Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1146 lines
41 KiB
1146 lines
41 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
#include "../precomp.hpp" |
|
|
|
#ifdef HAVE_PROTOBUF |
|
|
|
#include "../graph_simplifier.hpp" |
|
#include "tf_graph_simplifier.hpp" |
|
#include <queue> |
|
|
|
namespace cv { namespace dnn { |
|
CV__DNN_INLINE_NS_BEGIN |
|
|
|
using ::google::protobuf::RepeatedField; |
|
using ::google::protobuf::MapPair; |
|
|
|
static Mat getTensorContentRef_(const tensorflow::TensorProto& tensor); |
|
static inline |
|
bool isAlignedMat(const Mat& m) |
|
{ |
|
int depth = m.depth(); |
|
int alignment = CV_ELEM_SIZE1(depth); |
|
return (((size_t)m.data) & (alignment - 1)) == 0; |
|
} |
|
|
|
|
|
class TFNodeWrapper : public ImportNodeWrapper |
|
{ |
|
public: |
|
TFNodeWrapper(tensorflow::NodeDef* _node) : node(_node) {} |
|
|
|
virtual int getNumInputs() const CV_OVERRIDE |
|
{ |
|
return node->input_size(); |
|
} |
|
|
|
virtual std::string getInputName(int idx) const CV_OVERRIDE |
|
{ |
|
// If operation produces several tensors, they are specified by index |
|
// after ':' character. In example, "input:0". |
|
std::string name = node->input(idx); |
|
return name.substr(0, name.rfind(':')); |
|
} |
|
|
|
virtual std::string getType() const CV_OVERRIDE |
|
{ |
|
return node->op(); |
|
} |
|
|
|
virtual void setType(const std::string& type) CV_OVERRIDE |
|
{ |
|
node->set_op(type); |
|
} |
|
|
|
virtual void setInputNames(const std::vector<std::string>& inputs) CV_OVERRIDE |
|
{ |
|
node->clear_input(); |
|
for (int i = 0; i < inputs.size(); ++i) |
|
node->add_input(inputs[i]); |
|
} |
|
|
|
tensorflow::NodeDef* node; |
|
}; |
|
|
|
class TFGraphWrapper : public ImportGraphWrapper |
|
{ |
|
public: |
|
TFGraphWrapper(tensorflow::GraphDef& _net) : net(_net) {} |
|
|
|
virtual Ptr<ImportNodeWrapper> getNode(int idx) const CV_OVERRIDE |
|
{ |
|
return makePtr<TFNodeWrapper>(net.mutable_node(idx)); |
|
} |
|
|
|
virtual int getNumNodes() const CV_OVERRIDE |
|
{ |
|
return net.node_size(); |
|
} |
|
|
|
virtual int getNumOutputs(int nodeId) const CV_OVERRIDE |
|
{ |
|
return 1; |
|
} |
|
|
|
virtual std::string getOutputName(int nodeId, int outId) const CV_OVERRIDE |
|
{ |
|
CV_Assert(outId == 0); |
|
return net.node(nodeId).name(); |
|
} |
|
|
|
virtual void removeNode(int idx) CV_OVERRIDE |
|
{ |
|
net.mutable_node()->DeleteSubrange(idx, 1); |
|
} |
|
|
|
tensorflow::GraphDef& net; |
|
}; |
|
|
|
class TFSubgraph : public Subgraph |
|
{ |
|
virtual void finalize(const Ptr<ImportGraphWrapper>& netWrapper, |
|
const Ptr<ImportNodeWrapper>& fusedNodeWrapper, |
|
std::vector<Ptr<ImportNodeWrapper> >& inputs) CV_OVERRIDE |
|
{ |
|
std::vector<tensorflow::NodeDef*> inputNodes(inputs.size()); |
|
for (int i = 0; i < inputs.size(); ++i) |
|
inputNodes[i] = inputs[i].dynamicCast<TFNodeWrapper>()->node; |
|
finalize(netWrapper.dynamicCast<TFGraphWrapper>()->net, |
|
fusedNodeWrapper.dynamicCast<TFNodeWrapper>()->node, inputNodes); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) {} |
|
}; |
|
|
|
class BatchNormSubgraph : public TFSubgraph |
|
{ |
|
public: |
|
BatchNormSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int epsilon = addNodeToMatch("Const"); |
|
int moving_variance = addNodeToMatch("Const"); |
|
int moving_mean = addNodeToMatch("Const"); |
|
int beta = addNodeToMatch("Const"); |
|
int gamma = addNodeToMatch("Const"); |
|
int add = addNodeToMatch("Add", moving_variance, epsilon); |
|
int rsqrt = addNodeToMatch("Rsqrt", add); |
|
int mul = addNodeToMatch("Mul", rsqrt, gamma); |
|
int mul_1 = addNodeToMatch("Mul", input, mul); |
|
int mul_2 = addNodeToMatch("Mul", moving_mean, mul); |
|
int sub = addNodeToMatch("Sub", beta, mul_2); |
|
addNodeToMatch("Add", mul_1, sub); |
|
|
|
setFusedNode("FusedBatchNorm", input, gamma, beta, moving_mean, moving_variance, epsilon); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor()); |
|
CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, ""); |
|
|
|
fusedNode->mutable_input()->RemoveLast(); |
|
fusedNode->clear_attr(); |
|
tensorflow::AttrValue epsilon; |
|
epsilon.set_f(epsMat.at<float>(0)); |
|
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon)); |
|
} |
|
}; |
|
|
|
class BatchNormNoGammaSubgraph : public TFSubgraph |
|
{ |
|
public: |
|
BatchNormNoGammaSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int epsilon = addNodeToMatch("Const"); |
|
int moving_variance = addNodeToMatch("Const"); |
|
int moving_mean = addNodeToMatch("Const"); |
|
int beta = addNodeToMatch("Const"); |
|
int add = addNodeToMatch("Add", moving_variance, epsilon); |
|
int rsqrt = addNodeToMatch("Rsqrt", add); |
|
int mul = addNodeToMatch("Mul", input, rsqrt); |
|
int mul_1 = addNodeToMatch("Mul", moving_mean, rsqrt); |
|
int sub = addNodeToMatch("Sub", beta, mul_1); |
|
addNodeToMatch("Add", mul, sub); |
|
|
|
// There is a fake reference to beta that will be replaced to a new gamma tensor. |
|
setFusedNode("FusedBatchNorm", input, beta, beta, moving_mean, moving_variance, epsilon); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor()); |
|
CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, ""); |
|
|
|
fusedNode->mutable_input()->RemoveLast(); |
|
fusedNode->clear_attr(); |
|
tensorflow::AttrValue epsilon; |
|
epsilon.set_f(epsMat.at<float>(0)); |
|
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon)); |
|
|
|
tensorflow::NodeDef* gamma = net.add_node(); |
|
gamma->set_op("Const"); |
|
gamma->set_name(fusedNode->name() + "/gamma"); |
|
// Just put a single value to recognize this node as Const. |
|
gamma->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("value", epsilon)); |
|
fusedNode->set_input(1, gamma->name()); |
|
} |
|
}; |
|
|
|
// tf.contrib.layers.flatten |
|
class FlattenSubgraph : public Subgraph |
|
{ |
|
public: |
|
FlattenSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Const"); |
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int shape_pack = addNodeToMatch("Const"); |
|
int pack = addNodeToMatch("Pack", strided_slice, shape_pack); |
|
addNodeToMatch("Reshape", input, pack); |
|
|
|
setFusedNode("Flatten", input); |
|
} |
|
}; |
|
|
|
// tf.contrib.layers.flatten in case of unknown batch size |
|
class FlattenShapeSubgraph : public Subgraph |
|
{ |
|
public: |
|
FlattenShapeSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", input); |
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int shape_pack = addNodeToMatch("Const"); |
|
int pack = addNodeToMatch("Pack", strided_slice, shape_pack); |
|
addNodeToMatch("Reshape", input, pack); |
|
|
|
setFusedNode("Flatten", input); |
|
} |
|
}; |
|
|
|
class FlattenProdSubgraph : public Subgraph |
|
{ |
|
public: |
|
FlattenProdSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", input); |
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int prod = addNodeToMatch("Prod", strided_slice, addNodeToMatch("Const")); |
|
int shape_pack = addNodeToMatch("Const"); |
|
int pack = addNodeToMatch("Pack", shape_pack, prod); |
|
addNodeToMatch("Reshape", input, pack); |
|
|
|
setFusedNode("Flatten", input); |
|
} |
|
}; |
|
|
|
// K.layers.Softmax |
|
class SoftMaxKerasSubgraph : public Subgraph |
|
{ |
|
public: |
|
SoftMaxKerasSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int maxReductionIndices = addNodeToMatch("Const"); |
|
int smMax = addNodeToMatch("Max", input, maxReductionIndices); |
|
int smSub = addNodeToMatch("Sub", input, smMax); |
|
int smExp = addNodeToMatch("Exp", smSub); |
|
int sumReductionIndices = addNodeToMatch("Const"); |
|
int smSum = addNodeToMatch("Sum", smExp, sumReductionIndices); |
|
addNodeToMatch("RealDiv", smExp, smSum); |
|
|
|
setFusedNode("Softmax", input); |
|
} |
|
}; |
|
|
|
class ReLU6KerasSubgraph : public Subgraph |
|
{ |
|
public: |
|
ReLU6KerasSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int relu = addNodeToMatch("Relu", input); |
|
int maxValue = addNodeToMatch("Const"); |
|
int clipValue = addNodeToMatch("Const"); |
|
int minimum = addNodeToMatch("Minimum", relu, maxValue); |
|
addNodeToMatch("Maximum", minimum, clipValue); |
|
|
|
setFusedNode("Relu6", input); |
|
} |
|
|
|
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId, |
|
std::vector<int>& matchedNodesIds, |
|
std::vector<int>& targetNodesIds) CV_OVERRIDE |
|
{ |
|
if (!Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds)) |
|
return false; |
|
tensorflow::NodeDef* node = net->getNode(matchedNodesIds.front() + 1).dynamicCast<TFNodeWrapper>()->node; |
|
Mat maxValue = getTensorContent(node->attr().at("value").tensor()); |
|
return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at<float>(0) == 6; |
|
} |
|
}; |
|
|
|
// Keras' reshape stores output shape in separate Const nodes by one value. |
|
// Need to merge them into a single Const node. |
|
class ReshapeKerasSubgraph : public TFSubgraph |
|
{ |
|
public: |
|
ReshapeKerasSubgraph(int _numOutDims) : numOutDims(_numOutDims) |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", input); |
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
std::vector<int> ids(1 + numOutDims); |
|
ids[0] = strided_slice; |
|
for (int i = 0; i < numOutDims; ++i) |
|
ids[1 + i] = addNodeToMatch("Const"); |
|
int pack = addNodeToMatch("Pack", ids); |
|
addNodeToMatch("Reshape", input, pack); |
|
|
|
ids[0] = input; |
|
setFusedNode("Reshape", ids); |
|
} |
|
|
|
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId, |
|
std::vector<int>& matchedNodesIds, |
|
std::vector<int>& targetNodesIds) CV_OVERRIDE |
|
{ |
|
Ptr<ImportNodeWrapper> node = net->getNode(nodeId); |
|
if (node->getNumInputs() == 0) |
|
return false; |
|
|
|
inpName = node->getInputName(0); |
|
return Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds); |
|
} |
|
|
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
std::vector<int> shape(numOutDims + 1); // batch size in Keras is implicit. |
|
shape[0] = -1; |
|
for (int i = 0; i < numOutDims; ++i) |
|
{ |
|
shape[1 + i] = inputNodes[1 + i]->attr().at("value").tensor().int_val(0); |
|
} |
|
tensorflow::TensorProto* shapeTensor = inputNodes[1]->mutable_attr()->at("value").mutable_tensor(); |
|
fusedNode->mutable_input()->DeleteSubrange(2, numOutDims - 1); |
|
fusedNode->set_input(0, inpName); |
|
|
|
shapeTensor->clear_int_val(); |
|
for (int i = 0; i < shape.size(); ++i) |
|
{ |
|
shapeTensor->add_int_val(shape[i]); |
|
} |
|
} |
|
|
|
private: |
|
int numOutDims; |
|
std::string inpName; |
|
}; |
|
|
|
class L2NormalizeSubgraph : public Subgraph |
|
{ |
|
public: |
|
L2NormalizeSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int square = addNodeToMatch("Square", input); |
|
int reductionIndices = addNodeToMatch("Const"); |
|
int sum = addNodeToMatch("Sum", square, reductionIndices); |
|
int y = addNodeToMatch("Const"); |
|
int maximum = addNodeToMatch("Maximum", sum, y); |
|
int rsqrt = addNodeToMatch("Rsqrt", maximum); |
|
addNodeToMatch("Mul", input, rsqrt); |
|
setFusedNode("L2Normalize", input, reductionIndices); |
|
} |
|
}; |
|
|
|
class DeconvolutionValidKerasSubgraph : public TFSubgraph |
|
{ |
|
public: |
|
DeconvolutionValidKerasSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", input); |
|
int kernel = addNodeToMatch("Const"); |
|
|
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
stack = addNodeToMatch("Const"); |
|
stack_1 = addNodeToMatch("Const"); |
|
stack_2 = addNodeToMatch("Const"); |
|
int strided_slice_1 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
stack = addNodeToMatch("Const"); |
|
stack_1 = addNodeToMatch("Const"); |
|
stack_2 = addNodeToMatch("Const"); |
|
int strided_slice_2 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
int mul = addNodeToMatch("Mul", strided_slice_1, addNodeToMatch("Const")); |
|
int add = addNodeToMatch("Add", mul, addNodeToMatch("Const")); |
|
|
|
int mul_1 = addNodeToMatch("Mul", strided_slice_2, addNodeToMatch("Const")); |
|
int add_1 = addNodeToMatch("Add", mul_1, addNodeToMatch("Const")); |
|
int pack = addNodeToMatch("Pack", strided_slice, add, add_1, addNodeToMatch("Const")); |
|
addNodeToMatch("Conv2DBackpropInput", pack, kernel, input); |
|
// Put any unused Const op to the first input. |
|
setFusedNode("Conv2DBackpropInput", stack, kernel, input); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
// Disable adjusted paddings (see Conv2DBackpropInput layer at tf_importer.cpp) |
|
// adj_w = (outW - (pad == "SAME") ? 1 : kernelW) % strideX; |
|
// adj_h = (outH - (pad == "SAME") ? 1 : kernelH) % strideY; |
|
// Where outH and outW are 1st and 2nd dimensions (NHWC) or 2nd and third (NCHW). |
|
std::string padMode = fusedNode->attr().at("padding").s(); |
|
CV_Assert(padMode == "VALID"); |
|
|
|
const tensorflow::TensorShapeProto& kernelShape = |
|
inputNodes[1]->mutable_attr()->at("value").tensor().tensor_shape(); |
|
|
|
CV_Assert(kernelShape.dim_size() == 4); |
|
const int kernelHeight = kernelShape.dim(0).size(); |
|
const int kernelWidth = kernelShape.dim(1).size(); |
|
|
|
tensorflow::TensorProto* outShape = inputNodes[0]->mutable_attr()->at("value").mutable_tensor(); |
|
outShape->clear_int_val(); |
|
outShape->add_int_val(-1); |
|
outShape->add_int_val(kernelHeight); |
|
outShape->add_int_val(kernelWidth); |
|
outShape->add_int_val(-1); |
|
} |
|
}; |
|
|
|
class DeconvolutionSameKerasSubgraph : public TFSubgraph |
|
{ |
|
public: |
|
DeconvolutionSameKerasSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", input); |
|
int kernel = addNodeToMatch("Const"); |
|
|
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
stack = addNodeToMatch("Const"); |
|
stack_1 = addNodeToMatch("Const"); |
|
stack_2 = addNodeToMatch("Const"); |
|
int strided_slice_1 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
stack = addNodeToMatch("Const"); |
|
stack_1 = addNodeToMatch("Const"); |
|
stack_2 = addNodeToMatch("Const"); |
|
int strided_slice_2 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
|
|
int mul = addNodeToMatch("Mul", strided_slice_1, addNodeToMatch("Const")); |
|
|
|
int mul_1 = addNodeToMatch("Mul", strided_slice_2, addNodeToMatch("Const")); |
|
int pack = addNodeToMatch("Pack", strided_slice, mul, mul_1, addNodeToMatch("Const")); |
|
addNodeToMatch("Conv2DBackpropInput", pack, kernel, input); |
|
// Put any unused Const op to the first input. |
|
setFusedNode("Conv2DBackpropInput", stack, kernel, input); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
// Disable adjusted paddings (see Conv2DBackpropInput layer at tf_importer.cpp) |
|
// adj_w = (outW - (pad == "SAME") ? 1 : kernelW) % strideX; |
|
// adj_h = (outH - (pad == "SAME") ? 1 : kernelH) % strideY; |
|
// Where outH and outW are 1st and 2nd dimensions (NHWC) or 2nd and third (NCHW). |
|
std::string padMode = fusedNode->attr().at("padding").s(); |
|
CV_Assert(padMode == "SAME"); |
|
|
|
const tensorflow::AttrValue_ListValue& strides = fusedNode->attr().at("strides").list(); |
|
CV_Assert(strides.i_size() == 4); |
|
|
|
const int strideY = strides.i(1); |
|
const int strideX = strides.i(2); |
|
|
|
tensorflow::TensorProto* outShape = inputNodes[0]->mutable_attr()->at("value").mutable_tensor(); |
|
outShape->clear_int_val(); |
|
outShape->add_int_val(-1); |
|
outShape->add_int_val(strideY); |
|
outShape->add_int_val(strideX); |
|
outShape->add_int_val(-1); |
|
} |
|
}; |
|
|
|
// In case of resizing by factor. |
|
class ResizeBilinearSubgraph : public Subgraph |
|
{ |
|
public: |
|
ResizeBilinearSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shapeSource = addNodeToMatch(""); |
|
|
|
int shape = addNodeToMatch("Shape", shapeSource); |
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int factorY = addNodeToMatch("Const"); |
|
int mul = addNodeToMatch("Mul", strided_slice, factorY); |
|
|
|
shape = addNodeToMatch("Shape", shapeSource); |
|
stack = addNodeToMatch("Const"); |
|
stack_1 = addNodeToMatch("Const"); |
|
stack_2 = addNodeToMatch("Const"); |
|
strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int factorX = addNodeToMatch("Const"); |
|
int mul_1 = addNodeToMatch("Mul", strided_slice, factorX); |
|
|
|
int pack = addNodeToMatch("Pack", mul, mul_1); |
|
|
|
addNodeToMatch("ResizeBilinear", input, pack); |
|
setFusedNode("ResizeBilinear", input, factorY, factorX); |
|
} |
|
}; |
|
|
|
// In case of resizing by factor. |
|
class ResizeBilinearSubgraphDown : public TFSubgraph |
|
{ |
|
public: |
|
ResizeBilinearSubgraphDown() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shapeSource = addNodeToMatch(""); |
|
|
|
int shape = addNodeToMatch("Shape", shapeSource); |
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int factorY = addNodeToMatch("Const"); |
|
int div = addNodeToMatch("RealDiv", addNodeToMatch("Cast", strided_slice), factorY); |
|
int cast = addNodeToMatch("Cast", div); |
|
|
|
shape = addNodeToMatch("Shape", shapeSource); |
|
stack = addNodeToMatch("Const"); |
|
stack_1 = addNodeToMatch("Const"); |
|
stack_2 = addNodeToMatch("Const"); |
|
strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int factorX = addNodeToMatch("Const"); |
|
int div_1 = addNodeToMatch("RealDiv", addNodeToMatch("Cast", strided_slice), factorX); |
|
int cast_1 = addNodeToMatch("Cast", div_1); |
|
|
|
int pack = addNodeToMatch("Pack", cast, cast_1); |
|
|
|
addNodeToMatch("ResizeBilinear", input, pack); |
|
setFusedNode("ResizeBilinear", input, factorY, factorX); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
|
|
for (int i = 1; i < 3; ++i) |
|
{ |
|
tensorflow::TensorProto* factor = inputNodes[i]->mutable_attr()->at("value").mutable_tensor(); |
|
factor->set_double_val(0, 1.0 / factor->double_val(0)); |
|
} |
|
} |
|
}; |
|
|
|
// In case of resizing by factor. |
|
class UpsamplingKerasSubgraph : public TFSubgraph |
|
{ |
|
public: |
|
UpsamplingKerasSubgraph(const std::string& type) |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", input); |
|
int stack = addNodeToMatch("Const"); |
|
int stack_1 = addNodeToMatch("Const"); |
|
int stack_2 = addNodeToMatch("Const"); |
|
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
|
int factors = addNodeToMatch("Const"); |
|
int mul = addNodeToMatch("Mul", strided_slice, factors); |
|
addNodeToMatch(type, input, mul); |
|
setFusedNode(type, input, factors); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
Mat factorsMat = getTensorContent(inputNodes[1]->attr().at("value").tensor()); |
|
CV_CheckEQ(factorsMat.total(), (size_t)2, ""); CV_CheckTypeEQ(factorsMat.type(), CV_32SC1, ""); |
|
|
|
// Height scale factor |
|
tensorflow::TensorProto* factorY = inputNodes[1]->mutable_attr()->at("value").mutable_tensor(); |
|
factorY->clear_int_val(); |
|
factorY->clear_tensor_content(); |
|
factorY->add_int_val(factorsMat.at<int>(0, 0)); |
|
|
|
// Width scale factor. |
|
tensorflow::NodeDef* factorXNode = net.add_node(); |
|
factorXNode->set_op("Const"); |
|
factorXNode->set_name(fusedNode->name() + "/factor_y"); |
|
|
|
tensorflow::AttrValue factorX; |
|
factorX.mutable_tensor()->set_dtype(tensorflow::DT_INT32); |
|
factorX.mutable_tensor()->add_int_val(factorsMat.at<int>(0, 1)); |
|
factorXNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("value", factorX)); |
|
|
|
fusedNode->add_input(factorXNode->name()); |
|
} |
|
}; |
|
|
|
class ReshapeAsShapeSubgraph : public Subgraph |
|
{ |
|
public: |
|
ReshapeAsShapeSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shapeSrc = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", shapeSrc); |
|
addNodeToMatch("Reshape", input, shape); |
|
setFusedNode("Reshape", input, shapeSrc); |
|
} |
|
}; |
|
|
|
class SoftMaxSlimSubgraph : public Subgraph |
|
{ |
|
public: |
|
SoftMaxSlimSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Const"); |
|
int shapeOp = addNodeToMatch("Shape", input); |
|
int reshape = addNodeToMatch("Reshape", input, shape); |
|
int softmax = addNodeToMatch("Softmax", reshape); |
|
addNodeToMatch("Reshape", softmax, shapeOp); |
|
setFusedNode("Softmax", input); |
|
} |
|
}; |
|
|
|
class SoftMaxSlimV2Subgraph : public Subgraph |
|
{ |
|
public: |
|
SoftMaxSlimV2Subgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int shape = addNodeToMatch("Shape", input); |
|
int shape_2 = addNodeToMatch("Shape", input); |
|
int rank = addNodeToMatch("Const"); |
|
int y = addNodeToMatch("Const"); |
|
int sub = addNodeToMatch("Sub", rank, y); |
|
int begin = addNodeToMatch("Pack", sub); |
|
int size = addNodeToMatch("Const"); |
|
int slice = addNodeToMatch("Slice", shape, begin, size); |
|
int values = addNodeToMatch("Const"); |
|
int axis = addNodeToMatch("Const"); |
|
int concat = addNodeToMatch("ConcatV2", values, slice, axis); |
|
int reshape = addNodeToMatch("Reshape", input, concat); |
|
int softmax = addNodeToMatch("Softmax", reshape); |
|
addNodeToMatch("Reshape", softmax, shape_2); |
|
setFusedNode("Softmax", input); |
|
} |
|
}; |
|
|
|
class KerasMVNSubgraph : public TFSubgraph |
|
{ |
|
public: |
|
KerasMVNSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int mean = addNodeToMatch("Mean", input, addNodeToMatch("Const")); |
|
int grad = addNodeToMatch("StopGradient", mean); |
|
int diff = addNodeToMatch("SquaredDifference", input, grad); |
|
int var = addNodeToMatch("Mean", diff, addNodeToMatch("Const")); |
|
int sub = addNodeToMatch("Sub", input, mean); |
|
int add_y = addNodeToMatch("Const"); |
|
int add = addNodeToMatch("Add", var, add_y); |
|
int pow_y = addNodeToMatch("Const"); |
|
int powNode = addNodeToMatch("Pow", add, pow_y); |
|
addNodeToMatch("RealDiv", sub, powNode); |
|
setFusedNode("MVN", input, add_y); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
tensorflow::AttrValue eps; |
|
|
|
Mat epsMat = getTensorContent(inputNodes[1]->attr().at("value").tensor()); |
|
CV_CheckEQ(epsMat.total(), (size_t)1, ""); |
|
CV_CheckTypeEQ(epsMat.type(), CV_32FC1, ""); |
|
eps.set_f(epsMat.at<float>(0)); |
|
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("eps", eps)); |
|
|
|
fusedNode->mutable_input()->RemoveLast(); |
|
} |
|
}; |
|
|
|
class PReLUSubgraph : public TFSubgraph |
|
{ |
|
public: |
|
PReLUSubgraph(bool negativeScales_) : negativeScales(negativeScales_) |
|
{ |
|
int input = addNodeToMatch(""); |
|
int scales = addNodeToMatch("Const"); |
|
int neg = addNodeToMatch("Neg", input); |
|
int relu_neg = addNodeToMatch("Relu", neg); |
|
int finalScales = negativeScales ? addNodeToMatch("Neg", scales) : scales; |
|
int mul = addNodeToMatch("Mul", finalScales, relu_neg); |
|
int relu_pos = addNodeToMatch("Relu", input); |
|
addNodeToMatch("Add", relu_pos, mul); |
|
setFusedNode("PReLU", input, scales); |
|
} |
|
|
|
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
|
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE |
|
{ |
|
if (!negativeScales) |
|
{ |
|
Mat scalesRef = getTensorContentRef_(inputNodes[1]->attr().at("value").tensor()); |
|
// FIXME: This breaks the const guarantees of tensor() by writing to scalesRef |
|
if (isAlignedMat(scalesRef)) |
|
{ |
|
scalesRef *= -1; |
|
} |
|
else |
|
{ |
|
Mat scales = scalesRef.clone() * -1; |
|
CV_Assert(scalesRef.isContinuous()); |
|
CV_Assert(scales.isContinuous()); |
|
memcpy(scalesRef.data, scales.data, scales.total() * scales.elemSize()); |
|
} |
|
} |
|
} |
|
|
|
private: |
|
bool negativeScales; |
|
}; |
|
|
|
class ClipByValueSubgraph : public TFSubgraph |
|
{ |
|
public: |
|
ClipByValueSubgraph() |
|
{ |
|
int input = addNodeToMatch(""); |
|
int maxValue = addNodeToMatch("Const"); |
|
int minimum = addNodeToMatch("Minimum", input, maxValue); |
|
int minValue = addNodeToMatch("Const"); |
|
addNodeToMatch("Maximum", minimum, minValue); |
|
|
|
setFusedNode("ClipByValue", input, minValue, maxValue); |
|
} |
|
}; |
|
|
|
void simplifySubgraphs(tensorflow::GraphDef& net) |
|
{ |
|
std::vector<Ptr<Subgraph> > subgraphs; |
|
subgraphs.push_back(Ptr<Subgraph>(new BatchNormSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new BatchNormNoGammaSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new FlattenSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new FlattenShapeSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxKerasSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new ReLU6KerasSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new ReshapeKerasSubgraph(3))); |
|
subgraphs.push_back(Ptr<Subgraph>(new L2NormalizeSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new DeconvolutionValidKerasSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new DeconvolutionSameKerasSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new ResizeBilinearSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new UpsamplingKerasSubgraph("ResizeNearestNeighbor"))); |
|
subgraphs.push_back(Ptr<Subgraph>(new UpsamplingKerasSubgraph("ResizeBilinear"))); |
|
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxSlimSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxSlimV2Subgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new ReshapeAsShapeSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new KerasMVNSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new PReLUSubgraph(true))); |
|
subgraphs.push_back(Ptr<Subgraph>(new PReLUSubgraph(false))); |
|
subgraphs.push_back(Ptr<Subgraph>(new FlattenProdSubgraph())); |
|
subgraphs.push_back(Ptr<Subgraph>(new ResizeBilinearSubgraphDown())); |
|
subgraphs.push_back(Ptr<Subgraph>(new ClipByValueSubgraph())); |
|
|
|
for (int i = 0; i < net.node_size(); ++i) |
|
{ |
|
tensorflow::NodeDef* layer = net.mutable_node(i); |
|
if (layer->op() == "AddV2") |
|
layer->set_op("Add"); |
|
} |
|
|
|
simplifySubgraphs(Ptr<ImportGraphWrapper>(new TFGraphWrapper(net)), subgraphs); |
|
} |
|
|
|
void RemoveIdentityOps(tensorflow::GraphDef& net) |
|
{ |
|
typedef std::map<String, String> IdentityOpsMap; |
|
IdentityOpsMap identity_ops; |
|
|
|
std::vector<int> identity_ops_idx; |
|
|
|
int layersCount = net.node_size(); |
|
for (int li = 0; li < layersCount; li++) |
|
{ |
|
const tensorflow::NodeDef &layer = net.node(li); |
|
String type = layer.op(); |
|
|
|
if (type == "Identity" || type == "Dropout" || type == "PlaceholderWithDefault") { |
|
identity_ops_idx.push_back(li); |
|
CV_Assert(layer.input_size() != 0); |
|
identity_ops[layer.name()] = layer.input(0); |
|
} |
|
} |
|
|
|
for (int li = 0; li < layersCount; li++) |
|
{ |
|
tensorflow::NodeDef* layer = net.mutable_node(li); |
|
for (int input_id = 0; input_id < layer->input_size(); input_id++) { |
|
String input_op_name = layer->input(input_id); |
|
input_op_name = input_op_name.substr(input_op_name.find('^') + 1, |
|
input_op_name.rfind(':')); |
|
IdentityOpsMap::iterator it = identity_ops.find(input_op_name); |
|
|
|
if (it != identity_ops.end()) { |
|
std::set<String> loopCheckSet; |
|
// In case of Identity after Identity |
|
while (true) |
|
{ |
|
IdentityOpsMap::iterator nextIt = identity_ops.find(it->second); |
|
if (nextIt != identity_ops.end()) |
|
{ |
|
// Loop check |
|
if (loopCheckSet.find(it->second) != loopCheckSet.end()) |
|
CV_Error(Error::StsError, "Found a loop in your input Tensorflow model, which is illegal!"); |
|
loopCheckSet.insert(it->second); |
|
it = nextIt; |
|
} |
|
else |
|
break; |
|
} |
|
layer->set_input(input_id, it->second); |
|
} |
|
} |
|
} |
|
|
|
std::sort(identity_ops_idx.begin(), identity_ops_idx.end()); |
|
|
|
int removed_nodes = 0; |
|
for(size_t i = 0; i < identity_ops_idx.size(); i++) { |
|
int start_id = identity_ops_idx[i] - removed_nodes; |
|
net.mutable_node()->DeleteSubrange(start_id, 1); |
|
removed_nodes++; |
|
} |
|
} |
|
|
|
// NB: returned Mat::data pointer may be unaligned |
|
Mat getTensorContentRef_(const tensorflow::TensorProto& tensor) |
|
{ |
|
const std::string& content = tensor.tensor_content(); |
|
Mat m; |
|
switch (tensor.dtype()) |
|
{ |
|
case tensorflow::DT_FLOAT: |
|
{ |
|
if (!content.empty()) |
|
m = Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str()); |
|
else |
|
{ |
|
const RepeatedField<float>& field = tensor.float_val(); |
|
CV_Assert(!field.empty()); |
|
m = Mat(1, field.size(), CV_32FC1, (void*)field.data()); |
|
} |
|
break; |
|
} |
|
case tensorflow::DT_DOUBLE: |
|
{ |
|
if (!content.empty()) |
|
m = Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str()); |
|
else |
|
{ |
|
const RepeatedField<double>& field = tensor.double_val(); |
|
CV_Assert(!field.empty()); |
|
m = Mat(1, field.size(), CV_64FC1, (void*)field.data()); |
|
} |
|
break; |
|
} |
|
case tensorflow::DT_INT32: |
|
{ |
|
if (!content.empty()) |
|
m = Mat(1, content.size() / sizeof(int32_t), CV_32SC1, (void*)content.c_str()); |
|
else |
|
{ |
|
const RepeatedField<int32_t>& field = tensor.int_val(); |
|
CV_Assert(!field.empty()); |
|
m = Mat(1, field.size(), CV_32SC1, (void*)field.data()); |
|
} |
|
break; |
|
} |
|
case tensorflow::DT_HALF: |
|
{ |
|
Mat halfs; |
|
if (!content.empty()) |
|
{ |
|
static const int kHalfSize = 2; |
|
halfs = Mat(1, content.size() / kHalfSize, CV_16UC1, (void*)content.c_str()); |
|
} |
|
else |
|
{ |
|
const RepeatedField<int32_t>& field = tensor.half_val(); |
|
CV_Assert(!field.empty()); |
|
Mat ints(1, field.size(), CV_32SC1, (void*)field.data()); |
|
ints.convertTo(halfs, CV_16UC1); |
|
} |
|
// Reinterpret as a signed shorts just for a convertFp16 call. |
|
Mat halfsSigned(halfs.size(), CV_16SC1, halfs.data); |
|
convertFp16(halfsSigned, m); |
|
break; |
|
} |
|
case tensorflow::DT_QUINT8: |
|
{ |
|
CV_Assert(!content.empty()); |
|
m = Mat(1, content.size(), CV_8UC1, (void*)content.c_str()); |
|
break; |
|
} |
|
default: |
|
CV_Error(Error::StsError, "Tensor's data type is not supported"); |
|
break; |
|
} |
|
|
|
return m; |
|
} |
|
|
|
Mat getTensorContent(const tensorflow::TensorProto& tensor, bool forceCopy) |
|
{ |
|
// If necessary clone m to have aligned data pointer |
|
Mat m = getTensorContentRef_(tensor); |
|
if (forceCopy || !isAlignedMat(m)) |
|
return m.clone(); |
|
else |
|
return m; |
|
} |
|
|
|
void releaseTensor(tensorflow::TensorProto* tensor) |
|
{ |
|
if (!tensor->mutable_tensor_content()->empty()) |
|
{ |
|
delete tensor->release_tensor_content(); |
|
} |
|
} |
|
|
|
static void permute(google::protobuf::RepeatedPtrField<tensorflow::NodeDef>* data, |
|
const std::vector<int>& indices) |
|
{ |
|
const int num = data->size(); |
|
CV_Assert(num == indices.size()); |
|
|
|
std::vector<int> elemIdToPos(num); |
|
std::vector<int> posToElemId(num); |
|
for (int i = 0; i < num; ++i) |
|
{ |
|
elemIdToPos[i] = i; |
|
posToElemId[i] = i; |
|
} |
|
for (int i = 0; i < num; ++i) |
|
{ |
|
int elemId = indices[i]; |
|
int pos = elemIdToPos[elemId]; |
|
if (pos != i) |
|
{ |
|
data->SwapElements(i, pos); |
|
const int swappedElemId = posToElemId[i]; |
|
elemIdToPos[elemId] = i; |
|
elemIdToPos[swappedElemId] = pos; |
|
|
|
posToElemId[i] = elemId; |
|
posToElemId[pos] = swappedElemId; |
|
} |
|
} |
|
} |
|
|
|
// Is based on tensorflow::graph_transforms::SortByExecutionOrder |
|
void sortByExecutionOrder(tensorflow::GraphDef& net) |
|
{ |
|
// Maps node's name to index at net.node() list. |
|
std::map<std::string, int> nodesMap; |
|
std::map<std::string, int>::iterator nodesMapIt; |
|
for (int i = 0; i < net.node_size(); ++i) |
|
{ |
|
const tensorflow::NodeDef& node = net.node(i); |
|
nodesMap.insert(std::make_pair(node.name(), i)); |
|
} |
|
|
|
CV_CheckEQ(nodesMap.size(), (size_t)net.node_size(), "Node names must be unique"); |
|
// Indices of nodes which use specific node as input. |
|
std::vector<std::vector<int> > edges(nodesMap.size()); |
|
std::vector<int> numRefsToAdd(nodesMap.size(), 0); |
|
std::vector<int> nodesToAdd; |
|
for (int i = 0; i < net.node_size(); ++i) |
|
{ |
|
const tensorflow::NodeDef& node = net.node(i); |
|
int numInputsInGraph = 0; |
|
for (int j = 0; j < node.input_size(); ++j) |
|
{ |
|
std::string inpName = node.input(j); |
|
inpName = inpName.substr(0, inpName.rfind(':')); |
|
inpName = inpName.substr(inpName.find('^') + 1); |
|
|
|
nodesMapIt = nodesMap.find(inpName); |
|
if (nodesMapIt != nodesMap.end()) |
|
{ |
|
edges.at(nodesMapIt->second).push_back(i); |
|
numInputsInGraph += 1; |
|
} |
|
} |
|
if (numInputsInGraph == 0) |
|
nodesToAdd.push_back(i); |
|
else |
|
{ |
|
if (node.op() == "Merge" || node.op() == "RefMerge" || node.op() == "NoOp") |
|
{ |
|
int numControlEdges = 0; |
|
for (int j = 0; j < numInputsInGraph; ++j) |
|
numControlEdges += node.input(j).at(0) == '^'; |
|
numRefsToAdd.at(i) = numControlEdges + 1; |
|
} |
|
else |
|
numRefsToAdd.at(i) = numInputsInGraph; |
|
} |
|
} |
|
|
|
std::vector<int> permIds; |
|
permIds.reserve(net.node_size()); |
|
while (!nodesToAdd.empty()) |
|
{ |
|
int nodeToAdd = nodesToAdd.back(); |
|
nodesToAdd.pop_back(); |
|
|
|
permIds.push_back(nodeToAdd); |
|
for (int i = 0; i < edges.at(nodeToAdd).size(); ++i) |
|
{ |
|
int consumerId = edges.at(nodeToAdd).at(i); |
|
if (numRefsToAdd.at(consumerId) > 0) |
|
{ |
|
if (numRefsToAdd.at(consumerId) == 1) |
|
nodesToAdd.push_back(consumerId); |
|
else |
|
CV_Assert(numRefsToAdd.at(consumerId) >= 0); |
|
numRefsToAdd.at(consumerId) -= 1; |
|
} |
|
} |
|
} |
|
CV_Assert(permIds.size() == net.node_size()); |
|
permute(net.mutable_node(), permIds); |
|
} |
|
|
|
// Remove training switches (Switch and Merge nodes and corresponding subgraphs). |
|
void removePhaseSwitches(tensorflow::GraphDef& net) |
|
{ |
|
std::vector<int> nodesToRemove; |
|
std::map<std::string, int> nodesMap; |
|
std::map<std::string, int>::iterator nodesMapIt; |
|
std::queue<int> mergeOpSubgraphNodes; |
|
for (int i = 0; i < net.node_size(); ++i) |
|
{ |
|
const tensorflow::NodeDef& node = net.node(i); |
|
nodesMap.insert(std::make_pair(node.name(), i)); |
|
if (node.op() == "Switch" || node.op() == "Merge" || node.op() == "NoOp") |
|
{ |
|
CV_Assert(node.input_size() > 0); |
|
// Replace consumers' inputs. |
|
for (int j = 0; j < net.node_size(); ++j) |
|
{ |
|
tensorflow::NodeDef* consumer = net.mutable_node(j); |
|
for (int k = 0; k < consumer->input_size(); ++k) |
|
{ |
|
std::string inpName = consumer->input(k); |
|
inpName = inpName.substr(0, inpName.rfind(':')); |
|
if (inpName == node.name()) |
|
{ |
|
consumer->set_input(k, node.input(0)); |
|
} |
|
} |
|
} |
|
nodesToRemove.push_back(i); |
|
if (node.op() == "Merge" || node.op() == "Switch" || node.op() == "NoOp") |
|
mergeOpSubgraphNodes.push(i); |
|
} |
|
} |
|
|
|
std::vector<int> numConsumers(net.node_size(), 0); |
|
for (int i = 0; i < net.node_size(); ++i) |
|
{ |
|
const tensorflow::NodeDef& node = net.node(i); |
|
for (int j = 0; j < node.input_size(); ++j) |
|
{ |
|
std::string inpName = node.input(j); |
|
inpName = inpName.substr(1 + (int)inpName.find('^'), inpName.rfind(':')); |
|
nodesMapIt = nodesMap.find(inpName); |
|
CV_Assert(nodesMapIt != nodesMap.end()); |
|
numConsumers[nodesMapIt->second] += 1; |
|
} |
|
} |
|
|
|
// Remove subgraphs of unused nodes which are terminated by Merge nodes. |
|
while (!mergeOpSubgraphNodes.empty()) |
|
{ |
|
const tensorflow::NodeDef& node = net.node(mergeOpSubgraphNodes.front()); |
|
mergeOpSubgraphNodes.pop(); |
|
for (int i = 0; i < node.input_size(); ++i) |
|
{ |
|
std::string inpName = node.input(i); |
|
inpName = inpName.substr(1 + (int)inpName.find('^'), inpName.rfind(':')); |
|
nodesMapIt = nodesMap.find(inpName); |
|
CV_Assert(nodesMapIt != nodesMap.end()); |
|
|
|
int inpNodeId = nodesMapIt->second; |
|
if (numConsumers[inpNodeId] == 1) |
|
{ |
|
mergeOpSubgraphNodes.push(inpNodeId); |
|
nodesToRemove.push_back(inpNodeId); |
|
} |
|
else if (numConsumers[inpNodeId] > 0) |
|
numConsumers[inpNodeId] -= 1; |
|
} |
|
} |
|
std::sort(nodesToRemove.begin(), nodesToRemove.end()); |
|
for (int i = nodesToRemove.size() - 1; i >= 0; --i) |
|
{ |
|
if (nodesToRemove[i] < net.node_size()) // Ids might be repeated. |
|
net.mutable_node()->DeleteSubrange(nodesToRemove[i], 1); |
|
} |
|
} |
|
|
|
|
|
CV__DNN_INLINE_NS_END |
|
}} // namespace dnn, namespace cv |
|
|
|
#endif // HAVE_PROTOBUF
|
|
|