mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
355 lines
13 KiB
355 lines
13 KiB
#pragma warning( disable : 4201 4408 4127 4100) |
|
#include <cstdio> |
|
|
|
#include "cvconfig.h" |
|
#if !defined(HAVE_CUDA) |
|
int main( int argc, const char** argv ) { return printf("Please compile the library with CUDA support."), -1; } |
|
#else |
|
|
|
#include <cuda_runtime.h> |
|
#include "opencv2/opencv.hpp" |
|
#include "NCVHaarObjectDetection.hpp" |
|
|
|
using namespace cv; |
|
|
|
const Size2i preferredVideoFrameSize(640, 480); |
|
|
|
std::string preferredClassifier = "haarcascade_frontalface_alt.xml"; |
|
std::string wndTitle = "NVIDIA Computer Vision SDK :: Face Detection in Video Feed"; |
|
|
|
|
|
void printSyntax(void) |
|
{ |
|
printf("Syntax: FaceDetectionFeed.exe [-c cameranum | -v filename] classifier.xml\n"); |
|
} |
|
|
|
void imagePrintf(Mat& img, int lineOffsY, Scalar color, const char *format, ...) |
|
{ |
|
int fontFace = CV_FONT_HERSHEY_PLAIN; |
|
double fontScale = 1; |
|
|
|
int baseline; |
|
Size textSize = cv::getTextSize("T", fontFace, fontScale, 1, &baseline); |
|
|
|
va_list arg_ptr; |
|
va_start(arg_ptr, format); |
|
|
|
char strBuf[4096]; |
|
vsprintf(&strBuf[0], format, arg_ptr); |
|
|
|
Point org(1, 3 * textSize.height * (lineOffsY + 1) / 2); |
|
putText(img, &strBuf[0], org, fontFace, fontScale, color); |
|
va_end(arg_ptr); |
|
} |
|
|
|
NCVStatus process(Mat *srcdst, |
|
Ncv32u width, Ncv32u height, |
|
NcvBool bShowAllHypotheses, NcvBool bLargestFace, |
|
HaarClassifierCascadeDescriptor &haar, |
|
NCVVector<HaarStage64> &d_haarStages, NCVVector<HaarClassifierNode128> &d_haarNodes, |
|
NCVVector<HaarFeature64> &d_haarFeatures, NCVVector<HaarStage64> &h_haarStages, |
|
INCVMemAllocator &gpuAllocator, |
|
INCVMemAllocator &cpuAllocator, |
|
cudaDeviceProp &devProp) |
|
{ |
|
ncvAssertReturn(!((srcdst == NULL) ^ gpuAllocator.isCounting()), NCV_NULL_PTR); |
|
|
|
NCVStatus ncvStat; |
|
|
|
NCV_SET_SKIP_COND(gpuAllocator.isCounting()); |
|
|
|
NCVMatrixAlloc<Ncv8u> d_src(gpuAllocator, width, height); |
|
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); |
|
NCVMatrixAlloc<Ncv8u> h_src(cpuAllocator, width, height); |
|
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); |
|
NCVVectorAlloc<NcvRect32u> d_rects(gpuAllocator, 100); |
|
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); |
|
|
|
NCV_SKIP_COND_BEGIN |
|
|
|
for (Ncv32u i=0; i<(Ncv32u)srcdst->rows; i++) |
|
{ |
|
memcpy(h_src.ptr() + i * h_src.stride(), srcdst->ptr(i), srcdst->cols); |
|
} |
|
|
|
ncvStat = h_src.copySolid(d_src, 0); |
|
ncvAssertReturnNcvStat(ncvStat); |
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); |
|
|
|
NCV_SKIP_COND_END |
|
|
|
NcvSize32u roi; |
|
roi.width = d_src.width(); |
|
roi.height = d_src.height(); |
|
|
|
Ncv32u numDetections; |
|
ncvStat = ncvDetectObjectsMultiScale_device( |
|
d_src, roi, d_rects, numDetections, haar, h_haarStages, |
|
d_haarStages, d_haarNodes, d_haarFeatures, |
|
haar.ClassifierSize, |
|
bShowAllHypotheses ? 0 : 4, |
|
1.2f, 1, |
|
(bLargestFace ? NCVPipeObjDet_FindLargestObject : 0) |
|
| NCVPipeObjDet_VisualizeInPlace, |
|
gpuAllocator, cpuAllocator, devProp, 0); |
|
ncvAssertReturnNcvStat(ncvStat); |
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); |
|
|
|
NCV_SKIP_COND_BEGIN |
|
|
|
ncvStat = d_src.copySolid(h_src, 0); |
|
ncvAssertReturnNcvStat(ncvStat); |
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); |
|
|
|
for (Ncv32u i=0; i<(Ncv32u)srcdst->rows; i++) |
|
{ |
|
memcpy(srcdst->ptr(i), h_src.ptr() + i * h_src.stride(), srcdst->cols); |
|
} |
|
|
|
NCV_SKIP_COND_END |
|
|
|
return NCV_SUCCESS; |
|
} |
|
|
|
int main( int argc, const char** argv ) |
|
{ |
|
NCVStatus ncvStat; |
|
|
|
printf("NVIDIA Computer Vision SDK\n"); |
|
printf("Face Detection in video and live feed\n"); |
|
printf("=========================================\n"); |
|
printf(" Esc - Quit\n"); |
|
printf(" Space - Switch between NCV and OpenCV\n"); |
|
printf(" L - Switch between FullSearch and LargestFace modes\n"); |
|
printf(" U - Toggle unfiltered hypotheses visualization in FullSearch\n"); |
|
|
|
VideoCapture capture; |
|
bool bQuit = false; |
|
|
|
Size2i frameSize; |
|
|
|
if (argc != 4 && argc != 1) |
|
{ |
|
printSyntax(); |
|
return -1; |
|
} |
|
|
|
if (argc == 1 || strcmp(argv[1], "-c") == 0) |
|
{ |
|
// Camera input is specified |
|
int camIdx = (argc == 3) ? atoi(argv[2]) : 0; |
|
if(!capture.open(camIdx)) |
|
return printf("Error opening camera\n"), -1; |
|
|
|
capture.set(CV_CAP_PROP_FRAME_WIDTH, preferredVideoFrameSize.width); |
|
capture.set(CV_CAP_PROP_FRAME_HEIGHT, preferredVideoFrameSize.height); |
|
capture.set(CV_CAP_PROP_FPS, 25); |
|
frameSize = preferredVideoFrameSize; |
|
} |
|
else if (strcmp(argv[1], "-v") == 0) |
|
{ |
|
// Video file input (avi) |
|
if(!capture.open(argv[2])) |
|
return printf("Error opening video file\n"), -1; |
|
|
|
frameSize.width = (int)capture.get(CV_CAP_PROP_FRAME_WIDTH); |
|
frameSize.height = (int)capture.get(CV_CAP_PROP_FRAME_HEIGHT); |
|
} |
|
else |
|
return printSyntax(), -1; |
|
|
|
NcvBool bUseOpenCV = true; |
|
NcvBool bLargestFace = false; //LargestFace=true is used usually during training |
|
NcvBool bShowAllHypotheses = false; |
|
|
|
CascadeClassifier classifierOpenCV; |
|
std::string classifierFile; |
|
if (argc == 1) |
|
{ |
|
classifierFile = preferredClassifier; |
|
} |
|
else |
|
{ |
|
classifierFile.assign(argv[3]); |
|
} |
|
|
|
if (!classifierOpenCV.load(classifierFile)) |
|
{ |
|
printf("Error (in OpenCV) opening classifier\n"); |
|
printSyntax(); |
|
return -1; |
|
} |
|
|
|
int devId; |
|
ncvAssertCUDAReturn(cudaGetDevice(&devId), -1); |
|
cudaDeviceProp devProp; |
|
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), -1); |
|
printf("Using GPU %d %s, arch=%d.%d\n", devId, devProp.name, devProp.major, devProp.minor); |
|
|
|
//============================================================================== |
|
// |
|
// Load the classifier from file (assuming its size is about 1 mb) |
|
// using a simple allocator |
|
// |
|
//============================================================================== |
|
|
|
NCVMemNativeAllocator gpuCascadeAllocator(NCVMemoryTypeDevice, devProp.textureAlignment); |
|
ncvAssertPrintReturn(gpuCascadeAllocator.isInitialized(), "Error creating cascade GPU allocator", -1); |
|
NCVMemNativeAllocator cpuCascadeAllocator(NCVMemoryTypeHostPinned, devProp.textureAlignment); |
|
ncvAssertPrintReturn(cpuCascadeAllocator.isInitialized(), "Error creating cascade CPU allocator", -1); |
|
|
|
Ncv32u haarNumStages, haarNumNodes, haarNumFeatures; |
|
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures); |
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", -1); |
|
|
|
NCVVectorAlloc<HaarStage64> h_haarStages(cpuCascadeAllocator, haarNumStages); |
|
ncvAssertPrintReturn(h_haarStages.isMemAllocated(), "Error in cascade CPU allocator", -1); |
|
NCVVectorAlloc<HaarClassifierNode128> h_haarNodes(cpuCascadeAllocator, haarNumNodes); |
|
ncvAssertPrintReturn(h_haarNodes.isMemAllocated(), "Error in cascade CPU allocator", -1); |
|
NCVVectorAlloc<HaarFeature64> h_haarFeatures(cpuCascadeAllocator, haarNumFeatures); |
|
ncvAssertPrintReturn(h_haarFeatures.isMemAllocated(), "Error in cascade CPU allocator", -1); |
|
|
|
HaarClassifierCascadeDescriptor haar; |
|
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, h_haarStages, h_haarNodes, h_haarFeatures); |
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", -1); |
|
|
|
NCVVectorAlloc<HaarStage64> d_haarStages(gpuCascadeAllocator, haarNumStages); |
|
ncvAssertPrintReturn(d_haarStages.isMemAllocated(), "Error in cascade GPU allocator", -1); |
|
NCVVectorAlloc<HaarClassifierNode128> d_haarNodes(gpuCascadeAllocator, haarNumNodes); |
|
ncvAssertPrintReturn(d_haarNodes.isMemAllocated(), "Error in cascade GPU allocator", -1); |
|
NCVVectorAlloc<HaarFeature64> d_haarFeatures(gpuCascadeAllocator, haarNumFeatures); |
|
ncvAssertPrintReturn(d_haarFeatures.isMemAllocated(), "Error in cascade GPU allocator", -1); |
|
|
|
ncvStat = h_haarStages.copySolid(d_haarStages, 0); |
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1); |
|
ncvStat = h_haarNodes.copySolid(d_haarNodes, 0); |
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1); |
|
ncvStat = h_haarFeatures.copySolid(d_haarFeatures, 0); |
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1); |
|
|
|
//============================================================================== |
|
// |
|
// Calculate memory requirements and create real allocators |
|
// |
|
//============================================================================== |
|
|
|
NCVMemStackAllocator gpuCounter(devProp.textureAlignment); |
|
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", -1); |
|
NCVMemStackAllocator cpuCounter(devProp.textureAlignment); |
|
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", -1); |
|
|
|
ncvStat = process(NULL, frameSize.width, frameSize.height, |
|
false, false, haar, |
|
d_haarStages, d_haarNodes, |
|
d_haarFeatures, h_haarStages, |
|
gpuCounter, cpuCounter, devProp); |
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1); |
|
|
|
NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), devProp.textureAlignment); |
|
ncvAssertPrintReturn(gpuAllocator.isInitialized(), "Error creating GPU memory allocator", -1); |
|
NCVMemStackAllocator cpuAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), devProp.textureAlignment); |
|
ncvAssertPrintReturn(cpuAllocator.isInitialized(), "Error creating CPU memory allocator", -1); |
|
|
|
printf("Initialized for frame size [%dx%d]\n", frameSize.width, frameSize.height); |
|
|
|
//============================================================================== |
|
// |
|
// Main processing loop |
|
// |
|
//============================================================================== |
|
|
|
namedWindow(wndTitle, 1); |
|
Mat frame, gray, frameDisp; |
|
|
|
do |
|
{ |
|
// For camera and video file, capture the next image |
|
capture >> frame; |
|
if (frame.empty()) |
|
break; |
|
|
|
Mat gray; |
|
cvtColor(frame, gray, CV_BGR2GRAY); |
|
|
|
// |
|
// process |
|
// |
|
|
|
NcvSize32u minSize = haar.ClassifierSize; |
|
if (bLargestFace) |
|
{ |
|
Ncv32u ratioX = preferredVideoFrameSize.width / minSize.width; |
|
Ncv32u ratioY = preferredVideoFrameSize.height / minSize.height; |
|
Ncv32u ratioSmallest = std::min(ratioX, ratioY); |
|
ratioSmallest = std::max((Ncv32u)(ratioSmallest / 2.5f), (Ncv32u)1); |
|
minSize.width *= ratioSmallest; |
|
minSize.height *= ratioSmallest; |
|
} |
|
|
|
Ncv32f avgTime; |
|
NcvTimer timer = ncvStartTimer(); |
|
|
|
if (!bUseOpenCV) |
|
{ |
|
ncvStat = process(&gray, frameSize.width, frameSize.height, |
|
bShowAllHypotheses, bLargestFace, haar, |
|
d_haarStages, d_haarNodes, |
|
d_haarFeatures, h_haarStages, |
|
gpuAllocator, cpuAllocator, devProp); |
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1); |
|
} |
|
else |
|
{ |
|
vector<Rect> rectsOpenCV; |
|
|
|
classifierOpenCV.detectMultiScale( |
|
gray, |
|
rectsOpenCV, |
|
1.2f, |
|
bShowAllHypotheses && !bLargestFace ? 0 : 4, |
|
(bLargestFace ? CV_HAAR_FIND_BIGGEST_OBJECT : 0) |
|
| CV_HAAR_SCALE_IMAGE, |
|
Size(minSize.width, minSize.height)); |
|
|
|
for (size_t rt = 0; rt < rectsOpenCV.size(); ++rt) |
|
rectangle(gray, rectsOpenCV[rt], Scalar(255)); |
|
} |
|
|
|
avgTime = (Ncv32f)ncvEndQueryTimerMs(timer); |
|
|
|
cvtColor(gray, frameDisp, CV_GRAY2BGR); |
|
|
|
imagePrintf(frameDisp, 0, CV_RGB(255, 0,0), "Space - Switch NCV%s / OpenCV%s", bUseOpenCV?"":" (ON)", bUseOpenCV?" (ON)":""); |
|
imagePrintf(frameDisp, 1, CV_RGB(255, 0,0), "L - Switch FullSearch%s / LargestFace%s modes", bLargestFace?"":" (ON)", bLargestFace?" (ON)":""); |
|
imagePrintf(frameDisp, 2, CV_RGB(255, 0,0), "U - Toggle unfiltered hypotheses visualization in FullSearch %s", bShowAllHypotheses?"(ON)":"(OFF)"); |
|
imagePrintf(frameDisp, 3, CV_RGB(118,185,0), " Running at %f FPS on %s", 1000.0f / avgTime, bUseOpenCV?"CPU":"GPU"); |
|
|
|
cv::imshow(wndTitle, frameDisp); |
|
|
|
switch (cvWaitKey(3)) |
|
{ |
|
case ' ': |
|
bUseOpenCV = !bUseOpenCV; |
|
break; |
|
case 'L': |
|
case 'l': |
|
bLargestFace = !bLargestFace; |
|
break; |
|
case 'U': |
|
case 'u': |
|
bShowAllHypotheses = !bShowAllHypotheses; |
|
break; |
|
case 27: |
|
bQuit = true; |
|
break; |
|
} |
|
|
|
} while (!bQuit); |
|
|
|
cvDestroyWindow(wndTitle.c_str()); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
#endif
|
|
|