mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
238 lines
7.1 KiB
238 lines
7.1 KiB
// Copyright 2012 Google Inc. All Rights Reserved. |
|
// |
|
// This code is licensed under the same terms as WebM: |
|
// Software License Agreement: http://www.webmproject.org/license/software/ |
|
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/ |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Utilities for building and looking up Huffman trees. |
|
// |
|
// Author: Urvang Joshi (urvang@google.com) |
|
|
|
#include <assert.h> |
|
#include <stdlib.h> |
|
#include "./huffman.h" |
|
#include "../utils/utils.h" |
|
#include "../webp/format_constants.h" |
|
|
|
#if defined(__cplusplus) || defined(c_plusplus) |
|
extern "C" { |
|
#endif |
|
|
|
#define NON_EXISTENT_SYMBOL (-1) |
|
|
|
static void TreeNodeInit(HuffmanTreeNode* const node) { |
|
node->children_ = -1; // means: 'unassigned so far' |
|
} |
|
|
|
static int NodeIsEmpty(const HuffmanTreeNode* const node) { |
|
return (node->children_ < 0); |
|
} |
|
|
|
static int IsFull(const HuffmanTree* const tree) { |
|
return (tree->num_nodes_ == tree->max_nodes_); |
|
} |
|
|
|
static void AssignChildren(HuffmanTree* const tree, |
|
HuffmanTreeNode* const node) { |
|
HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_; |
|
node->children_ = (int)(children - node); |
|
assert(children - node == (int)(children - node)); |
|
tree->num_nodes_ += 2; |
|
TreeNodeInit(children + 0); |
|
TreeNodeInit(children + 1); |
|
} |
|
|
|
static int TreeInit(HuffmanTree* const tree, int num_leaves) { |
|
assert(tree != NULL); |
|
if (num_leaves == 0) return 0; |
|
// We allocate maximum possible nodes in the tree at once. |
|
// Note that a Huffman tree is a full binary tree; and in a full binary tree |
|
// with L leaves, the total number of nodes N = 2 * L - 1. |
|
tree->max_nodes_ = 2 * num_leaves - 1; |
|
tree->root_ = (HuffmanTreeNode*)WebPSafeMalloc((uint64_t)tree->max_nodes_, |
|
sizeof(*tree->root_)); |
|
if (tree->root_ == NULL) return 0; |
|
TreeNodeInit(tree->root_); // Initialize root. |
|
tree->num_nodes_ = 1; |
|
return 1; |
|
} |
|
|
|
void HuffmanTreeRelease(HuffmanTree* const tree) { |
|
if (tree != NULL) { |
|
free(tree->root_); |
|
tree->root_ = NULL; |
|
tree->max_nodes_ = 0; |
|
tree->num_nodes_ = 0; |
|
} |
|
} |
|
|
|
int HuffmanCodeLengthsToCodes(const int* const code_lengths, |
|
int code_lengths_size, int* const huff_codes) { |
|
int symbol; |
|
int code_len; |
|
int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
|
int curr_code; |
|
int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
|
int max_code_length = 0; |
|
|
|
assert(code_lengths != NULL); |
|
assert(code_lengths_size > 0); |
|
assert(huff_codes != NULL); |
|
|
|
// Calculate max code length. |
|
for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
|
if (code_lengths[symbol] > max_code_length) { |
|
max_code_length = code_lengths[symbol]; |
|
} |
|
} |
|
if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0; |
|
|
|
// Calculate code length histogram. |
|
for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
|
++code_length_hist[code_lengths[symbol]]; |
|
} |
|
code_length_hist[0] = 0; |
|
|
|
// Calculate the initial values of 'next_codes' for each code length. |
|
// next_codes[code_len] denotes the code to be assigned to the next symbol |
|
// of code length 'code_len'. |
|
curr_code = 0; |
|
next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist. |
|
for (code_len = 1; code_len <= max_code_length; ++code_len) { |
|
curr_code = (curr_code + code_length_hist[code_len - 1]) << 1; |
|
next_codes[code_len] = curr_code; |
|
} |
|
|
|
// Get symbols. |
|
for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
|
if (code_lengths[symbol] > 0) { |
|
huff_codes[symbol] = next_codes[code_lengths[symbol]]++; |
|
} else { |
|
huff_codes[symbol] = NON_EXISTENT_SYMBOL; |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
static int TreeAddSymbol(HuffmanTree* const tree, |
|
int symbol, int code, int code_length) { |
|
HuffmanTreeNode* node = tree->root_; |
|
const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_; |
|
while (code_length-- > 0) { |
|
if (node >= max_node) { |
|
return 0; |
|
} |
|
if (NodeIsEmpty(node)) { |
|
if (IsFull(tree)) return 0; // error: too many symbols. |
|
AssignChildren(tree, node); |
|
} else if (HuffmanTreeNodeIsLeaf(node)) { |
|
return 0; // leaf is already occupied. |
|
} |
|
node += node->children_ + ((code >> code_length) & 1); |
|
} |
|
if (NodeIsEmpty(node)) { |
|
node->children_ = 0; // turn newly created node into a leaf. |
|
} else if (!HuffmanTreeNodeIsLeaf(node)) { |
|
return 0; // trying to assign a symbol to already used code. |
|
} |
|
node->symbol_ = symbol; // Add symbol in this node. |
|
return 1; |
|
} |
|
|
|
int HuffmanTreeBuildImplicit(HuffmanTree* const tree, |
|
const int* const code_lengths, |
|
int code_lengths_size) { |
|
int symbol; |
|
int num_symbols = 0; |
|
int root_symbol = 0; |
|
|
|
assert(tree != NULL); |
|
assert(code_lengths != NULL); |
|
|
|
// Find out number of symbols and the root symbol. |
|
for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
|
if (code_lengths[symbol] > 0) { |
|
// Note: code length = 0 indicates non-existent symbol. |
|
++num_symbols; |
|
root_symbol = symbol; |
|
} |
|
} |
|
|
|
// Initialize the tree. Will fail for num_symbols = 0 |
|
if (!TreeInit(tree, num_symbols)) return 0; |
|
|
|
// Build tree. |
|
if (num_symbols == 1) { // Trivial case. |
|
const int max_symbol = code_lengths_size; |
|
if (root_symbol < 0 || root_symbol >= max_symbol) { |
|
HuffmanTreeRelease(tree); |
|
return 0; |
|
} |
|
return TreeAddSymbol(tree, root_symbol, 0, 0); |
|
} else { // Normal case. |
|
int ok = 0; |
|
|
|
// Get Huffman codes from the code lengths. |
|
int* const codes = |
|
(int*)WebPSafeMalloc((uint64_t)code_lengths_size, sizeof(*codes)); |
|
if (codes == NULL) goto End; |
|
|
|
if (!HuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, codes)) { |
|
goto End; |
|
} |
|
|
|
// Add symbols one-by-one. |
|
for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
|
if (code_lengths[symbol] > 0) { |
|
if (!TreeAddSymbol(tree, symbol, codes[symbol], code_lengths[symbol])) { |
|
goto End; |
|
} |
|
} |
|
} |
|
ok = 1; |
|
End: |
|
free(codes); |
|
ok = ok && IsFull(tree); |
|
if (!ok) HuffmanTreeRelease(tree); |
|
return ok; |
|
} |
|
} |
|
|
|
int HuffmanTreeBuildExplicit(HuffmanTree* const tree, |
|
const int* const code_lengths, |
|
const int* const codes, |
|
const int* const symbols, int max_symbol, |
|
int num_symbols) { |
|
int ok = 0; |
|
int i; |
|
|
|
assert(tree != NULL); |
|
assert(code_lengths != NULL); |
|
assert(codes != NULL); |
|
assert(symbols != NULL); |
|
|
|
// Initialize the tree. Will fail if num_symbols = 0. |
|
if (!TreeInit(tree, num_symbols)) return 0; |
|
|
|
// Add symbols one-by-one. |
|
for (i = 0; i < num_symbols; ++i) { |
|
if (codes[i] != NON_EXISTENT_SYMBOL) { |
|
if (symbols[i] < 0 || symbols[i] >= max_symbol) { |
|
goto End; |
|
} |
|
if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) { |
|
goto End; |
|
} |
|
} |
|
} |
|
ok = 1; |
|
End: |
|
ok = ok && IsFull(tree); |
|
if (!ok) HuffmanTreeRelease(tree); |
|
return ok; |
|
} |
|
|
|
#if defined(__cplusplus) || defined(c_plusplus) |
|
} // extern "C" |
|
#endif
|
|
|