mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
5.5 KiB
171 lines
5.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
TEST(Features2D_ORB, _1996) |
|
{ |
|
Ptr<FeatureDetector> fd = ORB::create(10000, 1.2f, 8, 31, 0, 2, ORB::HARRIS_SCORE, 31, 20); |
|
Ptr<DescriptorExtractor> de = fd; |
|
|
|
Mat image = imread(string(cvtest::TS::ptr()->get_data_path()) + "shared/lena.png"); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
Mat roi(image.size(), CV_8UC1, Scalar(0)); |
|
|
|
Point poly[] = {Point(100, 20), Point(300, 50), Point(400, 200), Point(10, 500)}; |
|
fillConvexPoly(roi, poly, int(sizeof(poly) / sizeof(poly[0])), Scalar(255)); |
|
|
|
std::vector<KeyPoint> keypoints; |
|
fd->detect(image, keypoints, roi); |
|
Mat descriptors; |
|
de->compute(image, keypoints, descriptors); |
|
|
|
//image.setTo(Scalar(255,255,255), roi); |
|
|
|
int roiViolations = 0; |
|
for(std::vector<KeyPoint>::const_iterator kp = keypoints.begin(); kp != keypoints.end(); ++kp) |
|
{ |
|
int x = cvRound(kp->pt.x); |
|
int y = cvRound(kp->pt.y); |
|
|
|
ASSERT_LE(0, x); |
|
ASSERT_LE(0, y); |
|
ASSERT_GT(image.cols, x); |
|
ASSERT_GT(image.rows, y); |
|
|
|
// if (!roi.at<uchar>(y,x)) |
|
// { |
|
// roiViolations++; |
|
// circle(image, kp->pt, 3, Scalar(0,0,255)); |
|
// } |
|
} |
|
|
|
// if(roiViolations) |
|
// { |
|
// imshow("img", image); |
|
// waitKey(); |
|
// } |
|
|
|
ASSERT_EQ(0, roiViolations); |
|
} |
|
|
|
TEST(Features2D_ORB, crash_5031) |
|
{ |
|
cv::Mat image = cv::Mat::zeros(cv::Size(1920, 1080), CV_8UC3); |
|
|
|
int nfeatures = 8000; |
|
float orbScaleFactor = 1.2f; |
|
int nlevels = 18; |
|
int edgeThreshold = 4; |
|
int firstLevel = 0; |
|
int WTA_K = 2; |
|
ORB::ScoreType scoreType = cv::ORB::HARRIS_SCORE; |
|
int patchSize = 47; |
|
int fastThreshold = 20; |
|
|
|
Ptr<ORB> orb = cv::ORB::create(nfeatures, orbScaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize, fastThreshold); |
|
|
|
std::vector<cv::KeyPoint> keypoints; |
|
cv::Mat descriptors; |
|
|
|
cv::KeyPoint kp; |
|
kp.pt.x = 443; |
|
kp.pt.y = 5; |
|
kp.size = 47; |
|
kp.angle = 53.4580612f; |
|
kp.response = 0.0000470733867f; |
|
kp.octave = 0; |
|
kp.class_id = -1; |
|
|
|
keypoints.push_back(kp); |
|
|
|
ASSERT_NO_THROW(orb->compute(image, keypoints, descriptors)); |
|
} |
|
|
|
|
|
TEST(Features2D_ORB, regression_16197) |
|
{ |
|
Mat img(Size(72, 72), CV_8UC1, Scalar::all(0)); |
|
Ptr<ORB> orbPtr = ORB::create(); |
|
orbPtr->setNLevels(5); |
|
orbPtr->setFirstLevel(3); |
|
orbPtr->setScaleFactor(1.8); |
|
orbPtr->setPatchSize(8); |
|
orbPtr->setEdgeThreshold(8); |
|
|
|
std::vector<KeyPoint> kps; |
|
Mat fv; |
|
|
|
// exception in debug mode, crash in release |
|
ASSERT_NO_THROW(orbPtr->detectAndCompute(img, noArray(), kps, fv)); |
|
} |
|
|
|
// https://github.com/opencv/opencv-python/issues/537 |
|
BIGDATA_TEST(Features2D_ORB, regression_opencv_python_537) // memory usage: ~3 Gb |
|
{ |
|
applyTestTag( |
|
CV_TEST_TAG_LONG, |
|
CV_TEST_TAG_DEBUG_VERYLONG, |
|
CV_TEST_TAG_MEMORY_6GB |
|
); |
|
|
|
const int width = 25000; |
|
const int height = 25000; |
|
Mat img(Size(width, height), CV_8UC1, Scalar::all(0)); |
|
|
|
const int border = 23, num_lines = 23; |
|
for (int i = 0; i < num_lines; i++) |
|
{ |
|
cv::Point2i point1(border + i * 100, border + i * 100); |
|
cv::Point2i point2(width - border - i * 100, height - border * i * 100); |
|
cv::line(img, point1, point2, 255, 1, LINE_AA); |
|
} |
|
|
|
Ptr<ORB> orbPtr = ORB::create(31); |
|
std::vector<KeyPoint> kps; |
|
Mat fv; |
|
ASSERT_NO_THROW(orbPtr->detectAndCompute(img, noArray(), kps, fv)); |
|
} |
|
|
|
}} // namespace
|
|
|