mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
898 lines
31 KiB
898 lines
31 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
// |
|
//M*/ |
|
|
|
#include <iostream> |
|
#include <fstream> |
|
#include <string> |
|
#include "opencv2/opencv_modules.hpp" |
|
#include <opencv2/core/utility.hpp> |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/stitching/detail/autocalib.hpp" |
|
#include "opencv2/stitching/detail/blenders.hpp" |
|
#include "opencv2/stitching/detail/timelapsers.hpp" |
|
#include "opencv2/stitching/detail/camera.hpp" |
|
#include "opencv2/stitching/detail/exposure_compensate.hpp" |
|
#include "opencv2/stitching/detail/matchers.hpp" |
|
#include "opencv2/stitching/detail/motion_estimators.hpp" |
|
#include "opencv2/stitching/detail/seam_finders.hpp" |
|
#include "opencv2/stitching/detail/warpers.hpp" |
|
#include "opencv2/stitching/warpers.hpp" |
|
|
|
#define ENABLE_LOG 1 |
|
#define LOG(msg) std::cout << msg |
|
#define LOGLN(msg) std::cout << msg << std::endl |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::detail; |
|
|
|
static void printUsage() |
|
{ |
|
cout << |
|
"Rotation model images stitcher.\n\n" |
|
"stitching_detailed img1 img2 [...imgN] [flags]\n\n" |
|
"Flags:\n" |
|
" --preview\n" |
|
" Run stitching in the preview mode. Works faster than usual mode,\n" |
|
" but output image will have lower resolution.\n" |
|
" --try_cuda (yes|no)\n" |
|
" Try to use CUDA. The default value is 'no'. All default values\n" |
|
" are for CPU mode.\n" |
|
"\nMotion Estimation Flags:\n" |
|
" --work_megapix <float>\n" |
|
" Resolution for image registration step. The default is 0.6 Mpx.\n" |
|
" --features (surf|orb)\n" |
|
" Type of features used for images matching. The default is surf.\n" |
|
" --matcher (homography|affine)\n" |
|
" Matcher used for pairwise image matching.\n" |
|
" --estimator (homography|affine)\n" |
|
" Type of estimator used for transformation estimation.\n" |
|
" --match_conf <float>\n" |
|
" Confidence for feature matching step. The default is 0.65 for surf and 0.3 for orb.\n" |
|
" --conf_thresh <float>\n" |
|
" Threshold for two images are from the same panorama confidence.\n" |
|
" The default is 1.0.\n" |
|
" --ba (no|reproj|ray|affine)\n" |
|
" Bundle adjustment cost function. The default is ray.\n" |
|
" --ba_refine_mask (mask)\n" |
|
" Set refinement mask for bundle adjustment. It looks like 'x_xxx',\n" |
|
" where 'x' means refine respective parameter and '_' means don't\n" |
|
" refine one, and has the following format:\n" |
|
" <fx><skew><ppx><aspect><ppy>. The default mask is 'xxxxx'. If bundle\n" |
|
" adjustment doesn't support estimation of selected parameter then\n" |
|
" the respective flag is ignored.\n" |
|
" --wave_correct (no|horiz|vert)\n" |
|
" Perform wave effect correction. The default is 'horiz'.\n" |
|
" --save_graph <file_name>\n" |
|
" Save matches graph represented in DOT language to <file_name> file.\n" |
|
" Labels description: Nm is number of matches, Ni is number of inliers,\n" |
|
" C is confidence.\n" |
|
"\nCompositing Flags:\n" |
|
" --warp (affine|plane|cylindrical|spherical|fisheye|stereographic|compressedPlaneA2B1|compressedPlaneA1.5B1|compressedPlanePortraitA2B1|compressedPlanePortraitA1.5B1|paniniA2B1|paniniA1.5B1|paniniPortraitA2B1|paniniPortraitA1.5B1|mercator|transverseMercator)\n" |
|
" Warp surface type. The default is 'spherical'.\n" |
|
" --seam_megapix <float>\n" |
|
" Resolution for seam estimation step. The default is 0.1 Mpx.\n" |
|
" --seam (no|voronoi|gc_color|gc_colorgrad)\n" |
|
" Seam estimation method. The default is 'gc_color'.\n" |
|
" --compose_megapix <float>\n" |
|
" Resolution for compositing step. Use -1 for original resolution.\n" |
|
" The default is -1.\n" |
|
" --expos_comp (no|gain|gain_blocks)\n" |
|
" Exposure compensation method. The default is 'gain_blocks'.\n" |
|
" --blend (no|feather|multiband)\n" |
|
" Blending method. The default is 'multiband'.\n" |
|
" --blend_strength <float>\n" |
|
" Blending strength from [0,100] range. The default is 5.\n" |
|
" --output <result_img>\n" |
|
" The default is 'result.jpg'.\n" |
|
" --timelapse (as_is|crop) \n" |
|
" Output warped images separately as frames of a time lapse movie, with 'fixed_' prepended to input file names.\n" |
|
" --rangewidth <int>\n" |
|
" uses range_width to limit number of images to match with.\n"; |
|
} |
|
|
|
|
|
// Default command line args |
|
vector<String> img_names; |
|
bool preview = false; |
|
bool try_cuda = false; |
|
double work_megapix = 0.6; |
|
double seam_megapix = 0.1; |
|
double compose_megapix = -1; |
|
float conf_thresh = 1.f; |
|
string features_type = "surf"; |
|
string matcher_type = "homography"; |
|
string estimator_type = "homography"; |
|
string ba_cost_func = "ray"; |
|
string ba_refine_mask = "xxxxx"; |
|
bool do_wave_correct = true; |
|
WaveCorrectKind wave_correct = detail::WAVE_CORRECT_HORIZ; |
|
bool save_graph = false; |
|
std::string save_graph_to; |
|
string warp_type = "spherical"; |
|
int expos_comp_type = ExposureCompensator::GAIN_BLOCKS; |
|
float match_conf = 0.3f; |
|
string seam_find_type = "gc_color"; |
|
int blend_type = Blender::MULTI_BAND; |
|
int timelapse_type = Timelapser::AS_IS; |
|
float blend_strength = 5; |
|
string result_name = "result.jpg"; |
|
bool timelapse = false; |
|
int range_width = -1; |
|
|
|
|
|
static int parseCmdArgs(int argc, char** argv) |
|
{ |
|
if (argc == 1) |
|
{ |
|
printUsage(); |
|
return -1; |
|
} |
|
for (int i = 1; i < argc; ++i) |
|
{ |
|
if (string(argv[i]) == "--help" || string(argv[i]) == "/?") |
|
{ |
|
printUsage(); |
|
return -1; |
|
} |
|
else if (string(argv[i]) == "--preview") |
|
{ |
|
preview = true; |
|
} |
|
else if (string(argv[i]) == "--try_cuda") |
|
{ |
|
if (string(argv[i + 1]) == "no") |
|
try_cuda = false; |
|
else if (string(argv[i + 1]) == "yes") |
|
try_cuda = true; |
|
else |
|
{ |
|
cout << "Bad --try_cuda flag value\n"; |
|
return -1; |
|
} |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--work_megapix") |
|
{ |
|
work_megapix = atof(argv[i + 1]); |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--seam_megapix") |
|
{ |
|
seam_megapix = atof(argv[i + 1]); |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--compose_megapix") |
|
{ |
|
compose_megapix = atof(argv[i + 1]); |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--result") |
|
{ |
|
result_name = argv[i + 1]; |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--features") |
|
{ |
|
features_type = argv[i + 1]; |
|
if (features_type == "orb") |
|
match_conf = 0.3f; |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--matcher") |
|
{ |
|
if (string(argv[i + 1]) == "homography" || string(argv[i + 1]) == "affine") |
|
matcher_type = argv[i + 1]; |
|
else |
|
{ |
|
cout << "Bad --matcher flag value\n"; |
|
return -1; |
|
} |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--estimator") |
|
{ |
|
if (string(argv[i + 1]) == "homography" || string(argv[i + 1]) == "affine") |
|
estimator_type = argv[i + 1]; |
|
else |
|
{ |
|
cout << "Bad --estimator flag value\n"; |
|
return -1; |
|
} |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--match_conf") |
|
{ |
|
match_conf = static_cast<float>(atof(argv[i + 1])); |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--conf_thresh") |
|
{ |
|
conf_thresh = static_cast<float>(atof(argv[i + 1])); |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--ba") |
|
{ |
|
ba_cost_func = argv[i + 1]; |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--ba_refine_mask") |
|
{ |
|
ba_refine_mask = argv[i + 1]; |
|
if (ba_refine_mask.size() != 5) |
|
{ |
|
cout << "Incorrect refinement mask length.\n"; |
|
return -1; |
|
} |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--wave_correct") |
|
{ |
|
if (string(argv[i + 1]) == "no") |
|
do_wave_correct = false; |
|
else if (string(argv[i + 1]) == "horiz") |
|
{ |
|
do_wave_correct = true; |
|
wave_correct = detail::WAVE_CORRECT_HORIZ; |
|
} |
|
else if (string(argv[i + 1]) == "vert") |
|
{ |
|
do_wave_correct = true; |
|
wave_correct = detail::WAVE_CORRECT_VERT; |
|
} |
|
else |
|
{ |
|
cout << "Bad --wave_correct flag value\n"; |
|
return -1; |
|
} |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--save_graph") |
|
{ |
|
save_graph = true; |
|
save_graph_to = argv[i + 1]; |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--warp") |
|
{ |
|
warp_type = string(argv[i + 1]); |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--expos_comp") |
|
{ |
|
if (string(argv[i + 1]) == "no") |
|
expos_comp_type = ExposureCompensator::NO; |
|
else if (string(argv[i + 1]) == "gain") |
|
expos_comp_type = ExposureCompensator::GAIN; |
|
else if (string(argv[i + 1]) == "gain_blocks") |
|
expos_comp_type = ExposureCompensator::GAIN_BLOCKS; |
|
else |
|
{ |
|
cout << "Bad exposure compensation method\n"; |
|
return -1; |
|
} |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--seam") |
|
{ |
|
if (string(argv[i + 1]) == "no" || |
|
string(argv[i + 1]) == "voronoi" || |
|
string(argv[i + 1]) == "gc_color" || |
|
string(argv[i + 1]) == "gc_colorgrad" || |
|
string(argv[i + 1]) == "dp_color" || |
|
string(argv[i + 1]) == "dp_colorgrad") |
|
seam_find_type = argv[i + 1]; |
|
else |
|
{ |
|
cout << "Bad seam finding method\n"; |
|
return -1; |
|
} |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--blend") |
|
{ |
|
if (string(argv[i + 1]) == "no") |
|
blend_type = Blender::NO; |
|
else if (string(argv[i + 1]) == "feather") |
|
blend_type = Blender::FEATHER; |
|
else if (string(argv[i + 1]) == "multiband") |
|
blend_type = Blender::MULTI_BAND; |
|
else |
|
{ |
|
cout << "Bad blending method\n"; |
|
return -1; |
|
} |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--timelapse") |
|
{ |
|
timelapse = true; |
|
|
|
if (string(argv[i + 1]) == "as_is") |
|
timelapse_type = Timelapser::AS_IS; |
|
else if (string(argv[i + 1]) == "crop") |
|
timelapse_type = Timelapser::CROP; |
|
else |
|
{ |
|
cout << "Bad timelapse method\n"; |
|
return -1; |
|
} |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--rangewidth") |
|
{ |
|
range_width = atoi(argv[i + 1]); |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--blend_strength") |
|
{ |
|
blend_strength = static_cast<float>(atof(argv[i + 1])); |
|
i++; |
|
} |
|
else if (string(argv[i]) == "--output") |
|
{ |
|
result_name = argv[i + 1]; |
|
i++; |
|
} |
|
else |
|
img_names.push_back(argv[i]); |
|
} |
|
if (preview) |
|
{ |
|
compose_megapix = 0.6; |
|
} |
|
return 0; |
|
} |
|
|
|
|
|
int main(int argc, char* argv[]) |
|
{ |
|
#if ENABLE_LOG |
|
int64 app_start_time = getTickCount(); |
|
#endif |
|
|
|
#if 0 |
|
cv::setBreakOnError(true); |
|
#endif |
|
|
|
int retval = parseCmdArgs(argc, argv); |
|
if (retval) |
|
return retval; |
|
|
|
// Check if have enough images |
|
int num_images = static_cast<int>(img_names.size()); |
|
if (num_images < 2) |
|
{ |
|
LOGLN("Need more images"); |
|
return -1; |
|
} |
|
|
|
double work_scale = 1, seam_scale = 1, compose_scale = 1; |
|
bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false; |
|
|
|
LOGLN("Finding features..."); |
|
#if ENABLE_LOG |
|
int64 t = getTickCount(); |
|
#endif |
|
|
|
Ptr<FeaturesFinder> finder; |
|
if (features_type == "surf") |
|
{ |
|
#ifdef HAVE_OPENCV_XFEATURES2D |
|
if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0) |
|
finder = makePtr<SurfFeaturesFinderGpu>(); |
|
else |
|
#endif |
|
finder = makePtr<SurfFeaturesFinder>(); |
|
} |
|
else if (features_type == "orb") |
|
{ |
|
finder = makePtr<OrbFeaturesFinder>(); |
|
} |
|
else |
|
{ |
|
cout << "Unknown 2D features type: '" << features_type << "'.\n"; |
|
return -1; |
|
} |
|
|
|
Mat full_img, img; |
|
vector<ImageFeatures> features(num_images); |
|
vector<Mat> images(num_images); |
|
vector<Size> full_img_sizes(num_images); |
|
double seam_work_aspect = 1; |
|
|
|
for (int i = 0; i < num_images; ++i) |
|
{ |
|
full_img = imread(img_names[i]); |
|
full_img_sizes[i] = full_img.size(); |
|
|
|
if (full_img.empty()) |
|
{ |
|
LOGLN("Can't open image " << img_names[i]); |
|
return -1; |
|
} |
|
if (work_megapix < 0) |
|
{ |
|
img = full_img; |
|
work_scale = 1; |
|
is_work_scale_set = true; |
|
} |
|
else |
|
{ |
|
if (!is_work_scale_set) |
|
{ |
|
work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area())); |
|
is_work_scale_set = true; |
|
} |
|
resize(full_img, img, Size(), work_scale, work_scale); |
|
} |
|
if (!is_seam_scale_set) |
|
{ |
|
seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area())); |
|
seam_work_aspect = seam_scale / work_scale; |
|
is_seam_scale_set = true; |
|
} |
|
|
|
(*finder)(img, features[i]); |
|
features[i].img_idx = i; |
|
LOGLN("Features in image #" << i+1 << ": " << features[i].keypoints.size()); |
|
|
|
resize(full_img, img, Size(), seam_scale, seam_scale); |
|
images[i] = img.clone(); |
|
} |
|
|
|
finder->collectGarbage(); |
|
full_img.release(); |
|
img.release(); |
|
|
|
LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
|
|
LOG("Pairwise matching"); |
|
#if ENABLE_LOG |
|
t = getTickCount(); |
|
#endif |
|
vector<MatchesInfo> pairwise_matches; |
|
Ptr<FeaturesMatcher> matcher; |
|
if (matcher_type == "affine") |
|
matcher = makePtr<AffineBestOf2NearestMatcher>(false, try_cuda, match_conf); |
|
else if (range_width==-1) |
|
matcher = makePtr<BestOf2NearestMatcher>(try_cuda, match_conf); |
|
else |
|
matcher = makePtr<BestOf2NearestRangeMatcher>(range_width, try_cuda, match_conf); |
|
|
|
(*matcher)(features, pairwise_matches); |
|
matcher->collectGarbage(); |
|
|
|
LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
|
|
// Check if we should save matches graph |
|
if (save_graph) |
|
{ |
|
LOGLN("Saving matches graph..."); |
|
ofstream f(save_graph_to.c_str()); |
|
f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh); |
|
} |
|
|
|
// Leave only images we are sure are from the same panorama |
|
vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh); |
|
vector<Mat> img_subset; |
|
vector<String> img_names_subset; |
|
vector<Size> full_img_sizes_subset; |
|
for (size_t i = 0; i < indices.size(); ++i) |
|
{ |
|
img_names_subset.push_back(img_names[indices[i]]); |
|
img_subset.push_back(images[indices[i]]); |
|
full_img_sizes_subset.push_back(full_img_sizes[indices[i]]); |
|
} |
|
|
|
images = img_subset; |
|
img_names = img_names_subset; |
|
full_img_sizes = full_img_sizes_subset; |
|
|
|
// Check if we still have enough images |
|
num_images = static_cast<int>(img_names.size()); |
|
if (num_images < 2) |
|
{ |
|
LOGLN("Need more images"); |
|
return -1; |
|
} |
|
|
|
Ptr<Estimator> estimator; |
|
if (estimator_type == "affine") |
|
estimator = makePtr<AffineBasedEstimator>(); |
|
else |
|
estimator = makePtr<HomographyBasedEstimator>(); |
|
|
|
vector<CameraParams> cameras; |
|
if (!(*estimator)(features, pairwise_matches, cameras)) |
|
{ |
|
cout << "Homography estimation failed.\n"; |
|
return -1; |
|
} |
|
|
|
for (size_t i = 0; i < cameras.size(); ++i) |
|
{ |
|
Mat R; |
|
cameras[i].R.convertTo(R, CV_32F); |
|
cameras[i].R = R; |
|
LOGLN("Initial camera intrinsics #" << indices[i]+1 << ":\nK:\n" << cameras[i].K() << "\nR:\n" << cameras[i].R); |
|
} |
|
|
|
Ptr<detail::BundleAdjusterBase> adjuster; |
|
if (ba_cost_func == "reproj") adjuster = makePtr<detail::BundleAdjusterReproj>(); |
|
else if (ba_cost_func == "ray") adjuster = makePtr<detail::BundleAdjusterRay>(); |
|
else if (ba_cost_func == "affine") adjuster = makePtr<detail::BundleAdjusterAffinePartial>(); |
|
else if (ba_cost_func == "no") adjuster = makePtr<NoBundleAdjuster>(); |
|
else |
|
{ |
|
cout << "Unknown bundle adjustment cost function: '" << ba_cost_func << "'.\n"; |
|
return -1; |
|
} |
|
adjuster->setConfThresh(conf_thresh); |
|
Mat_<uchar> refine_mask = Mat::zeros(3, 3, CV_8U); |
|
if (ba_refine_mask[0] == 'x') refine_mask(0,0) = 1; |
|
if (ba_refine_mask[1] == 'x') refine_mask(0,1) = 1; |
|
if (ba_refine_mask[2] == 'x') refine_mask(0,2) = 1; |
|
if (ba_refine_mask[3] == 'x') refine_mask(1,1) = 1; |
|
if (ba_refine_mask[4] == 'x') refine_mask(1,2) = 1; |
|
adjuster->setRefinementMask(refine_mask); |
|
if (!(*adjuster)(features, pairwise_matches, cameras)) |
|
{ |
|
cout << "Camera parameters adjusting failed.\n"; |
|
return -1; |
|
} |
|
|
|
// Find median focal length |
|
|
|
vector<double> focals; |
|
for (size_t i = 0; i < cameras.size(); ++i) |
|
{ |
|
LOGLN("Camera #" << indices[i]+1 << ":\nK:\n" << cameras[i].K() << "\nR:\n" << cameras[i].R); |
|
focals.push_back(cameras[i].focal); |
|
} |
|
|
|
sort(focals.begin(), focals.end()); |
|
float warped_image_scale; |
|
if (focals.size() % 2 == 1) |
|
warped_image_scale = static_cast<float>(focals[focals.size() / 2]); |
|
else |
|
warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f; |
|
|
|
if (do_wave_correct) |
|
{ |
|
vector<Mat> rmats; |
|
for (size_t i = 0; i < cameras.size(); ++i) |
|
rmats.push_back(cameras[i].R.clone()); |
|
waveCorrect(rmats, wave_correct); |
|
for (size_t i = 0; i < cameras.size(); ++i) |
|
cameras[i].R = rmats[i]; |
|
} |
|
|
|
LOGLN("Warping images (auxiliary)... "); |
|
#if ENABLE_LOG |
|
t = getTickCount(); |
|
#endif |
|
|
|
vector<Point> corners(num_images); |
|
vector<UMat> masks_warped(num_images); |
|
vector<UMat> images_warped(num_images); |
|
vector<Size> sizes(num_images); |
|
vector<UMat> masks(num_images); |
|
|
|
// Preapre images masks |
|
for (int i = 0; i < num_images; ++i) |
|
{ |
|
masks[i].create(images[i].size(), CV_8U); |
|
masks[i].setTo(Scalar::all(255)); |
|
} |
|
|
|
// Warp images and their masks |
|
|
|
Ptr<WarperCreator> warper_creator; |
|
#ifdef HAVE_OPENCV_CUDAWARPING |
|
if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0) |
|
{ |
|
if (warp_type == "plane") |
|
warper_creator = makePtr<cv::PlaneWarperGpu>(); |
|
else if (warp_type == "cylindrical") |
|
warper_creator = makePtr<cv::CylindricalWarperGpu>(); |
|
else if (warp_type == "spherical") |
|
warper_creator = makePtr<cv::SphericalWarperGpu>(); |
|
} |
|
else |
|
#endif |
|
{ |
|
if (warp_type == "plane") |
|
warper_creator = makePtr<cv::PlaneWarper>(); |
|
else if (warp_type == "affine") |
|
warper_creator = makePtr<cv::AffineWarper>(); |
|
else if (warp_type == "cylindrical") |
|
warper_creator = makePtr<cv::CylindricalWarper>(); |
|
else if (warp_type == "spherical") |
|
warper_creator = makePtr<cv::SphericalWarper>(); |
|
else if (warp_type == "fisheye") |
|
warper_creator = makePtr<cv::FisheyeWarper>(); |
|
else if (warp_type == "stereographic") |
|
warper_creator = makePtr<cv::StereographicWarper>(); |
|
else if (warp_type == "compressedPlaneA2B1") |
|
warper_creator = makePtr<cv::CompressedRectilinearWarper>(2.0f, 1.0f); |
|
else if (warp_type == "compressedPlaneA1.5B1") |
|
warper_creator = makePtr<cv::CompressedRectilinearWarper>(1.5f, 1.0f); |
|
else if (warp_type == "compressedPlanePortraitA2B1") |
|
warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(2.0f, 1.0f); |
|
else if (warp_type == "compressedPlanePortraitA1.5B1") |
|
warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(1.5f, 1.0f); |
|
else if (warp_type == "paniniA2B1") |
|
warper_creator = makePtr<cv::PaniniWarper>(2.0f, 1.0f); |
|
else if (warp_type == "paniniA1.5B1") |
|
warper_creator = makePtr<cv::PaniniWarper>(1.5f, 1.0f); |
|
else if (warp_type == "paniniPortraitA2B1") |
|
warper_creator = makePtr<cv::PaniniPortraitWarper>(2.0f, 1.0f); |
|
else if (warp_type == "paniniPortraitA1.5B1") |
|
warper_creator = makePtr<cv::PaniniPortraitWarper>(1.5f, 1.0f); |
|
else if (warp_type == "mercator") |
|
warper_creator = makePtr<cv::MercatorWarper>(); |
|
else if (warp_type == "transverseMercator") |
|
warper_creator = makePtr<cv::TransverseMercatorWarper>(); |
|
} |
|
|
|
if (!warper_creator) |
|
{ |
|
cout << "Can't create the following warper '" << warp_type << "'\n"; |
|
return 1; |
|
} |
|
|
|
Ptr<RotationWarper> warper = warper_creator->create(static_cast<float>(warped_image_scale * seam_work_aspect)); |
|
|
|
for (int i = 0; i < num_images; ++i) |
|
{ |
|
Mat_<float> K; |
|
cameras[i].K().convertTo(K, CV_32F); |
|
float swa = (float)seam_work_aspect; |
|
K(0,0) *= swa; K(0,2) *= swa; |
|
K(1,1) *= swa; K(1,2) *= swa; |
|
|
|
corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]); |
|
sizes[i] = images_warped[i].size(); |
|
|
|
warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]); |
|
} |
|
|
|
vector<UMat> images_warped_f(num_images); |
|
for (int i = 0; i < num_images; ++i) |
|
images_warped[i].convertTo(images_warped_f[i], CV_32F); |
|
|
|
LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
|
|
Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type); |
|
compensator->feed(corners, images_warped, masks_warped); |
|
|
|
Ptr<SeamFinder> seam_finder; |
|
if (seam_find_type == "no") |
|
seam_finder = makePtr<detail::NoSeamFinder>(); |
|
else if (seam_find_type == "voronoi") |
|
seam_finder = makePtr<detail::VoronoiSeamFinder>(); |
|
else if (seam_find_type == "gc_color") |
|
{ |
|
#ifdef HAVE_OPENCV_CUDALEGACY |
|
if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0) |
|
seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR); |
|
else |
|
#endif |
|
seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR); |
|
} |
|
else if (seam_find_type == "gc_colorgrad") |
|
{ |
|
#ifdef HAVE_OPENCV_CUDALEGACY |
|
if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0) |
|
seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR_GRAD); |
|
else |
|
#endif |
|
seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR_GRAD); |
|
} |
|
else if (seam_find_type == "dp_color") |
|
seam_finder = makePtr<detail::DpSeamFinder>(DpSeamFinder::COLOR); |
|
else if (seam_find_type == "dp_colorgrad") |
|
seam_finder = makePtr<detail::DpSeamFinder>(DpSeamFinder::COLOR_GRAD); |
|
if (!seam_finder) |
|
{ |
|
cout << "Can't create the following seam finder '" << seam_find_type << "'\n"; |
|
return 1; |
|
} |
|
|
|
seam_finder->find(images_warped_f, corners, masks_warped); |
|
|
|
// Release unused memory |
|
images.clear(); |
|
images_warped.clear(); |
|
images_warped_f.clear(); |
|
masks.clear(); |
|
|
|
LOGLN("Compositing..."); |
|
#if ENABLE_LOG |
|
t = getTickCount(); |
|
#endif |
|
|
|
Mat img_warped, img_warped_s; |
|
Mat dilated_mask, seam_mask, mask, mask_warped; |
|
Ptr<Blender> blender; |
|
Ptr<Timelapser> timelapser; |
|
//double compose_seam_aspect = 1; |
|
double compose_work_aspect = 1; |
|
|
|
for (int img_idx = 0; img_idx < num_images; ++img_idx) |
|
{ |
|
LOGLN("Compositing image #" << indices[img_idx]+1); |
|
|
|
// Read image and resize it if necessary |
|
full_img = imread(img_names[img_idx]); |
|
if (!is_compose_scale_set) |
|
{ |
|
if (compose_megapix > 0) |
|
compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area())); |
|
is_compose_scale_set = true; |
|
|
|
// Compute relative scales |
|
//compose_seam_aspect = compose_scale / seam_scale; |
|
compose_work_aspect = compose_scale / work_scale; |
|
|
|
// Update warped image scale |
|
warped_image_scale *= static_cast<float>(compose_work_aspect); |
|
warper = warper_creator->create(warped_image_scale); |
|
|
|
// Update corners and sizes |
|
for (int i = 0; i < num_images; ++i) |
|
{ |
|
// Update intrinsics |
|
cameras[i].focal *= compose_work_aspect; |
|
cameras[i].ppx *= compose_work_aspect; |
|
cameras[i].ppy *= compose_work_aspect; |
|
|
|
// Update corner and size |
|
Size sz = full_img_sizes[i]; |
|
if (std::abs(compose_scale - 1) > 1e-1) |
|
{ |
|
sz.width = cvRound(full_img_sizes[i].width * compose_scale); |
|
sz.height = cvRound(full_img_sizes[i].height * compose_scale); |
|
} |
|
|
|
Mat K; |
|
cameras[i].K().convertTo(K, CV_32F); |
|
Rect roi = warper->warpRoi(sz, K, cameras[i].R); |
|
corners[i] = roi.tl(); |
|
sizes[i] = roi.size(); |
|
} |
|
} |
|
if (abs(compose_scale - 1) > 1e-1) |
|
resize(full_img, img, Size(), compose_scale, compose_scale); |
|
else |
|
img = full_img; |
|
full_img.release(); |
|
Size img_size = img.size(); |
|
|
|
Mat K; |
|
cameras[img_idx].K().convertTo(K, CV_32F); |
|
|
|
// Warp the current image |
|
warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped); |
|
|
|
// Warp the current image mask |
|
mask.create(img_size, CV_8U); |
|
mask.setTo(Scalar::all(255)); |
|
warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped); |
|
|
|
// Compensate exposure |
|
compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped); |
|
|
|
img_warped.convertTo(img_warped_s, CV_16S); |
|
img_warped.release(); |
|
img.release(); |
|
mask.release(); |
|
|
|
dilate(masks_warped[img_idx], dilated_mask, Mat()); |
|
resize(dilated_mask, seam_mask, mask_warped.size()); |
|
mask_warped = seam_mask & mask_warped; |
|
|
|
if (!blender && !timelapse) |
|
{ |
|
blender = Blender::createDefault(blend_type, try_cuda); |
|
Size dst_sz = resultRoi(corners, sizes).size(); |
|
float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f; |
|
if (blend_width < 1.f) |
|
blender = Blender::createDefault(Blender::NO, try_cuda); |
|
else if (blend_type == Blender::MULTI_BAND) |
|
{ |
|
MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(blender.get()); |
|
mb->setNumBands(static_cast<int>(ceil(log(blend_width)/log(2.)) - 1.)); |
|
LOGLN("Multi-band blender, number of bands: " << mb->numBands()); |
|
} |
|
else if (blend_type == Blender::FEATHER) |
|
{ |
|
FeatherBlender* fb = dynamic_cast<FeatherBlender*>(blender.get()); |
|
fb->setSharpness(1.f/blend_width); |
|
LOGLN("Feather blender, sharpness: " << fb->sharpness()); |
|
} |
|
blender->prepare(corners, sizes); |
|
} |
|
else if (!timelapser && timelapse) |
|
{ |
|
timelapser = Timelapser::createDefault(timelapse_type); |
|
timelapser->initialize(corners, sizes); |
|
} |
|
|
|
// Blend the current image |
|
if (timelapse) |
|
{ |
|
timelapser->process(img_warped_s, Mat::ones(img_warped_s.size(), CV_8UC1), corners[img_idx]); |
|
String fixedFileName; |
|
size_t pos_s = String(img_names[img_idx]).find_last_of("/\\"); |
|
if (pos_s == String::npos) |
|
{ |
|
fixedFileName = "fixed_" + img_names[img_idx]; |
|
} |
|
else |
|
{ |
|
fixedFileName = "fixed_" + String(img_names[img_idx]).substr(pos_s + 1, String(img_names[img_idx]).length() - pos_s); |
|
} |
|
imwrite(fixedFileName, timelapser->getDst()); |
|
} |
|
else |
|
{ |
|
blender->feed(img_warped_s, mask_warped, corners[img_idx]); |
|
} |
|
} |
|
|
|
if (!timelapse) |
|
{ |
|
Mat result, result_mask; |
|
blender->blend(result, result_mask); |
|
|
|
LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
|
|
imwrite(result_name, result); |
|
} |
|
|
|
LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec"); |
|
return 0; |
|
}
|
|
|