mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
208 lines
8.8 KiB
208 lines
8.8 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
#undef RENDER_MSERS |
|
#define RENDER_MSERS 0 |
|
|
|
#if defined RENDER_MSERS && RENDER_MSERS |
|
static void renderMSERs(const Mat& gray, Mat& img, const vector<vector<Point> >& msers) |
|
{ |
|
cvtColor(gray, img, COLOR_GRAY2BGR); |
|
RNG rng((uint64)1749583); |
|
for( int i = 0; i < (int)msers.size(); i++ ) |
|
{ |
|
uchar b = rng.uniform(0, 256); |
|
uchar g = rng.uniform(0, 256); |
|
uchar r = rng.uniform(0, 256); |
|
Vec3b color(b, g, r); |
|
|
|
const Point* pt = &msers[i][0]; |
|
size_t j, n = msers[i].size(); |
|
for( j = 0; j < n; j++ ) |
|
img.at<Vec3b>(pt[j]) = color; |
|
} |
|
} |
|
#endif |
|
|
|
TEST(Features2d_MSER, cases) |
|
{ |
|
uchar buf[] = |
|
{ |
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 |
|
}; |
|
Mat big_image = imread(cvtest::TS::ptr()->get_data_path() + "mser/puzzle.png", 0); |
|
Mat small_image(14, 26, CV_8U, buf); |
|
static const int thresharr[] = { 0, 70, 120, 180, 255 }; |
|
|
|
const int kDelta = 5; |
|
Ptr<MSER> mserExtractor = MSER::create( kDelta ); |
|
vector<vector<Point> > msers; |
|
vector<Rect> boxes; |
|
|
|
RNG rng((uint64)123456); |
|
|
|
for( int i = 0; i < 100; i++ ) |
|
{ |
|
bool use_big_image = rng.uniform(0, 7) != 0; |
|
bool invert = rng.uniform(0, 2) != 0; |
|
bool binarize = use_big_image ? rng.uniform(0, 5) != 0 : false; |
|
bool blur = rng.uniform(0, 2) != 0; |
|
int thresh = thresharr[rng.uniform(0, 5)]; |
|
|
|
/*if( i == 0 ) |
|
{ |
|
use_big_image = true; |
|
invert = binarize = blur = false; |
|
}*/ |
|
|
|
const Mat& src0 = use_big_image ? big_image : small_image; |
|
Mat src = src0.clone(); |
|
|
|
int kMinArea = use_big_image ? 256 : 10; |
|
int kMaxArea = (int)src.total()/4; |
|
|
|
mserExtractor->setMinArea(kMinArea); |
|
mserExtractor->setMaxArea(kMaxArea); |
|
mserExtractor->setMinDiversity(0); |
|
|
|
if( invert ) |
|
bitwise_not(src, src); |
|
if( binarize ) |
|
cv::threshold(src, src, thresh, 255, THRESH_BINARY); |
|
if( blur ) |
|
GaussianBlur(src, src, Size(5, 5), 1.5, 1.5); |
|
|
|
int minRegs = use_big_image ? 7 : 2; |
|
int maxRegs = use_big_image ? 1000 : 20; |
|
if( binarize && (thresh == 0 || thresh == 255) ) |
|
minRegs = maxRegs = 0; |
|
|
|
mserExtractor->detectRegions( src, msers, boxes ); |
|
int nmsers = (int)msers.size(); |
|
ASSERT_EQ(nmsers, (int)boxes.size()); |
|
|
|
if( maxRegs < nmsers || minRegs > nmsers ) |
|
{ |
|
printf("%d. minArea=%d, maxArea=%d, nmsers=%d, minRegs=%d, maxRegs=%d, " |
|
"image=%s, invert=%d, binarize=%d, thresh=%d, blur=%d\n", |
|
i, kMinArea, kMaxArea, nmsers, minRegs, maxRegs, use_big_image ? "big" : "small", |
|
(int)invert, (int)binarize, thresh, (int)blur); |
|
#if defined RENDER_MSERS && RENDER_MSERS |
|
Mat image; |
|
imshow("source", src); |
|
renderMSERs(src, image, msers); |
|
imshow("result", image); |
|
waitKey(); |
|
#endif |
|
} |
|
|
|
ASSERT_LE(minRegs, nmsers); |
|
ASSERT_GE(maxRegs, nmsers); |
|
} |
|
} |
|
|
|
TEST(Features2d_MSER, history_update_regression) |
|
{ |
|
String dataPath = cvtest::TS::ptr()->get_data_path() + "mser/"; |
|
vector<Mat> tstImages; |
|
tstImages.push_back(imread(dataPath + "mser_test.png", IMREAD_GRAYSCALE)); |
|
tstImages.push_back(imread(dataPath + "mser_test2.png", IMREAD_GRAYSCALE)); |
|
|
|
for(size_t j = 0; j < tstImages.size(); j++) |
|
{ |
|
size_t previous_size = 0; |
|
for(int minArea = 100; minArea > 10; minArea--) |
|
{ |
|
Ptr<MSER> mser = MSER::create(1, minArea, (int)(tstImages[j].cols * tstImages[j].rows * 0.2)); |
|
mser->setPass2Only(true); |
|
mser->setMinDiversity(0); |
|
vector<vector<Point> > mserContours; |
|
vector<Rect> boxRects; |
|
mser->detectRegions(tstImages[j], mserContours, boxRects); |
|
ASSERT_LE(previous_size, mserContours.size()); |
|
previous_size = mserContours.size(); |
|
} |
|
} |
|
} |
|
|
|
|
|
TEST(Features2d_MSER, bug_5630) |
|
{ |
|
String dataPath = cvtest::TS::ptr()->get_data_path() + "mser/"; |
|
Mat img = imread(dataPath + "mser_test.png", IMREAD_GRAYSCALE); |
|
Ptr<MSER> mser = MSER::create(1, 1); |
|
vector<vector<Point> > mserContours; |
|
vector<Rect> boxRects; |
|
|
|
// set min diversity and run detection |
|
mser->setMinDiversity(0.1); |
|
mser->detectRegions(img, mserContours, boxRects); |
|
size_t originalNumberOfContours = mserContours.size(); |
|
|
|
// increase min diversity and run detection again |
|
mser->setMinDiversity(0.2); |
|
mser->detectRegions(img, mserContours, boxRects); |
|
size_t newNumberOfContours = mserContours.size(); |
|
|
|
// there should be fewer regions detected with a higher min diversity |
|
ASSERT_LT(newNumberOfContours, originalNumberOfContours); |
|
|
|
} |
|
|
|
}} // namespace
|
|
|