mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
7.5 KiB
219 lines
7.5 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
// label format: |
|
// image_name |
|
// num_face |
|
// face_1 |
|
// face_.. |
|
// face_num |
|
std::map<std::string, Mat> blobFromTXT(const std::string& path, int numCoords) |
|
{ |
|
std::ifstream ifs(path.c_str()); |
|
CV_Assert(ifs.is_open()); |
|
|
|
std::map<std::string, Mat> gt; |
|
|
|
Mat faces; |
|
int faceNum = -1; |
|
int faceCount = 0; |
|
for (std::string line, key; getline(ifs, line); ) |
|
{ |
|
std::istringstream iss(line); |
|
if (line.find(".png") != std::string::npos) |
|
{ |
|
// Get filename |
|
iss >> key; |
|
} |
|
else if (line.find(" ") == std::string::npos) |
|
{ |
|
// Get the number of faces |
|
iss >> faceNum; |
|
} |
|
else |
|
{ |
|
// Get faces |
|
Mat face(1, numCoords, CV_32FC1); |
|
for (int j = 0; j < numCoords; j++) |
|
{ |
|
iss >> face.at<float>(0, j); |
|
} |
|
faces.push_back(face); |
|
faceCount++; |
|
} |
|
|
|
if (faceCount == faceNum) |
|
{ |
|
// Store faces |
|
gt[key] = faces; |
|
|
|
faces.release(); |
|
faceNum = -1; |
|
faceCount = 0; |
|
} |
|
} |
|
|
|
return gt; |
|
} |
|
|
|
TEST(Objdetect_face_detection, regression) |
|
{ |
|
// Pre-set params |
|
float scoreThreshold = 0.7f; |
|
float matchThreshold = 0.9f; |
|
float l2disThreshold = 5.0f; |
|
int numLM = 5; |
|
int numCoords = 4 + 2 * numLM; |
|
|
|
// Load ground truth labels |
|
std::map<std::string, Mat> gt = blobFromTXT(findDataFile("dnn_face/detection/cascades_labels.txt"), numCoords); |
|
// for (auto item: gt) |
|
// { |
|
// std::cout << item.first << " " << item.second.size() << std::endl; |
|
// } |
|
|
|
// Initialize detector |
|
std::string model = findDataFile("dnn/onnx/models/yunet-202109.onnx", false); |
|
Ptr<FaceDetectorYN> faceDetector = FaceDetectorYN::create(model, "", Size(300, 300)); |
|
faceDetector->setScoreThreshold(0.7f); |
|
|
|
// Detect and match |
|
for (auto item: gt) |
|
{ |
|
std::string imagePath = findDataFile("cascadeandhog/images/" + item.first); |
|
Mat image = imread(imagePath); |
|
|
|
// Set input size |
|
faceDetector->setInputSize(image.size()); |
|
|
|
// Run detection |
|
Mat faces; |
|
faceDetector->detect(image, faces); |
|
// std::cout << item.first << " " << item.second.rows << " " << faces.rows << std::endl; |
|
|
|
// Match bboxes and landmarks |
|
std::vector<bool> matchedItem(item.second.rows, false); |
|
for (int i = 0; i < faces.rows; i++) |
|
{ |
|
if (faces.at<float>(i, numCoords) < scoreThreshold) |
|
continue; |
|
|
|
bool boxMatched = false; |
|
std::vector<bool> lmMatched(numLM, false); |
|
cv::Rect2f resBox(faces.at<float>(i, 0), faces.at<float>(i, 1), faces.at<float>(i, 2), faces.at<float>(i, 3)); |
|
for (int j = 0; j < item.second.rows && !boxMatched; j++) |
|
{ |
|
if (matchedItem[j]) |
|
continue; |
|
|
|
// Retrieve bbox and compare IoU |
|
cv::Rect2f gtBox(item.second.at<float>(j, 0), item.second.at<float>(j, 1), item.second.at<float>(j, 2), item.second.at<float>(j, 3)); |
|
double interArea = (resBox & gtBox).area(); |
|
double iou = interArea / (resBox.area() + gtBox.area() - interArea); |
|
if (iou >= matchThreshold) |
|
{ |
|
boxMatched = true; |
|
matchedItem[j] = true; |
|
} |
|
|
|
// Match landmarks if bbox is matched |
|
if (!boxMatched) |
|
continue; |
|
for (int lmIdx = 0; lmIdx < numLM; lmIdx++) |
|
{ |
|
float gtX = item.second.at<float>(j, 4 + 2 * lmIdx); |
|
float gtY = item.second.at<float>(j, 4 + 2 * lmIdx + 1); |
|
float resX = faces.at<float>(i, 4 + 2 * lmIdx); |
|
float resY = faces.at<float>(i, 4 + 2 * lmIdx + 1); |
|
float l2dis = cv::sqrt((gtX - resX) * (gtX - resX) + (gtY - resY) * (gtY - resY)); |
|
|
|
if (l2dis <= l2disThreshold) |
|
{ |
|
lmMatched[lmIdx] = true; |
|
} |
|
} |
|
} |
|
EXPECT_TRUE(boxMatched) << "In image " << item.first << ", cannot match resBox " << resBox << " with any ground truth."; |
|
if (boxMatched) |
|
{ |
|
EXPECT_TRUE(std::all_of(lmMatched.begin(), lmMatched.end(), [](bool v) { return v; })) << "In image " << item.first << ", resBox " << resBox << " matched but its landmarks failed to match."; |
|
} |
|
} |
|
} |
|
} |
|
|
|
TEST(Objdetect_face_recognition, regression) |
|
{ |
|
// Pre-set params |
|
float score_thresh = 0.9f; |
|
float nms_thresh = 0.3f; |
|
double cosine_similar_thresh = 0.363; |
|
double l2norm_similar_thresh = 1.128; |
|
|
|
// Load ground truth labels |
|
std::ifstream ifs(findDataFile("dnn_face/recognition/cascades_label.txt").c_str()); |
|
CV_Assert(ifs.is_open()); |
|
|
|
std::set<std::string> fSet; |
|
std::map<std::string, Mat> featureMap; |
|
std::map<std::pair<std::string, std::string>, int> gtMap; |
|
|
|
|
|
for (std::string line, key; getline(ifs, line);) |
|
{ |
|
std::string fname1, fname2; |
|
int label; |
|
std::istringstream iss(line); |
|
iss>>fname1>>fname2>>label; |
|
// std::cout<<fname1<<" "<<fname2<<" "<<label<<std::endl; |
|
|
|
fSet.insert(fname1); |
|
fSet.insert(fname2); |
|
gtMap[std::make_pair(fname1, fname2)] = label; |
|
} |
|
|
|
// Initialize detector |
|
std::string detect_model = findDataFile("dnn/onnx/models/yunet-202109.onnx", false); |
|
Ptr<FaceDetectorYN> faceDetector = FaceDetectorYN::create(detect_model, "", Size(150, 150), score_thresh, nms_thresh); |
|
|
|
std::string recog_model = findDataFile("dnn/onnx/models/face_recognizer_fast.onnx", false); |
|
Ptr<FaceRecognizerSF> faceRecognizer = FaceRecognizerSF::create(recog_model, ""); |
|
|
|
// Detect and match |
|
for (auto fname: fSet) |
|
{ |
|
std::string imagePath = findDataFile("dnn_face/recognition/" + fname); |
|
Mat image = imread(imagePath); |
|
|
|
Mat faces; |
|
faceDetector->detect(image, faces); |
|
|
|
Mat aligned_face; |
|
faceRecognizer->alignCrop(image, faces.row(0), aligned_face); |
|
|
|
Mat feature; |
|
faceRecognizer->feature(aligned_face, feature); |
|
|
|
featureMap[fname] = feature.clone(); |
|
} |
|
|
|
for (auto item: gtMap) |
|
{ |
|
Mat feature1 = featureMap[item.first.first]; |
|
Mat feature2 = featureMap[item.first.second]; |
|
int label = item.second; |
|
|
|
double cos_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_COSINE); |
|
double L2_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_NORM_L2); |
|
|
|
EXPECT_TRUE(label == 0 ? cos_score <= cosine_similar_thresh : cos_score > cosine_similar_thresh) << "Cosine match result of images " << item.first.first << " and " << item.first.second << " is different from ground truth (score: "<< cos_score <<";Thresh: "<< cosine_similar_thresh <<")."; |
|
EXPECT_TRUE(label == 0 ? L2_score > l2norm_similar_thresh : L2_score <= l2norm_similar_thresh) << "L2norm match result of images " << item.first.first << " and " << item.first.second << " is different from ground truth (score: "<< L2_score <<";Thresh: "<< l2norm_similar_thresh <<")."; |
|
} |
|
} |
|
|
|
}} // namespace
|
|
|