |
|
mean = _mean.getMat(); |
|
ctype = std::max(std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), mean.depth()), CV_32F); |
|
CV_Assert( mean.size() == size ); |
|
if( mean.type() != ctype ) |
|
{ |
|
_mean.create(mean.size(), ctype); |
|
Mat tmp = _mean.getMat(); |
|
mean.convertTo(tmp, ctype); |
|
mean = tmp; |
|
} |
|
} |
|
else |
|
{ |
|
ctype = std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), CV_32F); |
|
reduce( _src, _mean, takeRows ? 0 : 1, CV_REDUCE_AVG, ctype ); |
|
mean = _mean.getMat(); |
|
} |
|
|
|
mulTransposed( data, _covar, ((flags & CV_COVAR_NORMAL) == 0) ^ takeRows, |
|
mean, (flags & CV_COVAR_SCALE) != 0 ? 1./nsamples : 1, ctype ); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Mahalanobis * |
|
\****************************************************************************************/ |
|
|
|
double cv::Mahalanobis( InputArray _v1, InputArray _v2, InputArray _icovar ) |
|
{ |
|
Mat v1 = _v1.getMat(), v2 = _v2.getMat(), icovar = _icovar.getMat(); |
|
int type = v1.type(), depth = v1.depth(); |
|
Size sz = v1.size(); |
|
int i, j, len = sz.width*sz.height*v1.channels(); |
|
AutoBuffer<double> buf(len); |
|
double result = 0; |
|
|
|
CV_Assert( type == v2.type() && type == icovar.type() && |
|
sz == v2.size() && len == icovar.rows && len == icovar.cols ); |
|
|
|
sz.width *= v1.channels(); |
|
if( v1.isContinuous() && v2.isContinuous() ) |
|
{ |
|
sz.width *= sz.height; |
|
sz.height = 1; |
|
} |
|
|
|
if( depth == CV_32F ) |
|
{ |
|
const float* src1 = (const float*)v1.data; |
|
const float* src2 = (const float*)v2.data; |
|
size_t step1 = v1.step/sizeof(src1[0]); |
|
size_t step2 = v2.step/sizeof(src2[0]); |
|
double* diff = buf; |
|
const float* mat = (const float*)icovar.data; |
|
size_t matstep = icovar.step/sizeof(mat[0]); |
|
|
|
for( ; sz.height--; src1 += step1, src2 += step2, diff += sz.width ) |
|
{ |
|
for( i = 0; i < sz.width; i++ ) |
|
diff[i] = src1[i] - src2[i]; |
|
} |
|
|
|
diff = buf; |
|
for( i = 0; i < len; i++, mat += matstep ) |
|
{ |
|
double row_sum = 0; |
|
j = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for(; j <= len - 4; j += 4 ) |
|
row_sum += diff[j]*mat[j] + diff[j+1]*mat[j+1] + |
|
diff[j+2]*mat[j+2] + diff[j+3]*mat[j+3]; |
|
#endif |
|
for( ; j < len; j++ ) |
|
row_sum += diff[j]*mat[j]; |
|
result += row_sum * diff[i]; |
|
} |
|
} |
|
else if( depth == CV_64F ) |
|
{ |
|
const double* src1 = (const double*)v1.data; |
|
const double* src2 = (const double*)v2.data; |
|
size_t step1 = v1.step/sizeof(src1[0]); |
|
size_t step2 = v2.step/sizeof(src2[0]); |
|
double* diff = buf; |
|
const double* mat = (const double*)icovar.data; |
|
size_t matstep = icovar.step/sizeof(mat[0]); |
|
|
|
for( ; sz.height--; src1 += step1, src2 += step2, diff += sz.width ) |
|
{ |
|
for( i = 0; i < sz.width; i++ ) |
|
diff[i] = src1[i] - src2[i]; |
|
} |
|
|
|
diff = buf; |
|
for( i = 0; i < len; i++, mat += matstep ) |
|
{ |
|
double row_sum = 0; |
|
j = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for(; j <= len - 4; j += 4 ) |
|
row_sum += diff[j]*mat[j] + diff[j+1]*mat[j+1] + |
|
diff[j+2]*mat[j+2] + diff[j+3]*mat[j+3]; |
|
#endif |
|
for( ; j < len; j++ ) |
|
row_sum += diff[j]*mat[j]; |
|
result += row_sum * diff[i]; |
|
} |
|
} |
|
else |
|
CV_Error( CV_StsUnsupportedFormat, "" ); |
|
|
|
return std::sqrt(result); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* MulTransposed * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename sT, typename dT> static void |
|
MulTransposedR( const Mat& srcmat, Mat& dstmat, const Mat& deltamat, double scale ) |
|
{ |
|
int i, j, k; |
|
const sT* src = (const sT*)srcmat.data; |
|
dT* dst = (dT*)dstmat.data; |
|
const dT* delta = (const dT*)deltamat.data; |
|
size_t srcstep = srcmat.step/sizeof(src[0]); |
|
size_t dststep = dstmat.step/sizeof(dst[0]); |
|
size_t deltastep = deltamat.rows > 1 ? deltamat.step/sizeof(delta[0]) : 0; |
|
int delta_cols = deltamat.cols; |
|
Size size = srcmat.size(); |
|
dT* tdst = dst; |
|
dT* col_buf = 0; |
|
dT* delta_buf = 0; |
|
int buf_size = size.height*sizeof(dT); |
|
AutoBuffer<uchar> buf; |
|
|
|
if( delta && delta_cols < size.width ) |
|
{ |
|
assert( delta_cols == 1 ); |
|
buf_size *= 5; |
|
} |
|
buf.allocate(buf_size); |
|
col_buf = (dT*)(uchar*)buf; |
|
|
|
if( delta && delta_cols < size.width ) |
|
{ |
|
delta_buf = col_buf + size.height; |
|
for( i = 0; i < size.height; i++ ) |
|
delta_buf[i*4] = delta_buf[i*4+1] = |
|
delta_buf[i*4+2] = delta_buf[i*4+3] = delta[i*deltastep]; |
|
delta = delta_buf; |
|
deltastep = deltastep ? 4 : 0; |
|
} |
|
|
|
if( !delta ) |
|
for( i = 0; i < size.width; i++, tdst += dststep ) |
|
{ |
|
for( k = 0; k < size.height; k++ ) |
|
col_buf[k] = src[k*srcstep+i]; |
|
|
|
for( j = i; j <= size.width - 4; j += 4 ) |
|
{ |
|
double s0 = 0, s1 = 0, s2 = 0, s3 = 0; |
|
const sT *tsrc = src + j; |
|
|
|
for( k = 0; k < size.height; k++, tsrc += srcstep ) |
|
{ |
|
double a = col_buf[k]; |
|
s0 += a * tsrc[0]; |
|
s1 += a * tsrc[1]; |
|
s2 += a * tsrc[2]; |
|
s3 += a * tsrc[3]; |
|
} |
|
|
|
tdst[j] = (dT)(s0*scale); |
|
tdst[j+1] = (dT)(s1*scale); |
|
tdst[j+2] = (dT)(s2*scale); |
|
tdst[j+3] = (dT)(s3*scale); |
|
} |
|
|
|
for( ; j < size.width; j++ ) |
|
{ |
|
double s0 = 0; |
|
const sT *tsrc = src + j; |
|
|
|
for( k = 0; k < size.height; k++, tsrc += srcstep ) |
|
s0 += (double)col_buf[k] * tsrc[0]; |
|
|
|
tdst[j] = (dT)(s0*scale); |
|
} |
|
} |
|
else |
|
for( i = 0; i < size.width; i++, tdst += dststep ) |
|
{ |
|
if( !delta_buf ) |
|
for( k = 0; k < size.height; k++ ) |
|
col_buf[k] = src[k*srcstep+i] - delta[k*deltastep+i]; |
|
else |
|
for( k = 0; k < size.height; k++ ) |
|
col_buf[k] = src[k*srcstep+i] - delta_buf[k*deltastep]; |
|
|
|
for( j = i; j <= size.width - 4; j += 4 ) |
|
{ |
|
double s0 = 0, s1 = 0, s2 = 0, s3 = 0; |
|
const sT *tsrc = src + j; |
|
const dT *d = delta_buf ? delta_buf : delta + j; |
|
|
|
for( k = 0; k < size.height; k++, tsrc+=srcstep, d+=deltastep ) |
|
{ |
|
double a = col_buf[k]; |
|
s0 += a * (tsrc[0] - d[0]); |
|
s1 += a * (tsrc[1] - d[1]); |
|
s2 += a * (tsrc[2] - d[2]); |
|
s3 += a * (tsrc[3] - d[3]); |
|
} |
|
|
|
tdst[j] = (dT)(s0*scale); |
|
tdst[j+1] = (dT)(s1*scale); |
|
tdst[j+2] = (dT)(s2*scale); |
|
tdst[j+3] = (dT)(s3*scale); |
|
} |
|
|
|
for( ; j < size.width; j++ ) |
|
{ |
|
double s0 = 0; |
|
const sT *tsrc = src + j; |
|
const dT *d = delta_buf ? delta_buf : delta + j; |
|
|
|
for( k = 0; k < size.height; k++, tsrc+=srcstep, d+=deltastep ) |
|
s0 += (double)col_buf[k] * (tsrc[0] - d[0]); |
|
|
|
tdst[j] = (dT)(s0*scale); |
|
} |
|
} |
|
} |
|
|
|
|
|
template<typename sT, typename dT> static void |
|
MulTransposedL( const Mat& srcmat, Mat& dstmat, const Mat& deltamat, double scale ) |
|
{ |
|
int i, j, k; |
|
const sT* src = (const sT*)srcmat.data; |
|
dT* dst = (dT*)dstmat.data; |
|
const dT* delta = (const dT*)deltamat.data; |
|
size_t srcstep = srcmat.step/sizeof(src[0]); |
|
size_t dststep = dstmat.step/sizeof(dst[0]); |
|
size_t deltastep = deltamat.rows > 1 ? deltamat.step/sizeof(delta[0]) : 0; |
|
int delta_cols = deltamat.cols; |
|
Size size = srcmat.size(); |
|
dT* tdst = dst; |
|
|
|
if( !delta ) |
|
for( i = 0; i < size.height; i++, tdst += dststep ) |
|
for( j = i; j < size.height; j++ ) |
|
{ |
|
double s = 0; |
|
const sT *tsrc1 = src + i*srcstep; |
|
const sT *tsrc2 = src + j*srcstep; |
|
|
|
for( k = 0; k <= size.width - 4; k += 4 ) |
|
s += (double)tsrc1[k]*tsrc2[k] + (double)tsrc1[k+1]*tsrc2[k+1] + |
|
(double)tsrc1[k+2]*tsrc2[k+2] + (double)tsrc1[k+3]*tsrc2[k+3]; |
|
for( ; k < size.width; k++ ) |
|
s += (double)tsrc1[k] * tsrc2[k]; |
|
tdst[j] = (dT)(s*scale); |
|
} |
|
else |
|
{ |
|
dT delta_buf[4]; |
|
int delta_shift = delta_cols == size.width ? 4 : 0; |
|
AutoBuffer<uchar> buf(size.width*sizeof(dT)); |
|
dT* row_buf = (dT*)(uchar*)buf; |
|
|
|
for( i = 0; i < size.height; i++, tdst += dststep ) |
|
{ |
|
const sT *tsrc1 = src + i*srcstep; |
|
const dT *tdelta1 = delta + i*deltastep; |
|
|
|
if( delta_cols < size.width ) |
|
for( k = 0; k < size.width; k++ ) |
|
row_buf[k] = tsrc1[k] - tdelta1[0]; |
|
else |
|
for( k = 0; k < size.width; k++ ) |
|
row_buf[k] = tsrc1[k] - tdelta1[k]; |
|
|
|
for( j = i; j < size.height; j++ ) |
|
{ |
|
double s = 0; |
|
const sT *tsrc2 = src + j*srcstep; |
|
const dT *tdelta2 = delta + j*deltastep; |
|
if( delta_cols < size.width ) |
|
{ |
|
delta_buf[0] = delta_buf[1] = |
|
delta_buf[2] = delta_buf[3] = tdelta2[0]; |
|
tdelta2 = delta_buf; |
|
} |
|
for( k = 0; k <= size.width-4; k += 4, tdelta2 += delta_shift ) |
|
s += (double)row_buf[k]*(tsrc2[k] - tdelta2[0]) + |
|
(double)row_buf[k+1]*(tsrc2[k+1] - tdelta2[1]) + |
|
(double)row_buf[k+2]*(tsrc2[k+2] - tdelta2[2]) + |
|
(double)row_buf[k+3]*(tsrc2[k+3] - tdelta2[3]); |
|
for( ; k < size.width; k++, tdelta2++ ) |
|
s += (double)row_buf[k]*(tsrc2[k] - tdelta2[0]); |
|
tdst[j] = (dT)(s*scale); |
|
} |
|
} |
|
} |
|
} |
|
|
|
typedef void (*MulTransposedFunc)(const Mat& src, Mat& dst, const Mat& delta, double scale); |
|
|
|
} |
|
|
|
void cv::mulTransposed( InputArray _src, OutputArray _dst, bool ata, |
|
InputArray _delta, double scale, int dtype ) |
|
{ |
|
Mat src = _src.getMat(), delta = _delta.getMat(); |
|
const int gemm_level = 100; // boundary above which GEMM is faster. |
|
int stype = src.type(); |
|
dtype = std::max(std::max(CV_MAT_DEPTH(dtype >= 0 ? dtype : stype), delta.depth()), CV_32F); |
|
CV_Assert( src.channels() == 1 ); |
|
|
|
if( delta.data ) |
|
{ |
|
CV_Assert( delta.channels() == 1 && |
|
(delta.rows == src.rows || delta.rows == 1) && |
|
(delta.cols == src.cols || delta.cols == 1)); |
|
if( delta.type() != dtype ) |
|
delta.convertTo(delta, dtype); |
|
} |
|
|
|
int dsize = ata ? src.cols : src.rows; |
|
_dst.create( dsize, dsize, dtype ); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( src.data == dst.data || (stype == dtype && |
|
(dst.cols >= gemm_level && dst.rows >= gemm_level && |
|
src.cols >= gemm_level && src.rows >= gemm_level))) |
|
{ |
|
Mat src2; |
|
const Mat* tsrc = &src; |
|
if( delta.data ) |
|
{ |
|
if( delta.size() == src.size() ) |
|
subtract( src, delta, src2 ); |
|
else |
|
{ |
|
repeat(delta, src.rows/delta.rows, src.cols/delta.cols, src2); |
|
subtract( src, src2, src2 ); |
|
} |
|
tsrc = &src2; |
|
} |
|
gemm( *tsrc, *tsrc, scale, Mat(), 0, dst, ata ? GEMM_1_T : GEMM_2_T ); |
|
} |
|
else |
|
{ |
|
MulTransposedFunc func = 0; |
|
if(stype == CV_8U && dtype == CV_32F) |
|
{ |
|
if(ata) |
|
func = MulTransposedR<uchar,float>; |
|
else |
|
func = MulTransposedL<uchar,float>; |
|
} |
|
else if(stype == CV_8U && dtype == CV_64F) |
|
{ |
|
if(ata) |
|
func = MulTransposedR<uchar,double>; |
|
else |
|
func = MulTransposedL<uchar,double>; |
|
} |
|
else if(stype == CV_16U && dtype == CV_32F) |
|
{ |
|
if(ata) |
|
func = MulTransposedR<ushort,float>; |
|
else |
|
func = MulTransposedL<ushort,float>; |
|
} |
|
else if(stype == CV_16U && dtype == CV_64F) |
|
{ |
|
if(ata) |
|
func = MulTransposedR<ushort,double>; |
|
else |
|
func = MulTransposedL<ushort,double>; |
|
} |
|
else if(stype == CV_16S && dtype == CV_32F) |
|
{ |
|
if(ata) |
|
func = MulTransposedR<short,float>; |
|
else |
|
func = MulTransposedL<short,float>; |
|
} |
|
else if(stype == CV_16S && dtype == CV_64F) |
|
{ |
|
if(ata) |
|
func = MulTransposedR<short,double>; |
|
else |
|
func = MulTransposedL<short,double>; |
|
} |
|
else if(stype == CV_32F && dtype == CV_32F) |
|
{ |
|
if(ata) |
|
func = MulTransposedR<float,float>; |
|
else |
|
func = MulTransposedL<float,float>; |
|
} |
|
else if(stype == CV_32F && dtype == CV_64F) |
|
{ |
|
if(ata) |
|
func = MulTransposedR<float,double>; |
|
else |
|
func = MulTransposedL<float,double>; |
|
} |
|
else if(stype == CV_64F && dtype == CV_64F) |
|
{ |
|
if(ata) |
|
func = MulTransposedR<double,double>; |
|
else |
|
func = MulTransposedL<double,double>; |
|
} |
|
if( !func ) |
|
CV_Error( CV_StsUnsupportedFormat, "" ); |
|
|
|
func( src, dst, delta, scale ); |
|
completeSymm( dst, false ); |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Dot Product * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> double |
|
dotProd_(const T* src1, const T* src2, int len) |
|
{ |
|
int i = 0; |
|
double result = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; i <= len - 4; i += 4 ) |
|
result += (double)src1[i]*src2[i] + (double)src1[i+1]*src2[i+1] + |
|
(double)src1[i+2]*src2[i+2] + (double)src1[i+3]*src2[i+3]; |
|
#endif |
|
for( ; i < len; i++ ) |
|
result += (double)src1[i]*src2[i]; |
|
|
|
return result; |
|
} |
|
|
|
|
|
static double dotProd_8u(const uchar* src1, const uchar* src2, int len) |
|
{ |
|
double r = 0; |
|
#if ARITHM_USE_IPP |
|
if (0 <= ippiDotProd_8u64f_C1R(src1, (int)(len*sizeof(src1[0])), |
|
src2, (int)(len*sizeof(src2[0])), |
|
ippiSize(len, 1), &r)) |
|
return r; |
|
#endif |
|
int i = 0; |
|
|
|
#if CV_SSE2 |
|
if( USE_SSE2 ) |
|
{ |
|
int j, len0 = len & -4, blockSize0 = (1 << 13), blockSize; |
|
__m128i z = _mm_setzero_si128(); |
|
while( i < len0 ) |
|
{ |
|
blockSize = std::min(len0 - i, blockSize0); |
|
__m128i s = _mm_setzero_si128(); |
|
j = 0; |
|
for( ; j <= blockSize - 16; j += 16 ) |
|
{ |
|
__m128i b0 = _mm_loadu_si128((const __m128i*)(src1 + j)); |
|
__m128i b1 = _mm_loadu_si128((const __m128i*)(src2 + j)); |
|
__m128i s0, s1, s2, s3; |
|
s0 = _mm_unpacklo_epi8(b0, z); |
|
s2 = _mm_unpackhi_epi8(b0, z); |
|
s1 = _mm_unpacklo_epi8(b1, z); |
|
s3 = _mm_unpackhi_epi8(b1, z); |
|
s0 = _mm_madd_epi16(s0, s1); |
|
s2 = _mm_madd_epi16(s2, s3); |
|
s = _mm_add_epi32(s, s0); |
|
s = _mm_add_epi32(s, s2); |
|
} |
|
|
|
for( ; j < blockSize; j += 4 ) |
|
{ |
|
__m128i s0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src1 + j)), z); |
|
__m128i s1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src2 + j)), z); |
|
s0 = _mm_madd_epi16(s0, s1); |
|
s = _mm_add_epi32(s, s0); |
|
} |
|
CV_DECL_ALIGNED(16) int buf[4]; |
|
_mm_store_si128((__m128i*)buf, s); |
|
r += buf[0] + buf[1] + buf[2] + buf[3]; |
|
|
|
src1 += blockSize; |
|
src2 += blockSize; |
|
i += blockSize; |
|
} |
|
} |
|
#endif |
|
return r + dotProd_(src1, src2, len - i); |
|
} |
|
|
|
|
|
static double dotProd_8s(const schar* src1, const schar* src2, int len) |
|
{ |
|
return dotProd_(src1, src2, len); |
|
} |
|
|
|
static double dotProd_16u(const ushort* src1, const ushort* src2, int len) |
|
{ |
|
#if (ARITHM_USE_IPP == 1) |
|
double r = 0; |
|
if (0 <= ippiDotProd_16u64f_C1R(src1, (int)(len*sizeof(src1[0])), src2, (int)(len*sizeof(src2[0])), ippiSize(len, 1), &r)) |
|
return r; |
|
#endif |
|
return dotProd_(src1, src2, len); |
|
} |
|
|
|
static double dotProd_16s(const short* src1, const short* src2, int len) |
|
{ |
|
#if (ARITHM_USE_IPP == 1) |
|
double r = 0; |
|
if (0 <= ippiDotProd_16s64f_C1R(src1, (int)(len*sizeof(src1[0])), src2, (int)(len*sizeof(src2[0])), ippiSize(len, 1), &r)) |
|
return r; |
|
#endif |
|
return dotProd_(src1, src2, len); |
|
} |
|
|
|
static double dotProd_32s(const int* src1, const int* src2, int len) |
|
{ |
|
#if (ARITHM_USE_IPP == 1) |
|
double r = 0; |
|
if (0 <= ippiDotProd_32s64f_C1R(src1, (int)(len*sizeof(src1[0])), src2, (int)(len*sizeof(src2[0])), ippiSize(len, 1), &r)) |
|
return r; |
|
#endif |
|
return dotProd_(src1, src2, len); |
|
} |
|
|
|
static double dotProd_32f(const float* src1, const float* src2, int len) |
|
{ |
|
#if (ARITHM_USE_IPP == 1) |
|
double r = 0; |
|
if (0 <= ippsDotProd_32f64f(src1, src2, len, &r)) |
|
return r; |
|
#endif |
|
return dotProd_(src1, src2, len); |
|
} |
|
|
|
static double dotProd_64f(const double* src1, const double* src2, int len) |
|
{ |
|
#if (ARITHM_USE_IPP == 1) |
|
double r = 0; |
|
if (0 <= ippsDotProd_64f(src1, src2, len, &r)) |
|
return r; |
|
#endif |
|
return dotProd_(src1, src2, len); |
|
} |
|
|
|
|
|
typedef double (*DotProdFunc)(const uchar* src1, const uchar* src2, int len); |
|
|
|
static DotProdFunc getDotProdFunc(int depth) |
|
{ |
|
static DotProdFunc dotProdTab[] = |
|
{ |
|
(DotProdFunc)GET_OPTIMIZED(dotProd_8u), (DotProdFunc)GET_OPTIMIZED(dotProd_8s), |
|
(DotProdFunc)dotProd_16u, (DotProdFunc)dotProd_16s, |
|
(DotProdFunc)dotProd_32s, (DotProdFunc)GET_OPTIMIZED(dotProd_32f), |
|
(DotProdFunc)dotProd_64f, 0 |
|
}; |
|
|
|
return dotProdTab[depth]; |
|
} |
|
|
|
double Mat::dot(InputArray _mat) const |
|
{ |
|
Mat mat = _mat.getMat(); |
|
int cn = channels(); |
|
DotProdFunc func = getDotProdFunc(depth()); |
|
CV_Assert( mat.type() == type() && mat.size == size && func != 0 ); |
|
|
|
if( isContinuous() && mat.isContinuous() ) |
|
{ |
|
size_t len = total()*cn; |
|
if( len == (size_t)(int)len ) |
|
return func(data, mat.data, (int)len); |
|
} |
|
|
|
const Mat* arrays[] = {this, &mat, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int len = (int)(it.size*cn); |
|
double r = 0; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
r += func( ptrs[0], ptrs[1], len ); |
|
|
|
return r; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* PCA * |
|
\****************************************************************************************/ |
|
|
|
PCA::PCA() {} |
|
|
|
PCA::PCA(InputArray data, InputArray _mean, int flags, int maxComponents) |
|
{ |
|
operator()(data, _mean, flags, maxComponents); |
|
} |
|
|
|
PCA::PCA(InputArray data, InputArray _mean, int flags, double retainedVariance) |
|
{ |
|
operator()(data, _mean, flags, retainedVariance); |
|
} |
|
|
|
PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComponents) |
|
{ |
|
Mat data = _data.getMat(), _mean = __mean.getMat(); |
|
int covar_flags = CV_COVAR_SCALE; |
|
int i, len, in_count; |
|
Size mean_sz; |
|
|
|
CV_Assert( data.channels() == 1 ); |
|
if( flags & CV_PCA_DATA_AS_COL ) |
|
{ |
|
len = data.rows; |
|
in_count = data.cols; |
|
covar_flags |= CV_COVAR_COLS; |
|
mean_sz = Size(1, len); |
|
} |
|
else |
|
{ |
|
len = data.cols; |
|
in_count = data.rows; |
|
covar_flags |= CV_COVAR_ROWS; |
|
mean_sz = Size(len, 1); |
|
} |
|
|
|
int count = std::min(len, in_count), out_count = count; |
|
if( maxComponents > 0 ) |
|
out_count = std::min(count, maxComponents); |
|
|
|
// "scrambled" way to compute PCA (when cols(A)>rows(A)): |
|
// B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y |
|
if( len <= in_count ) |
|
covar_flags |= CV_COVAR_NORMAL; |
|
|
|
int ctype = std::max(CV_32F, data.depth()); |
|
mean.create( mean_sz, ctype ); |
|
|
|
Mat covar( count, count, ctype ); |
|
|
|
if( _mean.data ) |
|
{ |
|
CV_Assert( _mean.size() == mean_sz ); |
|
_mean.convertTo(mean, ctype); |
|
covar_flags |= CV_COVAR_USE_AVG; |
|
} |
|
|
|
calcCovarMatrix( data, covar, mean, covar_flags, ctype ); |
|
eigen( covar, eigenvalues, eigenvectors ); |
|
|
|
if( !(covar_flags & CV_COVAR_NORMAL) ) |
|
{ |
|
// CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A |
|
// CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A' |
|
Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols); |
|
if( data.type() != ctype || tmp_mean.data == mean.data ) |
|
{ |
|
data.convertTo( tmp_data, ctype ); |
|
subtract( tmp_data, tmp_mean, tmp_data ); |
|
} |
|
else |
|
{ |
|
subtract( data, tmp_mean, tmp_mean ); |
|
tmp_data = tmp_mean; |
|
} |
|
|
|
Mat evects1(count, len, ctype); |
|
gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1, |
|
(flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0); |
|
eigenvectors = evects1; |
|
|
|
// normalize eigenvectors |
|
for( i = 0; i < out_count; i++ ) |
|
{ |
|
Mat vec = eigenvectors.row(i); |
|
normalize(vec, vec); |
|
} |
|
} |
|
|
|
if( count > out_count ) |
|
{ |
|
// use clone() to physically copy the data and thus deallocate the original matrices |
|
eigenvalues = eigenvalues.rowRange(0,out_count).clone(); |
|
eigenvectors = eigenvectors.rowRange(0,out_count).clone(); |
|
} |
|
return *this; |
|
} |
|
|
|
void PCA::write(FileStorage& fs ) const |
|
{ |
|
CV_Assert( fs.isOpened() ); |
|
|
|
fs << "name" << "PCA"; |
|
fs << "vectors" << eigenvectors; |
|
fs << "values" << eigenvalues; |
|
fs << "mean" << mean; |
|
} |
|
|
|
void PCA::read(const FileNode& fs) |
|
{ |
|
CV_Assert( !fs.empty() ); |
|
String name = (String)fs["name"]; |
|
CV_Assert( name == "PCA" ); |
|
|
|
cv::read(fs["vectors"], eigenvectors); |
|
cv::read(fs["values"], eigenvalues); |
|
cv::read(fs["mean"], mean); |
|
} |
|
|
|
template <typename T> |
|
int computeCumulativeEnergy(const Mat& eigenvalues, double retainedVariance) |
|
{ |
|
CV_DbgAssert( eigenvalues.type() == DataType<T>::type ); |
|
|
|
Mat g(eigenvalues.size(), DataType<T>::type); |
|
|
|
for(int ig = 0; ig < g.rows; ig++) |
|
{ |
|
g.at<T>(ig, 0) = 0; |
|
for(int im = 0; im <= ig; im++) |
|
{ |
|
g.at<T>(ig,0) += eigenvalues.at<T>(im,0); |
|
} |
|
} |
|
|
|
int L; |
|
|
|
for(L = 0; L < eigenvalues.rows; L++) |
|
{ |
|
double energy = g.at<T>(L, 0) / g.at<T>(g.rows - 1, 0); |
|
if(energy > retainedVariance) |
|
break; |
|
} |
|
|
|
L = std::max(2, L); |
|
|
|
return L; |
|
} |
|
|
|
PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, double retainedVariance) |
|
{ |
|
Mat data = _data.getMat(), _mean = __mean.getMat(); |
|
int covar_flags = CV_COVAR_SCALE; |
|
int i, len, in_count; |
|
Size mean_sz; |
|
|
|
CV_Assert( data.channels() == 1 ); |
|
if( flags & CV_PCA_DATA_AS_COL ) |
|
{ |
|
len = data.rows; |
|
in_count = data.cols; |
|
covar_flags |= CV_COVAR_COLS; |
|
mean_sz = Size(1, len); |
|
} |
|
else |
|
{ |
|
len = data.cols; |
|
in_count = data.rows; |
|
covar_flags |= CV_COVAR_ROWS; |
|
mean_sz = Size(len, 1); |
|
} |
|
|
|
CV_Assert( retainedVariance > 0 && retainedVariance <= 1 ); |
|
|
|
int count = std::min(len, in_count); |
|
|
|
// "scrambled" way to compute PCA (when cols(A)>rows(A)): |
|
// B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y |
|
if( len <= in_count ) |
|
covar_flags |= CV_COVAR_NORMAL; |
|
|
|
int ctype = std::max(CV_32F, data.depth()); |
|
mean.create( mean_sz, ctype ); |
|
|
|
Mat covar( count, count, ctype ); |
|
|
|
if( _mean.data ) |
|
{ |
|
CV_Assert( _mean.size() == mean_sz ); |
|
_mean.convertTo(mean, ctype); |
|
} |
|
|
|
calcCovarMatrix( data, covar, mean, covar_flags, ctype ); |
|
eigen( covar, eigenvalues, eigenvectors ); |
|
|
|
if( !(covar_flags & CV_COVAR_NORMAL) ) |
|
{ |
|
// CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A |
|
// CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A' |
|
Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols); |
|
if( data.type() != ctype || tmp_mean.data == mean.data ) |
|
{ |
|
data.convertTo( tmp_data, ctype ); |
|
subtract( tmp_data, tmp_mean, tmp_data ); |
|
} |
|
else |
|
{ |
|
subtract( data, tmp_mean, tmp_mean ); |
|
tmp_data = tmp_mean; |
|
} |
|
|
|
Mat evects1(count, len, ctype); |
|
gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1, |
|
(flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0); |
|
eigenvectors = evects1; |
|
|
|
// normalize all eigenvectors |
|
for( i = 0; i < eigenvectors.rows; i++ ) |
|
{ |
|
Mat vec = eigenvectors.row(i); |
|
normalize(vec, vec); |
|
} |
|
} |
|
|
|
// compute the cumulative energy content for each eigenvector |
|
int L; |
|
if (ctype == CV_32F) |
|
L = computeCumulativeEnergy<float>(eigenvalues, retainedVariance); |
|
else |
|
L = computeCumulativeEnergy<double>(eigenvalues, retainedVariance); |
|
|
|
// use clone() to physically copy the data and thus deallocate the original matrices |
|
eigenvalues = eigenvalues.rowRange(0,L).clone(); |
|
eigenvectors = eigenvectors.rowRange(0,L).clone(); |
|
|
|
return *this; |
|
} |
|
|
|
void PCA::project(InputArray _data, OutputArray result) const |
|
{ |
|
Mat data = _data.getMat(); |
|
CV_Assert( mean.data && eigenvectors.data && |
|
((mean.rows == 1 && mean.cols == data.cols) || (mean.cols == 1 && mean.rows == data.rows))); |
|
Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols); |
|
int ctype = mean.type(); |
|
if( data.type() != ctype || tmp_mean.data == mean.data ) |
|
{ |
|
data.convertTo( tmp_data, ctype ); |
|
subtract( tmp_data, tmp_mean, tmp_data ); |
|
} |
|
else |
|
{ |
|
subtract( data, tmp_mean, tmp_mean ); |
|
tmp_data = tmp_mean; |
|
} |
|
if( mean.rows == 1 ) |
|
gemm( tmp_data, eigenvectors, 1, Mat(), 0, result, GEMM_2_T ); |
|
else |
|
gemm( eigenvectors, tmp_data, 1, Mat(), 0, result, 0 ); |
|
} |
|
|
|
Mat PCA::project(InputArray data) const |
|
{ |
|
Mat result; |
|
project(data, result); |
|
return result; |
|
} |
|
|
|
void PCA::backProject(InputArray _data, OutputArray result) const |
|
{ |
|
Mat data = _data.getMat(); |
|
CV_Assert( mean.data && eigenvectors.data && |
|
((mean.rows == 1 && eigenvectors.rows == data.cols) || |
|
(mean.cols == 1 && eigenvectors.rows == data.rows))); |
|
|
|
Mat tmp_data, tmp_mean; |
|
data.convertTo(tmp_data, mean.type()); |
|
if( mean.rows == 1 ) |
|
{ |
|
tmp_mean = repeat(mean, data.rows, 1); |
|
gemm( tmp_data, eigenvectors, 1, tmp_mean, 1, result, 0 ); |
|
} |
|
else |
|
{ |
|
tmp_mean = repeat(mean, 1, data.cols); |
|
gemm( eigenvectors, tmp_data, 1, tmp_mean, 1, result, GEMM_1_T ); |
|
} |
|
} |
|
|
|
Mat PCA::backProject(InputArray data) const |
|
{ |
|
Mat result; |
|
backProject(data, result); |
|
return result; |
|
} |
|
|
|
} |
|
|
|
void cv::PCACompute(InputArray data, InputOutputArray mean, |
|
OutputArray eigenvectors, int maxComponents) |
|
{ |
|
PCA pca; |
|
pca(data, mean, 0, maxComponents); |
|
pca.mean.copyTo(mean); |
|
pca.eigenvectors.copyTo(eigenvectors); |
|
} |
|
|
|
void cv::PCACompute(InputArray data, InputOutputArray mean, |
|
OutputArray eigenvectors, double retainedVariance) |
|
{ |
|
PCA pca; |
|
pca(data, mean, 0, retainedVariance); |
|
pca.mean.copyTo(mean); |
|
pca.eigenvectors.copyTo(eigenvectors); |
|
} |
|
|
|
void cv::PCAProject(InputArray data, InputArray mean, |
|
InputArray eigenvectors, OutputArray result) |
|
{ |
|
PCA pca; |
|
pca.mean = mean.getMat(); |
|
pca.eigenvectors = eigenvectors.getMat(); |
|
pca.project(data, result); |
|
} |
|
|
|
void cv::PCABackProject(InputArray data, InputArray mean, |
|
InputArray eigenvectors, OutputArray result) |
|
{ |
|
PCA pca; |
|
pca.mean = mean.getMat(); |
|
pca.eigenvectors = eigenvectors.getMat(); |
|
pca.backProject(data, result); |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* Earlier API * |
|
\****************************************************************************************/ |
|
|
|
CV_IMPL void cvGEMM( const CvArr* Aarr, const CvArr* Barr, double alpha, |
|
const CvArr* Carr, double beta, CvArr* Darr, int flags ) |
|
{ |
|
cv::Mat A = cv::cvarrToMat(Aarr), B = cv::cvarrToMat(Barr); |
|
cv::Mat C, D = cv::cvarrToMat(Darr); |
|
|
|
if( Carr ) |
|
C = cv::cvarrToMat(Carr); |
|
|
|
CV_Assert( (D.rows == ((flags & CV_GEMM_A_T) == 0 ? A.rows : A.cols)) && |
|
(D.cols == ((flags & CV_GEMM_B_T) == 0 ? B.cols : B.rows)) && |
|
D.type() == A.type() ); |
|
|
|
gemm( A, B, alpha, C, beta, D, flags ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvTransform( const CvArr* srcarr, CvArr* dstarr, |
|
const CvMat* transmat, const CvMat* shiftvec ) |
|
{ |
|
cv::Mat m = cv::cvarrToMat(transmat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
if( shiftvec ) |
|
{ |
|
cv::Mat v = cv::cvarrToMat(shiftvec).reshape(1,m.rows), |
|
_m(m.rows, m.cols + 1, m.type()), m1 = _m.colRange(0,m.cols), v1 = _m.col(m.cols); |
|
m.convertTo(m1, m1.type()); |
|
v.convertTo(v1, v1.type()); |
|
m = _m; |
|
} |
|
|
|
CV_Assert( dst.depth() == src.depth() && dst.channels() == m.rows ); |
|
cv::transform( src, dst, m ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvPerspectiveTransform( const CvArr* srcarr, CvArr* dstarr, const CvMat* mat ) |
|
{ |
|
cv::Mat m = cv::cvarrToMat(mat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( dst.type() == src.type() && dst.channels() == m.rows-1 ); |
|
cv::perspectiveTransform( src, dst, m ); |
|
} |
|
|
|
|
|
CV_IMPL void cvScaleAdd( const CvArr* srcarr1, CvScalar scale, |
|
const CvArr* srcarr2, CvArr* dstarr ) |
|
{ |
|
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( src1.size == dst.size && src1.type() == dst.type() ); |
|
cv::scaleAdd( src1, scale.val[0], cv::cvarrToMat(srcarr2), dst ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvCalcCovarMatrix( const CvArr** vecarr, int count, |
|
CvArr* covarr, CvArr* avgarr, int flags ) |
|
{ |
|
cv::Mat cov0 = cv::cvarrToMat(covarr), cov = cov0, mean0, mean; |
|
CV_Assert( vecarr != 0 && count >= 1 ); |
|
|
|
if( avgarr ) |
|
mean = mean0 = cv::cvarrToMat(avgarr); |
|
|
|
if( (flags & CV_COVAR_COLS) != 0 || (flags & CV_COVAR_ROWS) != 0 ) |
|
{ |
|
|
|
cv::Mat data = cv::cvarrToMat(vecarr[0]); |
|
cv::calcCovarMatrix( data, cov, mean, flags, cov.type() ); |
|
} |
|
else |
|
{ |
|
std::vector<cv::Mat> data(count); |
|
for( int i = 0; i < count; i++ ) |
|
data[i] = cv::cvarrToMat(vecarr[i]); |
|
cv::calcCovarMatrix( &data[0], count, cov, mean, flags, cov.type() ); |
|
} |
|
|
|
if( mean.data != mean0.data && mean0.data ) |
|
mean.convertTo(mean0, mean0.type()); |
|
|
|
if( cov.data != cov0.data ) |
|
cov.convertTo(cov0, cov0.type()); |
|
} |
|
|
|
|
|
CV_IMPL double |
|
cvMahalanobis( const CvArr* srcAarr, const CvArr* srcBarr, const CvArr* matarr ) |
|
{ |
|
return cv::Mahalanobis(cv::cvarrToMat(srcAarr), |
|
cv::cvarrToMat(srcBarr), cv::cvarrToMat(matarr)); |
|
} |
|
|
|
CV_IMPL void |
|
cvMulTransposed( const CvArr* srcarr, CvArr* dstarr, |
|
int order, const CvArr* deltaarr, double scale ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0, delta; |
|
if( deltaarr ) |
|
delta = cv::cvarrToMat(deltaarr); |
|
cv::mulTransposed( src, dst, order != 0, delta, scale, dst.type()); |
|
if( dst.data != dst0.data ) |
|
dst.convertTo(dst0, dst0.type()); |
|
} |
|
|
|
CV_IMPL double cvDotProduct( const CvArr* srcAarr, const CvArr* srcBarr ) |
|
{ |
|
return cv::cvarrToMat(srcAarr).dot(cv::cvarrToMat(srcBarr)); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvCalcPCA( const CvArr* data_arr, CvArr* avg_arr, CvArr* eigenvals, CvArr* eigenvects, int flags ) |
|
{ |
|
cv::Mat data = cv::cvarrToMat(data_arr), mean0 = cv::cvarrToMat(avg_arr); |
|
cv::Mat evals0 = cv::cvarrToMat(eigenvals), evects0 = cv::cvarrToMat(eigenvects); |
|
cv::Mat mean = mean0, evals = evals0, evects = evects0; |
|
|
|
cv::PCA pca; |
|
pca.mean = mean; |
|
pca.eigenvalues = evals; |
|
pca.eigenvectors = evects; |
|
|
|
pca(data, (flags & CV_PCA_USE_AVG) ? mean : cv::Mat(), |
|
flags, evals.data ? evals.rows + evals.cols - 1 : 0); |
|
|
|
if( pca.mean.size() == mean.size() ) |
|
pca.mean.convertTo( mean, mean.type() ); |
|
else |
|
{ |
|
cv::Mat temp; pca.mean.convertTo( temp, mean.type() ); |
|
transpose( temp, mean ); |
|
} |
|
|
|
evals = pca.eigenvalues; |
|
evects = pca.eigenvectors; |
|
int ecount0 = evals0.cols + evals0.rows - 1; |
|
int ecount = evals.cols + evals.rows - 1; |
|
|
|
CV_Assert( (evals0.cols == 1 || evals0.rows == 1) && |
|
ecount0 <= ecount && |
|
evects0.cols == evects.cols && |
|
evects0.rows == ecount0 ); |
|
|
|
cv::Mat temp = evals0; |
|
if( evals.rows == 1 ) |
|
evals.colRange(0, ecount0).convertTo(temp, evals0.type()); |
|
else |
|
evals.rowRange(0, ecount0).convertTo(temp, evals0.type()); |
|
if( temp.data != evals0.data ) |
|
transpose(temp, evals0); |
|
evects.rowRange(0, ecount0).convertTo( evects0, evects0.type() ); |
|
|
|
// otherwise some datatype's or size's were incorrect, so the output arrays have been reallocated |
|
CV_Assert( mean0.data == mean.data ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvProjectPCA( const CvArr* data_arr, const CvArr* avg_arr, |
|
const CvArr* eigenvects, CvArr* result_arr ) |
|
{ |
|
cv::Mat data = cv::cvarrToMat(data_arr), mean = cv::cvarrToMat(avg_arr); |
|
cv::Mat evects = cv::cvarrToMat(eigenvects), dst0 = cv::cvarrToMat(result_arr), dst = dst0; |
|
|
|
cv::PCA pca; |
|
pca.mean = mean; |
|
int n; |
|
if( mean.rows == 1 ) |
|
{ |
|
CV_Assert(dst.cols <= evects.rows && dst.rows == data.rows); |
|
n = dst.cols; |
|
} |
|
else |
|
{ |
|
CV_Assert(dst.rows <= evects.rows && dst.cols == data.cols); |
|
n = dst.rows; |
|
} |
|
pca.eigenvectors = evects.rowRange(0, n); |
|
|
|
cv::Mat result = pca.project(data); |
|
if( result.cols != dst.cols ) |
|
result = result.reshape(1, 1); |
|
result.convertTo(dst, dst.type()); |
|
|
|
CV_Assert(dst0.data == dst.data); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvBackProjectPCA( const CvArr* proj_arr, const CvArr* avg_arr, |
|
const CvArr* eigenvects, CvArr* result_arr ) |
|
{ |
|
cv::Mat data = cv::cvarrToMat(proj_arr), mean = cv::cvarrToMat(avg_arr); |
|
cv::Mat evects = cv::cvarrToMat(eigenvects), dst0 = cv::cvarrToMat(result_arr), dst = dst0; |
|
|
|
cv::PCA pca; |
|
pca.mean = mean; |
|
int n; |
|
if( mean.rows == 1 ) |
|
{ |
|
CV_Assert(data.cols <= evects.rows && dst.rows == data.rows); |
|
n = data.cols; |
|
} |
|
else |
|
{ |
|
CV_Assert(data.rows <= evects.rows && dst.cols == data.cols); |
|
n = data.rows; |
|
} |
|
pca.eigenvectors = evects.rowRange(0, n); |
|
|
|
cv::Mat result = pca.backProject(data); |
|
result.convertTo(dst, dst.type()); |
|
|
|
CV_Assert(dst0.data == dst.data); |
|
} |
|
|
|
/* End of file. */
|
|
|