mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1624 lines
56 KiB
1624 lines
56 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/ts/ocl_test.hpp" // T-API like tests |
|
|
|
namespace opencv_test { |
|
namespace { |
|
|
|
class CV_OperationsTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_OperationsTest(); |
|
~CV_OperationsTest(); |
|
protected: |
|
void run(int); |
|
|
|
struct test_excep |
|
{ |
|
test_excep(const string& _s=string("")) : s(_s) { } |
|
string s; |
|
}; |
|
|
|
bool SomeMatFunctions(); |
|
bool TestMat(); |
|
template<typename _Tp> void TestType(Size sz, _Tp value); |
|
bool TestTemplateMat(); |
|
bool TestMatND(); |
|
bool TestSparseMat(); |
|
bool TestVec(); |
|
bool TestMatxMultiplication(); |
|
bool TestMatxElementwiseDivison(); |
|
bool TestDivisionByValue(); |
|
bool TestInplaceDivisionByValue(); |
|
bool TestMatMatxCastSum(); |
|
bool TestSubMatAccess(); |
|
bool TestExp(); |
|
bool TestSVD(); |
|
bool operations1(); |
|
|
|
void checkDiff(const Mat& m1, const Mat& m2, const string& s) |
|
{ |
|
if (cvtest::norm(m1, m2, NORM_INF) != 0) throw test_excep(s); |
|
} |
|
void checkDiffF(const Mat& m1, const Mat& m2, const string& s) |
|
{ |
|
if (cvtest::norm(m1, m2, NORM_INF) > 1e-5) throw test_excep(s); |
|
} |
|
}; |
|
|
|
CV_OperationsTest::CV_OperationsTest() |
|
{ |
|
} |
|
|
|
CV_OperationsTest::~CV_OperationsTest() {} |
|
|
|
#define STR(a) STR2(a) |
|
#define STR2(a) #a |
|
|
|
#define CHECK_DIFF(a, b) checkDiff(a, b, "(" #a ") != (" #b ") at l." STR(__LINE__)) |
|
#define CHECK_DIFF_FLT(a, b) checkDiffF(a, b, "(" #a ") !=(eps) (" #b ") at l." STR(__LINE__)) |
|
|
|
#if defined _MSC_VER && _MSC_VER < 1400 |
|
#define MSVC_OLD 1 |
|
#else |
|
#define MSVC_OLD 0 |
|
#endif |
|
|
|
template<typename _Tp> void CV_OperationsTest::TestType(Size sz, _Tp value) |
|
{ |
|
cv::Mat_<_Tp> m(sz); |
|
CV_Assert(m.cols == sz.width && m.rows == sz.height && m.depth() == cv::traits::Depth<_Tp>::value && |
|
m.channels() == DataType<_Tp>::channels && |
|
m.elemSize() == sizeof(_Tp) && m.step == m.elemSize()*m.cols); |
|
for( int y = 0; y < sz.height; y++ ) |
|
for( int x = 0; x < sz.width; x++ ) |
|
{ |
|
m(y,x) = value; |
|
} |
|
|
|
double s = sum(Mat(m).reshape(1))[0]; |
|
CV_Assert( s == (double)sz.width*sz.height ); |
|
} |
|
|
|
bool CV_OperationsTest::TestMat() |
|
{ |
|
try |
|
{ |
|
Mat one_3x1(3, 1, CV_32F, Scalar(1.0)); |
|
Mat shi_3x1(3, 1, CV_32F, Scalar(1.2)); |
|
Mat shi_2x1(2, 1, CV_32F, Scalar(-1)); |
|
Scalar shift = Scalar::all(15); |
|
|
|
float data[] = { sqrt(2.f)/2, -sqrt(2.f)/2, 1.f, sqrt(2.f)/2, sqrt(2.f)/2, 10.f }; |
|
Mat rot_2x3(2, 3, CV_32F, data); |
|
|
|
Mat res = one_3x1 + shi_3x1 + shi_3x1 + shi_3x1; |
|
res = Mat(Mat(2 * rot_2x3) * res - shi_2x1) + shift; |
|
|
|
Mat tmp, res2; |
|
cv::add(one_3x1, shi_3x1, tmp); |
|
cv::add(tmp, shi_3x1, tmp); |
|
cv::add(tmp, shi_3x1, tmp); |
|
cv::gemm(rot_2x3, tmp, 2, shi_2x1, -1, res2, 0); |
|
cv::add(res2, Mat(2, 1, CV_32F, shift), res2); |
|
|
|
CHECK_DIFF(res, res2); |
|
|
|
Mat mat4x4(4, 4, CV_32F); |
|
cv::randu(mat4x4, Scalar(0), Scalar(10)); |
|
|
|
Mat roi1 = mat4x4(Rect(Point(1, 1), Size(2, 2))); |
|
Mat roi2 = mat4x4(Range(1, 3), Range(1, 3)); |
|
|
|
CHECK_DIFF(roi1, roi2); |
|
CHECK_DIFF(mat4x4, mat4x4(Rect(Point(0,0), mat4x4.size()))); |
|
|
|
Mat intMat10(3, 3, CV_32S, Scalar(10)); |
|
Mat intMat11(3, 3, CV_32S, Scalar(11)); |
|
Mat resMat(3, 3, CV_8U, Scalar(255)); |
|
|
|
CHECK_DIFF(resMat, intMat10 == intMat10); |
|
CHECK_DIFF(resMat, intMat10 < intMat11); |
|
CHECK_DIFF(resMat, intMat11 > intMat10); |
|
CHECK_DIFF(resMat, intMat10 <= intMat11); |
|
CHECK_DIFF(resMat, intMat11 >= intMat10); |
|
CHECK_DIFF(resMat, intMat11 != intMat10); |
|
|
|
CHECK_DIFF(resMat, intMat10 == 10.0); |
|
CHECK_DIFF(resMat, 10.0 == intMat10); |
|
CHECK_DIFF(resMat, intMat10 < 11.0); |
|
CHECK_DIFF(resMat, 11.0 > intMat10); |
|
CHECK_DIFF(resMat, 10.0 < intMat11); |
|
CHECK_DIFF(resMat, 11.0 >= intMat10); |
|
CHECK_DIFF(resMat, 10.0 <= intMat11); |
|
CHECK_DIFF(resMat, 10.0 != intMat11); |
|
CHECK_DIFF(resMat, intMat11 != 10.0); |
|
|
|
Mat eye = Mat::eye(3, 3, CV_16S); |
|
Mat maskMat4(3, 3, CV_16S, Scalar(4)); |
|
Mat maskMat1(3, 3, CV_16S, Scalar(1)); |
|
Mat maskMat5(3, 3, CV_16S, Scalar(5)); |
|
Mat maskMat0(3, 3, CV_16S, Scalar(0)); |
|
|
|
CHECK_DIFF(maskMat0, maskMat4 & maskMat1); |
|
CHECK_DIFF(maskMat0, Scalar(1) & maskMat4); |
|
CHECK_DIFF(maskMat0, maskMat4 & Scalar(1)); |
|
|
|
Mat m; |
|
m = maskMat4.clone(); m &= maskMat1; CHECK_DIFF(maskMat0, m); |
|
m = maskMat4.clone(); m &= maskMat1 | maskMat1; CHECK_DIFF(maskMat0, m); |
|
m = maskMat4.clone(); m &= (2* maskMat1 - maskMat1); CHECK_DIFF(maskMat0, m); |
|
|
|
m = maskMat4.clone(); m &= Scalar(1); CHECK_DIFF(maskMat0, m); |
|
m = maskMat4.clone(); m |= maskMat1; CHECK_DIFF(maskMat5, m); |
|
m = maskMat5.clone(); m ^= maskMat1; CHECK_DIFF(maskMat4, m); |
|
m = maskMat4.clone(); m |= (2* maskMat1 - maskMat1); CHECK_DIFF(maskMat5, m); |
|
m = maskMat5.clone(); m ^= (2* maskMat1 - maskMat1); CHECK_DIFF(maskMat4, m); |
|
|
|
m = maskMat4.clone(); m |= Scalar(1); CHECK_DIFF(maskMat5, m); |
|
m = maskMat5.clone(); m ^= Scalar(1); CHECK_DIFF(maskMat4, m); |
|
|
|
|
|
|
|
CHECK_DIFF(maskMat0, (maskMat4 | maskMat4) & (maskMat1 | maskMat1)); |
|
CHECK_DIFF(maskMat0, (maskMat4 | maskMat4) & maskMat1); |
|
CHECK_DIFF(maskMat0, maskMat4 & (maskMat1 | maskMat1)); |
|
CHECK_DIFF(maskMat0, (maskMat1 | maskMat1) & Scalar(4)); |
|
CHECK_DIFF(maskMat0, Scalar(4) & (maskMat1 | maskMat1)); |
|
|
|
CHECK_DIFF(maskMat0, maskMat5 ^ (maskMat4 | maskMat1)); |
|
CHECK_DIFF(maskMat0, (maskMat4 | maskMat1) ^ maskMat5); |
|
CHECK_DIFF(maskMat0, (maskMat4 + maskMat1) ^ (maskMat4 + maskMat1)); |
|
CHECK_DIFF(maskMat0, Scalar(5) ^ (maskMat4 | Scalar(1))); |
|
CHECK_DIFF(maskMat1, Scalar(5) ^ maskMat4); |
|
CHECK_DIFF(maskMat0, Scalar(5) ^ (maskMat4 + maskMat1)); |
|
CHECK_DIFF(maskMat5, Scalar(5) | (maskMat4 + maskMat1)); |
|
CHECK_DIFF(maskMat0, (maskMat4 + maskMat1) ^ Scalar(5)); |
|
|
|
CHECK_DIFF(maskMat5, maskMat5 | (maskMat4 ^ maskMat1)); |
|
CHECK_DIFF(maskMat5, (maskMat4 ^ maskMat1) | maskMat5); |
|
CHECK_DIFF(maskMat5, maskMat5 | (maskMat4 ^ Scalar(1))); |
|
CHECK_DIFF(maskMat5, (maskMat4 | maskMat4) | Scalar(1)); |
|
CHECK_DIFF(maskMat5, Scalar(1) | (maskMat4 | maskMat4)); |
|
CHECK_DIFF(maskMat5, Scalar(1) | maskMat4); |
|
CHECK_DIFF(maskMat5, (maskMat5 | maskMat5) | (maskMat4 ^ maskMat1)); |
|
|
|
CHECK_DIFF(maskMat1, min(maskMat1, maskMat5)); |
|
CHECK_DIFF(maskMat1, min(Mat(maskMat1 | maskMat1), maskMat5 | maskMat5)); |
|
CHECK_DIFF(maskMat5, max(maskMat1, maskMat5)); |
|
CHECK_DIFF(maskMat5, max(Mat(maskMat1 | maskMat1), maskMat5 | maskMat5)); |
|
|
|
CHECK_DIFF(maskMat1, min(maskMat1, maskMat5 | maskMat5)); |
|
CHECK_DIFF(maskMat1, min(maskMat1 | maskMat1, maskMat5)); |
|
CHECK_DIFF(maskMat5, max(maskMat1 | maskMat1, maskMat5)); |
|
CHECK_DIFF(maskMat5, max(maskMat1, maskMat5 | maskMat5)); |
|
|
|
CHECK_DIFF(~maskMat1, maskMat1 ^ -1); |
|
CHECK_DIFF(~(maskMat1 | maskMat1), maskMat1 ^ -1); |
|
|
|
CHECK_DIFF(maskMat1, maskMat4/4.0); |
|
|
|
///////////////////////////// |
|
|
|
CHECK_DIFF(1.0 - (maskMat5 | maskMat5), -maskMat4); |
|
CHECK_DIFF((maskMat4 | maskMat4) * 1.0 + 1.0, maskMat5); |
|
CHECK_DIFF(1.0 + (maskMat4 | maskMat4) * 1.0, maskMat5); |
|
CHECK_DIFF((maskMat5 | maskMat5) * 1.0 - 1.0, maskMat4); |
|
CHECK_DIFF(5.0 - (maskMat4 | maskMat4) * 1.0, maskMat1); |
|
CHECK_DIFF((maskMat4 | maskMat4) * 1.0 + 0.5 + 0.5, maskMat5); |
|
CHECK_DIFF(0.5 + ((maskMat4 | maskMat4) * 1.0 + 0.5), maskMat5); |
|
CHECK_DIFF(((maskMat4 | maskMat4) * 1.0 + 2.0) - 1.0, maskMat5); |
|
CHECK_DIFF(5.0 - ((maskMat1 | maskMat1) * 1.0 + 3.0), maskMat1); |
|
CHECK_DIFF( ( (maskMat1 | maskMat1) * 2.0 + 2.0) * 1.25, maskMat5); |
|
CHECK_DIFF( 1.25 * ( (maskMat1 | maskMat1) * 2.0 + 2.0), maskMat5); |
|
CHECK_DIFF( -( (maskMat1 | maskMat1) * (-2.0) + 1.0), maskMat1); |
|
CHECK_DIFF( maskMat1 * 1.0 + maskMat4 * 0.5 + 2.0, maskMat5); |
|
CHECK_DIFF( 1.0 + (maskMat1 * 1.0 + maskMat4 * 0.5 + 1.0), maskMat5); |
|
CHECK_DIFF( (maskMat1 * 1.0 + maskMat4 * 0.5 + 2.0) - 1.0, maskMat4); |
|
CHECK_DIFF(5.0 - (maskMat1 * 1.0 + maskMat4 * 0.5 + 1.0), maskMat1); |
|
CHECK_DIFF((maskMat1 * 1.0 + maskMat4 * 0.5 + 1.0)*1.25, maskMat5); |
|
CHECK_DIFF(1.25 * (maskMat1 * 1.0 + maskMat4 * 0.5 + 1.0), maskMat5); |
|
CHECK_DIFF(-(maskMat1 * 2.0 + maskMat4 * (-1) + 1.0), maskMat1); |
|
CHECK_DIFF((maskMat1 * 1.0 + maskMat4), maskMat5); |
|
CHECK_DIFF((maskMat4 + maskMat1 * 1.0), maskMat5); |
|
CHECK_DIFF((maskMat1 * 3.0 + 1.0) + maskMat1, maskMat5); |
|
CHECK_DIFF(maskMat1 + (maskMat1 * 3.0 + 1.0), maskMat5); |
|
CHECK_DIFF(maskMat1*4.0 + (maskMat1 | maskMat1), maskMat5); |
|
CHECK_DIFF((maskMat1 | maskMat1) + maskMat1*4.0, maskMat5); |
|
CHECK_DIFF((maskMat1*3.0 + 1.0) + (maskMat1 | maskMat1), maskMat5); |
|
CHECK_DIFF((maskMat1 | maskMat1) + (maskMat1*3.0 + 1.0), maskMat5); |
|
CHECK_DIFF(maskMat1*4.0 + maskMat4*2.0, maskMat1 * 12); |
|
CHECK_DIFF((maskMat1*3.0 + 1.0) + maskMat4*2.0, maskMat1 * 12); |
|
CHECK_DIFF(maskMat4*2.0 + (maskMat1*3.0 + 1.0), maskMat1 * 12); |
|
CHECK_DIFF((maskMat1*3.0 + 1.0) + (maskMat1*2.0 + 2.0), maskMat1 * 8); |
|
|
|
CHECK_DIFF(maskMat5*1.0 - maskMat4, maskMat1); |
|
CHECK_DIFF(maskMat5 - maskMat1 * 4.0, maskMat1); |
|
CHECK_DIFF((maskMat4 * 1.0 + 4.0)- maskMat4, maskMat4); |
|
CHECK_DIFF(maskMat5 - (maskMat1 * 2.0 + 2.0), maskMat1); |
|
CHECK_DIFF(maskMat5*1.0 - (maskMat4 | maskMat4), maskMat1); |
|
CHECK_DIFF((maskMat5 | maskMat5) - maskMat1 * 4.0, maskMat1); |
|
CHECK_DIFF((maskMat4 * 1.0 + 4.0)- (maskMat4 | maskMat4), maskMat4); |
|
CHECK_DIFF((maskMat5 | maskMat5) - (maskMat1 * 2.0 + 2.0), maskMat1); |
|
CHECK_DIFF(maskMat1*5.0 - maskMat4 * 1.0, maskMat1); |
|
CHECK_DIFF((maskMat1*5.0 + 3.0)- maskMat4 * 1.0, maskMat4); |
|
CHECK_DIFF(maskMat4 * 2.0 - (maskMat1*4.0 + 3.0), maskMat1); |
|
CHECK_DIFF((maskMat1 * 2.0 + 3.0) - (maskMat1*3.0 + 1.0), maskMat1); |
|
|
|
CHECK_DIFF((maskMat5 - maskMat4)* 4.0, maskMat4); |
|
CHECK_DIFF(4.0 * (maskMat5 - maskMat4), maskMat4); |
|
|
|
CHECK_DIFF(-((maskMat4 | maskMat4) - (maskMat5 | maskMat5)), maskMat1); |
|
|
|
CHECK_DIFF(4.0 * (maskMat1 | maskMat1), maskMat4); |
|
CHECK_DIFF((maskMat4 | maskMat4)/4.0, maskMat1); |
|
|
|
#if !MSVC_OLD |
|
CHECK_DIFF(2.0 * (maskMat1 * 2.0) , maskMat4); |
|
#endif |
|
CHECK_DIFF((maskMat4 / 2.0) / 2.0 , maskMat1); |
|
CHECK_DIFF(-(maskMat4 - maskMat5) , maskMat1); |
|
CHECK_DIFF(-((maskMat4 - maskMat5) * 1.0), maskMat1); |
|
|
|
|
|
///////////////////////////// |
|
CHECK_DIFF(maskMat4 / maskMat4, maskMat1); |
|
|
|
///// Element-wise multiplication |
|
|
|
CHECK_DIFF(maskMat4.mul(maskMat4, 0.25), maskMat4); |
|
CHECK_DIFF(maskMat4.mul(maskMat1 * 4, 0.25), maskMat4); |
|
CHECK_DIFF(maskMat4.mul(maskMat4 / 4), maskMat4); |
|
CHECK_DIFF(maskMat4.mul(maskMat4 / 4), maskMat4); |
|
CHECK_DIFF(maskMat4.mul(maskMat4) * 0.25, maskMat4); |
|
CHECK_DIFF(0.25 * maskMat4.mul(maskMat4), maskMat4); |
|
|
|
////// Element-wise division |
|
|
|
CHECK_DIFF(maskMat4 / maskMat4, maskMat1); |
|
CHECK_DIFF((maskMat4 & maskMat4) / (maskMat1 * 4), maskMat1); |
|
|
|
CHECK_DIFF((maskMat4 & maskMat4) / maskMat4, maskMat1); |
|
CHECK_DIFF(maskMat4 / (maskMat4 & maskMat4), maskMat1); |
|
CHECK_DIFF((maskMat1 * 4) / maskMat4, maskMat1); |
|
|
|
CHECK_DIFF(maskMat4 / (maskMat1 * 4), maskMat1); |
|
CHECK_DIFF((maskMat4 * 0.5 )/ (maskMat1 * 2), maskMat1); |
|
|
|
CHECK_DIFF(maskMat4 / maskMat4.mul(maskMat1), maskMat1); |
|
CHECK_DIFF((maskMat4 & maskMat4) / maskMat4.mul(maskMat1), maskMat1); |
|
|
|
CHECK_DIFF(4.0 / maskMat4, maskMat1); |
|
CHECK_DIFF(4.0 / (maskMat4 | maskMat4), maskMat1); |
|
CHECK_DIFF(4.0 / (maskMat1 * 4.0), maskMat1); |
|
CHECK_DIFF(4.0 / (maskMat4 / maskMat1), maskMat1); |
|
|
|
m = maskMat4.clone(); m/=4.0; CHECK_DIFF(m, maskMat1); |
|
m = maskMat4.clone(); m/=maskMat4; CHECK_DIFF(m, maskMat1); |
|
m = maskMat4.clone(); m/=(maskMat1 * 4.0); CHECK_DIFF(m, maskMat1); |
|
m = maskMat4.clone(); m/=(maskMat4 / maskMat1); CHECK_DIFF(m, maskMat1); |
|
|
|
///////////////////////////// |
|
float matrix_data[] = { 3, 1, -4, -5, 1, 0, 0, 1.1f, 1.5f}; |
|
Mat mt(3, 3, CV_32F, matrix_data); |
|
Mat mi = mt.inv(); |
|
Mat d1 = Mat::eye(3, 3, CV_32F); |
|
Mat d2 = d1 * 2; |
|
MatExpr mt_tr = mt.t(); |
|
MatExpr mi_tr = mi.t(); |
|
Mat mi2 = mi * 2; |
|
|
|
|
|
CHECK_DIFF_FLT( mi2 * mt, d2 ); |
|
CHECK_DIFF_FLT( mi * mt, d1 ); |
|
CHECK_DIFF_FLT( mt_tr * mi_tr, d1 ); |
|
|
|
m = mi.clone(); m*=mt; CHECK_DIFF_FLT(m, d1); |
|
m = mi.clone(); m*= (2 * mt - mt) ; CHECK_DIFF_FLT(m, d1); |
|
|
|
m = maskMat4.clone(); m+=(maskMat1 * 1.0); CHECK_DIFF(m, maskMat5); |
|
m = maskMat5.clone(); m-=(maskMat1 * 4.0); CHECK_DIFF(m, maskMat1); |
|
|
|
m = maskMat1.clone(); m+=(maskMat1 * 3.0 + 1.0); CHECK_DIFF(m, maskMat5); |
|
m = maskMat5.clone(); m-=(maskMat1 * 3.0 + 1.0); CHECK_DIFF(m, maskMat1); |
|
#if !MSVC_OLD |
|
m = mi.clone(); m+=(3.0 * mi * mt + d1); CHECK_DIFF_FLT(m, mi + d1 * 4); |
|
m = mi.clone(); m-=(3.0 * mi * mt + d1); CHECK_DIFF_FLT(m, mi - d1 * 4); |
|
m = mi.clone(); m*=(mt * 1.0); CHECK_DIFF_FLT(m, d1); |
|
m = mi.clone(); m*=(mt * 1.0 + Mat::eye(m.size(), m.type())); CHECK_DIFF_FLT(m, d1 + mi); |
|
m = mi.clone(); m*=mt_tr.t(); CHECK_DIFF_FLT(m, d1); |
|
|
|
CHECK_DIFF_FLT( (mi * 2) * mt, d2); |
|
CHECK_DIFF_FLT( mi * (2 * mt), d2); |
|
CHECK_DIFF_FLT( mt.t() * mi_tr, d1 ); |
|
CHECK_DIFF_FLT( mt_tr * mi.t(), d1 ); |
|
CHECK_DIFF_FLT( (mi * 0.4) * (mt * 5), d2); |
|
|
|
CHECK_DIFF_FLT( mt.t() * (mi_tr * 2), d2 ); |
|
CHECK_DIFF_FLT( (mt_tr * 2) * mi.t(), d2 ); |
|
|
|
CHECK_DIFF_FLT(mt.t() * mi.t(), d1); |
|
CHECK_DIFF_FLT( (mi * mt) * 2.0, d2); |
|
CHECK_DIFF_FLT( 2.0 * (mi * mt), d2); |
|
CHECK_DIFF_FLT( -(mi * mt), -d1); |
|
|
|
CHECK_DIFF_FLT( (mi * mt) / 2.0, d1 / 2); |
|
|
|
Mat mt_mul_2_plus_1; |
|
gemm(mt, d1, 2, Mat::ones(3, 3, CV_32F), 1, mt_mul_2_plus_1); |
|
|
|
CHECK_DIFF( (mt * 2.0 + 1.0) * mi, mt_mul_2_plus_1 * mi); // (A*alpha + beta)*B |
|
CHECK_DIFF( mi * (mt * 2.0 + 1.0), mi * mt_mul_2_plus_1); // A*(B*alpha + beta) |
|
CHECK_DIFF( (mt * 2.0 + 1.0) * (mi * 2), mt_mul_2_plus_1 * mi2); // (A*alpha + beta)*(B*gamma) |
|
CHECK_DIFF( (mi *2)* (mt * 2.0 + 1.0), mi2 * mt_mul_2_plus_1); // (A*gamma)*(B*alpha + beta) |
|
CHECK_DIFF_FLT( (mt * 2.0 + 1.0) * mi.t(), mt_mul_2_plus_1 * mi_tr); // (A*alpha + beta)*B^t |
|
CHECK_DIFF_FLT( mi.t() * (mt * 2.0 + 1.0), mi_tr * mt_mul_2_plus_1); // A^t*(B*alpha + beta) |
|
|
|
CHECK_DIFF_FLT( (mi * mt + d2)*5, d1 * 3 * 5); |
|
CHECK_DIFF_FLT( mi * mt + d2, d1 * 3); |
|
CHECK_DIFF_FLT( -(mi * mt) + d2, d1); |
|
CHECK_DIFF_FLT( (mi * mt) + d1, d2); |
|
CHECK_DIFF_FLT( d1 + (mi * mt), d2); |
|
CHECK_DIFF_FLT( (mi * mt) - d2, -d1); |
|
CHECK_DIFF_FLT( d2 - (mi * mt), d1); |
|
|
|
CHECK_DIFF_FLT( (mi * mt) + d2 * 0.5, d2); |
|
CHECK_DIFF_FLT( d2 * 0.5 + (mi * mt), d2); |
|
CHECK_DIFF_FLT( (mi * mt) - d1 * 2, -d1); |
|
CHECK_DIFF_FLT( d1 * 2 - (mi * mt), d1); |
|
|
|
CHECK_DIFF_FLT( (mi * mt) + mi.t(), mi_tr + d1); |
|
CHECK_DIFF_FLT( mi.t() + (mi * mt), mi_tr + d1); |
|
CHECK_DIFF_FLT( (mi * mt) - mi.t(), d1 - mi_tr); |
|
CHECK_DIFF_FLT( mi.t() - (mi * mt), mi_tr - d1); |
|
|
|
CHECK_DIFF_FLT( 2.0 *(mi * mt + d2), d1 * 6); |
|
CHECK_DIFF_FLT( -(mi * mt + d2), d1 * -3); |
|
|
|
CHECK_DIFF_FLT(mt.inv() * mt, d1); |
|
|
|
CHECK_DIFF_FLT(mt.inv() * (2*mt - mt), d1); |
|
#endif |
|
} |
|
catch (const test_excep& e) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "%s\n", e.s.c_str()); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool CV_OperationsTest::SomeMatFunctions() |
|
{ |
|
try |
|
{ |
|
Mat rgba( 10, 10, CV_8UC4, Scalar(1,2,3,4) ); |
|
Mat bgr( rgba.rows, rgba.cols, CV_8UC3 ); |
|
Mat alpha( rgba.rows, rgba.cols, CV_8UC1 ); |
|
Mat out[] = { bgr, alpha }; |
|
// rgba[0] -> bgr[2], rgba[1] -> bgr[1], |
|
// rgba[2] -> bgr[0], rgba[3] -> alpha[0] |
|
int from_to[] = { 0,2, 1,1, 2,0, 3,3 }; |
|
mixChannels( &rgba, 1, out, 2, from_to, 4 ); |
|
|
|
Mat bgr_exp( rgba.size(), CV_8UC3, Scalar(3,2,1)); |
|
Mat alpha_exp( rgba.size(), CV_8UC1, Scalar(4)); |
|
|
|
CHECK_DIFF(bgr_exp, bgr); |
|
CHECK_DIFF(alpha_exp, alpha); |
|
} |
|
catch (const test_excep& e) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "%s\n", e.s.c_str()); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return false; |
|
} |
|
return true; |
|
|
|
} |
|
|
|
|
|
bool CV_OperationsTest::TestSubMatAccess() |
|
{ |
|
try |
|
{ |
|
Mat_<float> T_bs(4,4); |
|
Vec3f cdir(1.f, 1.f, 0.f); |
|
Vec3f ydir(1.f, 0.f, 1.f); |
|
Vec3f fpt(0.1f, 0.7f, 0.2f); |
|
T_bs.setTo(0); |
|
T_bs(Range(0,3),Range(2,3)) = 1.0*Mat(cdir); // weird OpenCV stuff, need to do multiply |
|
T_bs(Range(0,3),Range(1,2)) = 1.0*Mat(ydir); |
|
T_bs(Range(0,3),Range(0,1)) = 1.0*Mat(cdir.cross(ydir)); |
|
T_bs(Range(0,3),Range(3,4)) = 1.0*Mat(fpt); |
|
T_bs(3,3) = 1.0; |
|
//std::cout << "[Nav Grok] S frame =" << std::endl << T_bs << std::endl; |
|
|
|
// set up display coords, really just the S frame |
|
std::vector<float>coords; |
|
|
|
for (int i=0; i<16; i++) |
|
{ |
|
coords.push_back(T_bs(i)); |
|
//std::cout << T_bs1(i) << std::endl; |
|
} |
|
int sz=(int)T_bs.total(); |
|
CV_Assert( cvtest::norm(coords, T_bs.reshape(1,1,&sz), NORM_INF) == 0 ); |
|
} |
|
catch (const test_excep& e) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "%s\n", e.s.c_str()); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool CV_OperationsTest::TestTemplateMat() |
|
{ |
|
try |
|
{ |
|
Mat_<float> one_3x1(3, 1, 1.0f); |
|
Mat_<float> shi_3x1(3, 1, 1.2f); |
|
Mat_<float> shi_2x1(2, 1, -2); |
|
Scalar shift = Scalar::all(15); |
|
|
|
float data[] = { sqrt(2.f)/2, -sqrt(2.f)/2, 1.f, sqrt(2.f)/2, sqrt(2.f)/2, 10.f }; |
|
Mat_<float> rot_2x3(2, 3, data); |
|
|
|
Mat_<float> res = Mat(Mat(2 * rot_2x3) * Mat(one_3x1 + shi_3x1 + shi_3x1 + shi_3x1) - shi_2x1) + shift; |
|
Mat_<float> resS = rot_2x3 * one_3x1; |
|
|
|
Mat_<float> tmp, res2, resS2; |
|
cv::add(one_3x1, shi_3x1, tmp); |
|
cv::add(tmp, shi_3x1, tmp); |
|
cv::add(tmp, shi_3x1, tmp); |
|
cv::gemm(rot_2x3, tmp, 2, shi_2x1, -1, res2, 0); |
|
cv::add(res2, Mat(2, 1, CV_32F, shift), res2); |
|
|
|
cv::gemm(rot_2x3, one_3x1, 1, shi_2x1, 0, resS2, 0); |
|
CHECK_DIFF(res, res2); |
|
CHECK_DIFF(resS, resS2); |
|
|
|
|
|
Mat_<float> mat4x4(4, 4); |
|
cv::randu(mat4x4, Scalar(0), Scalar(10)); |
|
|
|
Mat_<float> roi1 = mat4x4(Rect(Point(1, 1), Size(2, 2))); |
|
Mat_<float> roi2 = mat4x4(Range(1, 3), Range(1, 3)); |
|
|
|
CHECK_DIFF(roi1, roi2); |
|
CHECK_DIFF(mat4x4, mat4x4(Rect(Point(0,0), mat4x4.size()))); |
|
|
|
Mat_<int> intMat10(3, 3, 10); |
|
Mat_<int> intMat11(3, 3, 11); |
|
Mat_<uchar> resMat(3, 3, 255); |
|
|
|
CHECK_DIFF(resMat, intMat10 == intMat10); |
|
CHECK_DIFF(resMat, intMat10 < intMat11); |
|
CHECK_DIFF(resMat, intMat11 > intMat10); |
|
CHECK_DIFF(resMat, intMat10 <= intMat11); |
|
CHECK_DIFF(resMat, intMat11 >= intMat10); |
|
|
|
CHECK_DIFF(resMat, intMat10 == 10.0); |
|
CHECK_DIFF(resMat, intMat10 < 11.0); |
|
CHECK_DIFF(resMat, intMat11 > 10.0); |
|
CHECK_DIFF(resMat, intMat10 <= 11.0); |
|
CHECK_DIFF(resMat, intMat11 >= 10.0); |
|
|
|
Mat_<uchar> maskMat4(3, 3, 4); |
|
Mat_<uchar> maskMat1(3, 3, 1); |
|
Mat_<uchar> maskMat5(3, 3, 5); |
|
Mat_<uchar> maskMat0(3, 3, (uchar)0); |
|
|
|
CHECK_DIFF(maskMat0, maskMat4 & maskMat1); |
|
CHECK_DIFF(maskMat0, Scalar(1) & maskMat4); |
|
CHECK_DIFF(maskMat0, maskMat4 & Scalar(1)); |
|
|
|
Mat_<uchar> m; |
|
m = maskMat4.clone(); m&=maskMat1; CHECK_DIFF(maskMat0, m); |
|
m = maskMat4.clone(); m&=Scalar(1); CHECK_DIFF(maskMat0, m); |
|
|
|
m = maskMat4.clone(); m|=maskMat1; CHECK_DIFF(maskMat5, m); |
|
m = maskMat4.clone(); m^=maskMat1; CHECK_DIFF(maskMat5, m); |
|
|
|
CHECK_DIFF(maskMat0, (maskMat4 | maskMat4) & (maskMat1 | maskMat1)); |
|
CHECK_DIFF(maskMat0, (maskMat4 | maskMat4) & maskMat1); |
|
CHECK_DIFF(maskMat0, maskMat4 & (maskMat1 | maskMat1)); |
|
|
|
CHECK_DIFF(maskMat0, maskMat5 ^ (maskMat4 | maskMat1)); |
|
CHECK_DIFF(maskMat0, Scalar(5) ^ (maskMat4 | Scalar(1))); |
|
|
|
CHECK_DIFF(maskMat5, maskMat5 | (maskMat4 ^ maskMat1)); |
|
CHECK_DIFF(maskMat5, maskMat5 | (maskMat4 ^ Scalar(1))); |
|
|
|
CHECK_DIFF(~maskMat1, maskMat1 ^ 0xFF); |
|
CHECK_DIFF(~(maskMat1 | maskMat1), maskMat1 ^ 0xFF); |
|
|
|
CHECK_DIFF(maskMat1 + maskMat4, maskMat5); |
|
CHECK_DIFF(maskMat1 + Scalar(4), maskMat5); |
|
CHECK_DIFF(Scalar(4) + maskMat1, maskMat5); |
|
CHECK_DIFF(Scalar(4) + (maskMat1 & maskMat1), maskMat5); |
|
|
|
CHECK_DIFF(maskMat1 + 4.0, maskMat5); |
|
CHECK_DIFF((maskMat1 & 0xFF) + 4.0, maskMat5); |
|
CHECK_DIFF(4.0 + maskMat1, maskMat5); |
|
|
|
m = maskMat4.clone(); m+=Scalar(1); CHECK_DIFF(m, maskMat5); |
|
m = maskMat4.clone(); m+=maskMat1; CHECK_DIFF(m, maskMat5); |
|
m = maskMat4.clone(); m+=(maskMat1 | maskMat1); CHECK_DIFF(m, maskMat5); |
|
|
|
CHECK_DIFF(maskMat5 - maskMat1, maskMat4); |
|
CHECK_DIFF(maskMat5 - Scalar(1), maskMat4); |
|
CHECK_DIFF((maskMat5 | maskMat5) - Scalar(1), maskMat4); |
|
CHECK_DIFF(maskMat5 - 1, maskMat4); |
|
CHECK_DIFF((maskMat5 | maskMat5) - 1, maskMat4); |
|
CHECK_DIFF((maskMat5 | maskMat5) - (maskMat1 | maskMat1), maskMat4); |
|
|
|
CHECK_DIFF(maskMat1, min(maskMat1, maskMat5)); |
|
CHECK_DIFF(maskMat5, max(maskMat1, maskMat5)); |
|
|
|
m = maskMat5.clone(); m-=Scalar(1); CHECK_DIFF(m, maskMat4); |
|
m = maskMat5.clone(); m-=maskMat1; CHECK_DIFF(m, maskMat4); |
|
m = maskMat5.clone(); m-=(maskMat1 | maskMat1); CHECK_DIFF(m, maskMat4); |
|
|
|
m = maskMat4.clone(); m |= Scalar(1); CHECK_DIFF(maskMat5, m); |
|
m = maskMat5.clone(); m ^= Scalar(1); CHECK_DIFF(maskMat4, m); |
|
|
|
CHECK_DIFF(maskMat1, maskMat4/4.0); |
|
|
|
Mat_<float> negf(3, 3, -3.0); |
|
Mat_<float> posf = -negf; |
|
Mat_<float> posf2 = posf * 2; |
|
Mat_<int> negi(3, 3, -3); |
|
|
|
CHECK_DIFF(abs(negf), -negf); |
|
CHECK_DIFF(abs(posf - posf2), -negf); |
|
CHECK_DIFF(abs(negi), -(negi & negi)); |
|
|
|
CHECK_DIFF(5.0 - maskMat4, maskMat1); |
|
|
|
|
|
CHECK_DIFF(maskMat4.mul(maskMat4, 0.25), maskMat4); |
|
CHECK_DIFF(maskMat4.mul(maskMat1 * 4, 0.25), maskMat4); |
|
CHECK_DIFF(maskMat4.mul(maskMat4 / 4), maskMat4); |
|
|
|
|
|
////// Element-wise division |
|
|
|
CHECK_DIFF(maskMat4 / maskMat4, maskMat1); |
|
CHECK_DIFF(4.0 / maskMat4, maskMat1); |
|
m = maskMat4.clone(); m/=4.0; CHECK_DIFF(m, maskMat1); |
|
|
|
//////////////////////////////// |
|
|
|
typedef Mat_<int> TestMat_t; |
|
|
|
const TestMat_t cnegi = negi.clone(); |
|
|
|
TestMat_t::iterator beg = negi.begin(); |
|
TestMat_t::iterator end = negi.end(); |
|
|
|
TestMat_t::const_iterator cbeg = cnegi.begin(); |
|
TestMat_t::const_iterator cend = cnegi.end(); |
|
|
|
int sum = 0; |
|
for(; beg!=end; ++beg) |
|
sum+=*beg; |
|
|
|
for(; cbeg!=cend; ++cbeg) |
|
sum-=*cbeg; |
|
|
|
if (sum != 0) throw test_excep(); |
|
|
|
CHECK_DIFF(negi.col(1), negi.col(2)); |
|
CHECK_DIFF(negi.row(1), negi.row(2)); |
|
CHECK_DIFF(negi.col(1), negi.diag()); |
|
|
|
if (Mat_<Point2f>(1, 1).elemSize1() != sizeof(float)) throw test_excep(); |
|
if (Mat_<Point2f>(1, 1).elemSize() != 2 * sizeof(float)) throw test_excep(); |
|
if (Mat_<Point2f>(1, 1).depth() != CV_32F) throw test_excep(); |
|
if (Mat_<float>(1, 1).depth() != CV_32F) throw test_excep(); |
|
if (Mat_<int>(1, 1).depth() != CV_32S) throw test_excep(); |
|
if (Mat_<double>(1, 1).depth() != CV_64F) throw test_excep(); |
|
if (Mat_<Point3d>(1, 1).depth() != CV_64F) throw test_excep(); |
|
if (Mat_<signed char>(1, 1).depth() != CV_8S) throw test_excep(); |
|
if (Mat_<unsigned short>(1, 1).depth() != CV_16U) throw test_excep(); |
|
if (Mat_<unsigned short>(1, 1).channels() != 1) throw test_excep(); |
|
if (Mat_<Point2f>(1, 1).channels() != 2) throw test_excep(); |
|
if (Mat_<Point3f>(1, 1).channels() != 3) throw test_excep(); |
|
if (Mat_<Point3d>(1, 1).channels() != 3) throw test_excep(); |
|
|
|
Mat_<uchar> eye = Mat_<uchar>::zeros(2, 2); CHECK_DIFF(Mat_<uchar>::zeros(Size(2, 2)), eye); |
|
eye.at<uchar>(Point(0,0)) = 1; eye.at<uchar>(1, 1) = 1; |
|
|
|
CHECK_DIFF(Mat_<uchar>::eye(2, 2), eye); |
|
CHECK_DIFF(eye, Mat_<uchar>::eye(Size(2,2))); |
|
|
|
Mat_<uchar> ones(2, 2, (uchar)1); |
|
CHECK_DIFF(ones, Mat_<uchar>::ones(Size(2,2))); |
|
CHECK_DIFF(Mat_<uchar>::ones(2, 2), ones); |
|
|
|
Mat_<Point2f> pntMat(2, 2, Point2f(1, 0)); |
|
if(pntMat.stepT() != 2) throw test_excep(); |
|
|
|
uchar uchar_data[] = {1, 0, 0, 1}; |
|
|
|
Mat_<uchar> matFromData(1, 4, uchar_data); |
|
const Mat_<uchar> mat2 = matFromData.clone(); |
|
CHECK_DIFF(matFromData, eye.reshape(1, 1)); |
|
if (matFromData(Point(0,0)) != uchar_data[0])throw test_excep(); |
|
if (mat2(Point(0,0)) != uchar_data[0]) throw test_excep(); |
|
|
|
if (matFromData(0,0) != uchar_data[0])throw test_excep(); |
|
if (mat2(0,0) != uchar_data[0]) throw test_excep(); |
|
|
|
Mat_<uchar> rect(eye, Rect(0, 0, 1, 1)); |
|
if (rect.cols != 1 || rect.rows != 1 || rect(0,0) != uchar_data[0]) throw test_excep(); |
|
|
|
//cv::Mat_<_Tp>::adjustROI(int,int,int,int) |
|
//cv::Mat_<_Tp>::cross(const Mat_&) const |
|
//cv::Mat_<_Tp>::Mat_(const vector<_Tp>&,bool) |
|
//cv::Mat_<_Tp>::Mat_(int,int,_Tp*,size_t) |
|
//cv::Mat_<_Tp>::Mat_(int,int,const _Tp&) |
|
//cv::Mat_<_Tp>::Mat_(Size,const _Tp&) |
|
//cv::Mat_<_Tp>::mul(const Mat_<_Tp>&,double) const |
|
//cv::Mat_<_Tp>::mul(const MatExpr_<MatExpr_Op2_<Mat_<_Tp>,double,Mat_<_Tp>,MatOp_DivRS_<Mat> >,Mat_<_Tp> >&,double) const |
|
//cv::Mat_<_Tp>::mul(const MatExpr_<MatExpr_Op2_<Mat_<_Tp>,double,Mat_<_Tp>,MatOp_Scale_<Mat> >,Mat_<_Tp> >&,double) const |
|
//cv::Mat_<_Tp>::operator Mat_<T2>() const |
|
//cv::Mat_<_Tp>::operator MatExpr_<Mat_<_Tp>,Mat_<_Tp> >() const |
|
//cv::Mat_<_Tp>::operator()(const Range&,const Range&) const |
|
//cv::Mat_<_Tp>::operator()(const Rect&) const |
|
|
|
//cv::Mat_<_Tp>::operator=(const MatExpr_Base&) |
|
//cv::Mat_<_Tp>::operator[](int) const |
|
|
|
|
|
/////////////////////////////// |
|
|
|
float matrix_data[] = { 3, 1, -4, -5, 1, 0, 0, 1.1f, 1.5f}; |
|
Mat_<float> mt(3, 3, matrix_data); |
|
Mat_<float> mi = mt.inv(); |
|
Mat_<float> d1 = Mat_<float>::eye(3, 3); |
|
Mat_<float> d2 = d1 * 2; |
|
Mat_<float> mt_tr = mt.t(); |
|
Mat_<float> mi_tr = mi.t(); |
|
Mat_<float> mi2 = mi * 2; |
|
|
|
CHECK_DIFF_FLT( mi2 * mt, d2 ); |
|
CHECK_DIFF_FLT( mi * mt, d1 ); |
|
CHECK_DIFF_FLT( mt_tr * mi_tr, d1 ); |
|
|
|
Mat_<float> mf; |
|
mf = mi.clone(); mf*=mt; CHECK_DIFF_FLT(mf, d1); |
|
|
|
////// typedefs ////// |
|
|
|
if (Mat1b(1, 1).elemSize() != sizeof(uchar)) throw test_excep(); |
|
if (Mat2b(1, 1).elemSize() != 2 * sizeof(uchar)) throw test_excep(); |
|
if (Mat3b(1, 1).elemSize() != 3 * sizeof(uchar)) throw test_excep(); |
|
if (Mat1f(1, 1).elemSize() != sizeof(float)) throw test_excep(); |
|
if (Mat2f(1, 1).elemSize() != 2 * sizeof(float)) throw test_excep(); |
|
if (Mat3f(1, 1).elemSize() != 3 * sizeof(float)) throw test_excep(); |
|
if (Mat1f(1, 1).depth() != CV_32F) throw test_excep(); |
|
if (Mat3f(1, 1).depth() != CV_32F) throw test_excep(); |
|
if (Mat3f(1, 1).type() != CV_32FC3) throw test_excep(); |
|
if (Mat1i(1, 1).depth() != CV_32S) throw test_excep(); |
|
if (Mat1d(1, 1).depth() != CV_64F) throw test_excep(); |
|
if (Mat1b(1, 1).depth() != CV_8U) throw test_excep(); |
|
if (Mat3b(1, 1).type() != CV_8UC3) throw test_excep(); |
|
if (Mat1w(1, 1).depth() != CV_16U) throw test_excep(); |
|
if (Mat1s(1, 1).depth() != CV_16S) throw test_excep(); |
|
if (Mat1f(1, 1).channels() != 1) throw test_excep(); |
|
if (Mat1b(1, 1).channels() != 1) throw test_excep(); |
|
if (Mat1i(1, 1).channels() != 1) throw test_excep(); |
|
if (Mat1w(1, 1).channels() != 1) throw test_excep(); |
|
if (Mat1s(1, 1).channels() != 1) throw test_excep(); |
|
if (Mat2f(1, 1).channels() != 2) throw test_excep(); |
|
if (Mat2b(1, 1).channels() != 2) throw test_excep(); |
|
if (Mat2i(1, 1).channels() != 2) throw test_excep(); |
|
if (Mat2w(1, 1).channels() != 2) throw test_excep(); |
|
if (Mat2s(1, 1).channels() != 2) throw test_excep(); |
|
if (Mat3f(1, 1).channels() != 3) throw test_excep(); |
|
if (Mat3b(1, 1).channels() != 3) throw test_excep(); |
|
if (Mat3i(1, 1).channels() != 3) throw test_excep(); |
|
if (Mat3w(1, 1).channels() != 3) throw test_excep(); |
|
if (Mat3s(1, 1).channels() != 3) throw test_excep(); |
|
|
|
vector<Mat_<float> > mvf, mvf2; |
|
Mat_<Vec2f> mf2; |
|
mvf.push_back(Mat_<float>::ones(4, 3)); |
|
mvf.push_back(Mat_<float>::zeros(4, 3)); |
|
merge(mvf, mf2); |
|
split(mf2, mvf2); |
|
CV_Assert( cvtest::norm(mvf2[0], mvf[0], CV_C) == 0 && |
|
cvtest::norm(mvf2[1], mvf[1], CV_C) == 0 ); |
|
|
|
{ |
|
Mat a(2,2,CV_32F,1.f); |
|
Mat b(1,2,CV_32F,1.f); |
|
Mat c = (a*b.t()).t(); |
|
CV_Assert( cvtest::norm(c, CV_L1) == 4. ); |
|
} |
|
|
|
bool badarg_catched = false; |
|
try |
|
{ |
|
Mat m1 = Mat::zeros(1, 10, CV_8UC1); |
|
Mat m2 = Mat::zeros(10, 10, CV_8UC3); |
|
m1.copyTo(m2.row(1)); |
|
} |
|
catch(const Exception&) |
|
{ |
|
badarg_catched = true; |
|
} |
|
CV_Assert( badarg_catched ); |
|
|
|
Size size(2, 5); |
|
TestType<float>(size, 1.f); |
|
cv::Vec3f val1(1.f); |
|
TestType<cv::Vec3f>(size, val1); |
|
cv::Matx31f val2(1.f); |
|
TestType<cv::Matx31f>(size, val2); |
|
cv::Matx41f val3(1.f); |
|
TestType<cv::Matx41f>(size, val3); |
|
cv::Matx32f val4(1.f); |
|
TestType<cv::Matx32f>(size, val4); |
|
} |
|
catch (const test_excep& e) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "%s\n", e.s.c_str()); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool CV_OperationsTest::TestMatND() |
|
{ |
|
int sizes[] = { 3, 3, 3}; |
|
cv::MatND nd(3, sizes, CV_32F); |
|
|
|
return true; |
|
} |
|
|
|
bool CV_OperationsTest::TestSparseMat() |
|
{ |
|
try |
|
{ |
|
int sizes[] = { 10, 10, 10}; |
|
int dims = sizeof(sizes)/sizeof(sizes[0]); |
|
SparseMat mat(dims, sizes, CV_32FC2); |
|
|
|
if (mat.dims() != dims) throw test_excep(); |
|
if (mat.channels() != 2) throw test_excep(); |
|
if (mat.depth() != CV_32F) throw test_excep(); |
|
|
|
SparseMat mat2 = mat.clone(); |
|
} |
|
catch (const test_excep&) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
|
|
bool CV_OperationsTest::TestMatxMultiplication() |
|
{ |
|
try |
|
{ |
|
Matx33f mat(1, 1, 1, 0, 1, 1, 0, 0, 1); // Identity matrix |
|
Point2f pt(3, 4); |
|
Point3f res = mat * pt; // Correctly assumes homogeneous coordinates |
|
|
|
Vec3f res2 = mat*Vec3f(res.x, res.y, res.z); |
|
|
|
if(res.x != 8.0) throw test_excep(); |
|
if(res.y != 5.0) throw test_excep(); |
|
if(res.z != 1.0) throw test_excep(); |
|
|
|
if(res2[0] != 14.0) throw test_excep(); |
|
if(res2[1] != 6.0) throw test_excep(); |
|
if(res2[2] != 1.0) throw test_excep(); |
|
|
|
Matx44f mat44f(1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1); |
|
Matx44d mat44d(1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1); |
|
Scalar s(4, 3, 2, 1); |
|
Scalar sf = mat44f*s; |
|
Scalar sd = mat44d*s; |
|
|
|
if(sf[0] != 10.0) throw test_excep(); |
|
if(sf[1] != 6.0) throw test_excep(); |
|
if(sf[2] != 3.0) throw test_excep(); |
|
if(sf[3] != 1.0) throw test_excep(); |
|
|
|
if(sd[0] != 10.0) throw test_excep(); |
|
if(sd[1] != 6.0) throw test_excep(); |
|
if(sd[2] != 3.0) throw test_excep(); |
|
if(sd[3] != 1.0) throw test_excep(); |
|
} |
|
catch(const test_excep&) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool CV_OperationsTest::TestMatMatxCastSum() |
|
{ |
|
try |
|
{ |
|
Mat ref1 = (Mat_<double>(3, 1) << 1, 2, 3); |
|
Mat ref2 = (Mat_<double>(3, 1) << 3, 4, 5); |
|
Mat ref3 = Mat::ones(3, 1, CV_64FC1); |
|
|
|
Mat mat = Mat::zeros(3, 1, CV_64FC1); |
|
|
|
Mat tst1 = ref1.clone(); |
|
Mat_<double> tst2 = ref2.clone(); |
|
Matx<double, 3, 1> tst3(1, 2, 3); |
|
Vec3d tst4(3, 4, 5); |
|
Scalar tst5(1, 2, 3); |
|
Mat res; |
|
|
|
res = mat + tst1; |
|
CHECK_DIFF_FLT(res, ref1); |
|
res = mat + tst2; |
|
CHECK_DIFF_FLT(res, ref2); |
|
res = mat + tst3; |
|
CHECK_DIFF_FLT(res, ref1); |
|
res = mat + tst4; |
|
CHECK_DIFF_FLT(res, ref2); |
|
|
|
res = mat + tst5; |
|
CHECK_DIFF_FLT(res, ref3); |
|
res = mat + 1; |
|
CHECK_DIFF_FLT(res, ref3); |
|
|
|
cv::add(mat, tst1, res); |
|
CHECK_DIFF_FLT(res, ref1); |
|
cv::add(mat, tst2, res); |
|
CHECK_DIFF_FLT(res, ref2); |
|
cv::add(mat, tst3, res); |
|
CHECK_DIFF_FLT(res, ref1); |
|
cv::add(mat, tst4, res); |
|
CHECK_DIFF_FLT(res, ref2); |
|
|
|
cv::add(mat, tst5, res); |
|
CHECK_DIFF_FLT(res, ref3); |
|
cv::add(mat, 1, res); |
|
CHECK_DIFF_FLT(res, ref3); |
|
|
|
res = mat.clone(); res += tst1; |
|
CHECK_DIFF_FLT(res, ref1); |
|
res = mat.clone(); res += tst2; |
|
CHECK_DIFF_FLT(res, ref2); |
|
res = mat.clone(); res += tst3; |
|
CHECK_DIFF_FLT(res, ref1); |
|
res = mat.clone(); res += tst4; |
|
CHECK_DIFF_FLT(res, ref2); |
|
|
|
res = mat.clone(); res += tst5; |
|
CHECK_DIFF_FLT(res, ref3); |
|
res = mat.clone(); res += 1; |
|
CHECK_DIFF_FLT(res, ref3); |
|
} |
|
catch (const test_excep& e) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "%s\n", e.s.c_str()); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool CV_OperationsTest::TestMatxElementwiseDivison() |
|
{ |
|
try |
|
{ |
|
Matx22f mat(2, 4, 6, 8); |
|
Matx22f mat2(2, 2, 2, 2); |
|
|
|
Matx22f res = mat.div(mat2); |
|
|
|
if(res(0, 0) != 1.0) throw test_excep(); |
|
if(res(0, 1) != 2.0) throw test_excep(); |
|
if(res(1, 0) != 3.0) throw test_excep(); |
|
if(res(1, 1) != 4.0) throw test_excep(); |
|
} |
|
catch(const test_excep&) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool CV_OperationsTest::TestDivisionByValue() |
|
{ |
|
try |
|
{ |
|
Matx22f mat(2, 4, 6, 8); |
|
float alpha = 2.f; |
|
|
|
Matx22f res = mat / alpha; |
|
|
|
if(res(0, 0) != 1.0) throw test_excep(); |
|
if(res(0, 1) != 2.0) throw test_excep(); |
|
if(res(1, 0) != 3.0) throw test_excep(); |
|
if(res(1, 1) != 4.0) throw test_excep(); |
|
} |
|
catch(const test_excep&) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
|
|
bool CV_OperationsTest::TestInplaceDivisionByValue() |
|
{ |
|
try |
|
{ |
|
Matx22f mat(2, 4, 6, 8); |
|
float alpha = 2.f; |
|
|
|
mat /= alpha; |
|
|
|
if(mat(0, 0) != 1.0) throw test_excep(); |
|
if(mat(0, 1) != 2.0) throw test_excep(); |
|
if(mat(1, 0) != 3.0) throw test_excep(); |
|
if(mat(1, 1) != 4.0) throw test_excep(); |
|
} |
|
catch(const test_excep&) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool CV_OperationsTest::TestVec() |
|
{ |
|
try |
|
{ |
|
cv::Mat hsvImage_f(5, 5, CV_32FC3), hsvImage_b(5, 5, CV_8UC3); |
|
int i = 0,j = 0; |
|
cv::Vec3f a; |
|
|
|
//these compile |
|
cv::Vec3b b = a; |
|
hsvImage_f.at<cv::Vec3f>(i,j) = cv::Vec3f((float)i,0,1); |
|
hsvImage_b.at<cv::Vec3b>(i,j) = cv::Vec3b(cv::Vec3f((float)i,0,1)); |
|
|
|
//these don't |
|
b = cv::Vec3f(1,0,0); |
|
cv::Vec3b c; |
|
c = cv::Vec3f(0,0,1); |
|
hsvImage_b.at<cv::Vec3b>(i,j) = cv::Vec3f((float)i,0,1); |
|
hsvImage_b.at<cv::Vec3b>(i,j) = a; |
|
hsvImage_b.at<cv::Vec3b>(i,j) = cv::Vec3f(1,2,3); |
|
} |
|
catch(const test_excep&) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool CV_OperationsTest::operations1() |
|
{ |
|
try |
|
{ |
|
Point3d p1(1, 1, 1), p2(2, 2, 2), p4(4, 4, 4); |
|
p1*=2; |
|
if (!(p1 == p2)) throw test_excep(); |
|
if (!(p2 * 2 == p4)) throw test_excep(); |
|
if (!(p2 * 2.f == p4)) throw test_excep(); |
|
if (!(p2 * 2.f == p4)) throw test_excep(); |
|
|
|
Point2d pi1(1, 1), pi2(2, 2), pi4(4, 4); |
|
pi1*=2; |
|
if (!(pi1 == pi2)) throw test_excep(); |
|
if (!(pi2 * 2 == pi4)) throw test_excep(); |
|
if (!(pi2 * 2.f == pi4)) throw test_excep(); |
|
if (!(pi2 * 2.f == pi4)) throw test_excep(); |
|
|
|
Vec2d v12(1, 1), v22(2, 2); |
|
v12*=2.0; |
|
if (!(v12 == v22)) throw test_excep(); |
|
|
|
Vec3d v13(1, 1, 1), v23(2, 2, 2); |
|
v13*=2.0; |
|
if (!(v13 == v23)) throw test_excep(); |
|
|
|
Vec4d v14(1, 1, 1, 1), v24(2, 2, 2, 2); |
|
v14*=2.0; |
|
if (!(v14 == v24)) throw test_excep(); |
|
|
|
Size sz(10, 20); |
|
if (sz.area() != 200) throw test_excep(); |
|
if (sz.width != 10 || sz.height != 20) throw test_excep(); |
|
if (cvSize(sz).width != 10 || cvSize(sz).height != 20) throw test_excep(); |
|
|
|
Rect r1(0, 0, 10, 20); |
|
Size sz1(5, 10); |
|
r1 -= sz1; |
|
if (r1.size().width != 5 || r1.size().height != 10) throw test_excep(); |
|
Rect r2 = r1 - sz1; |
|
if (r2.size().width != 0 || r2.size().height != 0) throw test_excep(); |
|
|
|
Vec<double, 5> v5d(1, 1, 1, 1, 1); |
|
Vec<double, 6> v6d(1, 1, 1, 1, 1, 1); |
|
Vec<double, 7> v7d(1, 1, 1, 1, 1, 1, 1); |
|
Vec<double, 8> v8d(1, 1, 1, 1, 1, 1, 1, 1); |
|
Vec<double, 9> v9d(1, 1, 1, 1, 1, 1, 1, 1, 1); |
|
Vec<double,10> v10d(1, 1, 1, 1, 1, 1, 1, 1, 1, 1); |
|
|
|
Vec<double,10> v10dzero; |
|
for (int ii = 0; ii < 10; ++ii) { |
|
if (v10dzero[ii] != 0.0) |
|
throw test_excep(); |
|
} |
|
|
|
Mat A(1, 32, CV_32F), B; |
|
for( int i = 0; i < A.cols; i++ ) |
|
A.at<float>(i) = (float)(i <= 12 ? i : 24 - i); |
|
cv::transpose(A, B); |
|
|
|
int minidx[2] = {0, 0}, maxidx[2] = {0, 0}; |
|
double minval = 0, maxval = 0; |
|
cv::minMaxIdx(A, &minval, &maxval, minidx, maxidx); |
|
|
|
if( !(minidx[0] == 0 && minidx[1] == 31 && maxidx[0] == 0 && maxidx[1] == 12 && |
|
minval == -7 && maxval == 12)) |
|
throw test_excep(); |
|
|
|
cv::minMaxIdx(B, &minval, &maxval, minidx, maxidx); |
|
|
|
if( !(minidx[0] == 31 && minidx[1] == 0 && maxidx[0] == 12 && maxidx[1] == 0 && |
|
minval == -7 && maxval == 12)) |
|
throw test_excep(); |
|
|
|
Matx33f b(1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f); |
|
Mat c; |
|
cv::add(Mat::zeros(3, 3, CV_32F), b, c); |
|
CV_Assert( cvtest::norm(b, c, CV_C) == 0 ); |
|
|
|
cv::add(Mat::zeros(3, 3, CV_64F), b, c, noArray(), c.type()); |
|
CV_Assert( cvtest::norm(b, c, CV_C) == 0 ); |
|
|
|
cv::add(Mat::zeros(6, 1, CV_64F), 1, c, noArray(), c.type()); |
|
CV_Assert( cvtest::norm(Matx61f(1.f, 1.f, 1.f, 1.f, 1.f, 1.f), c, CV_C) == 0 ); |
|
|
|
vector<Point2f> pt2d(3); |
|
vector<Point3d> pt3d(2); |
|
|
|
CV_Assert( Mat(pt2d).checkVector(2) == 3 && Mat(pt2d).checkVector(3) < 0 && |
|
Mat(pt3d).checkVector(2) < 0 && Mat(pt3d).checkVector(3) == 2 ); |
|
|
|
Matx44f m44(0.8147f, 0.6324f, 0.9575f, 0.9572f, |
|
0.9058f, 0.0975f, 0.9649f, 0.4854f, |
|
0.1270f, 0.2785f, 0.1576f, 0.8003f, |
|
0.9134f, 0.5469f, 0.9706f, 0.1419f); |
|
double d = cv::determinant(m44); |
|
CV_Assert( fabs(d - (-0.0262)) <= 0.001 ); |
|
|
|
Cv32suf z; |
|
z.i = 0x80000000; |
|
CV_Assert( cvFloor(z.f) == 0 && cvCeil(z.f) == 0 && cvRound(z.f) == 0 ); |
|
} |
|
catch(const test_excep&) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
|
|
bool CV_OperationsTest::TestExp() |
|
{ |
|
Mat1f tt = Mat1f::ones(4,2); |
|
Mat1f outs; |
|
exp(-tt, outs); |
|
Mat1f tt2 = Mat1f::ones(4,1), outs2; |
|
exp(-tt2, outs2); |
|
return true; |
|
} |
|
|
|
|
|
bool CV_OperationsTest::TestSVD() |
|
{ |
|
try |
|
{ |
|
Mat A = (Mat_<double>(3,4) << 1, 2, -1, 4, 2, 4, 3, 5, -1, -2, 6, 7); |
|
Mat x; |
|
SVD::solveZ(A,x); |
|
if( cvtest::norm(A*x, CV_C) > FLT_EPSILON ) |
|
throw test_excep(); |
|
|
|
SVD svd(A, SVD::FULL_UV); |
|
if( cvtest::norm(A*svd.vt.row(3).t(), CV_C) > FLT_EPSILON ) |
|
throw test_excep(); |
|
|
|
Mat Dp(3,3,CV_32FC1); |
|
Mat Dc(3,3,CV_32FC1); |
|
Mat Q(3,3,CV_32FC1); |
|
Mat U,Vt,R,T,W; |
|
|
|
Dp.at<float>(0,0)=0.86483884f; Dp.at<float>(0,1)= -0.3077251f; Dp.at<float>(0,2)=-0.55711365f; |
|
Dp.at<float>(1,0)=0.49294353f; Dp.at<float>(1,1)=-0.24209651f; Dp.at<float>(1,2)=-0.25084701f; |
|
Dp.at<float>(2,0)=0; Dp.at<float>(2,1)=0; Dp.at<float>(2,2)=0; |
|
|
|
Dc.at<float>(0,0)=0.75632739f; Dc.at<float>(0,1)= -0.38859656f; Dc.at<float>(0,2)=-0.36773083f; |
|
Dc.at<float>(1,0)=0.9699229f; Dc.at<float>(1,1)=-0.49858192f; Dc.at<float>(1,2)=-0.47134098f; |
|
Dc.at<float>(2,0)=0.10566688f; Dc.at<float>(2,1)=-0.060333252f; Dc.at<float>(2,2)=-0.045333147f; |
|
|
|
Q=Dp*Dc.t(); |
|
SVD decomp; |
|
decomp=SVD(Q); |
|
U=decomp.u; |
|
Vt=decomp.vt; |
|
W=decomp.w; |
|
Mat I = Mat::eye(3, 3, CV_32F); |
|
|
|
if( cvtest::norm(U*U.t(), I, CV_C) > FLT_EPSILON || |
|
cvtest::norm(Vt*Vt.t(), I, CV_C) > FLT_EPSILON || |
|
W.at<float>(2) < 0 || W.at<float>(1) < W.at<float>(2) || |
|
W.at<float>(0) < W.at<float>(1) || |
|
cvtest::norm(U*Mat::diag(W)*Vt, Q, CV_C) > FLT_EPSILON ) |
|
throw test_excep(); |
|
} |
|
catch(const test_excep&) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
void CV_OperationsTest::run( int /* start_from */) |
|
{ |
|
if (!TestMat()) |
|
return; |
|
|
|
if (!SomeMatFunctions()) |
|
return; |
|
|
|
if (!TestTemplateMat()) |
|
return; |
|
|
|
if (!TestMatND()) |
|
return; |
|
|
|
if (!TestSparseMat()) |
|
return; |
|
|
|
if (!TestVec()) |
|
return; |
|
|
|
if (!TestMatxMultiplication()) |
|
return; |
|
|
|
if (!TestMatxElementwiseDivison()) |
|
return; |
|
|
|
if (!TestDivisionByValue()) |
|
return; |
|
|
|
if (!TestInplaceDivisionByValue()) |
|
return; |
|
|
|
if (!TestMatMatxCastSum()) |
|
return; |
|
|
|
if (!TestSubMatAccess()) |
|
return; |
|
|
|
if (!TestExp()) |
|
return; |
|
|
|
if (!TestSVD()) |
|
return; |
|
|
|
if (!operations1()) |
|
return; |
|
|
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
TEST(Core_Array, expressions) { CV_OperationsTest test; test.safe_run(); } |
|
|
|
class CV_SparseMatTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_SparseMatTest() {} |
|
~CV_SparseMatTest() {} |
|
protected: |
|
void run(int) |
|
{ |
|
try |
|
{ |
|
RNG& rng = theRNG(); |
|
const int MAX_DIM=3; |
|
int sizes[MAX_DIM], idx[MAX_DIM]; |
|
for( int iter = 0; iter < 100; iter++ ) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "."); |
|
ts->update_context(this, iter, true); |
|
int k, dims = rng.uniform(1, MAX_DIM+1), p = 1; |
|
for( k = 0; k < dims; k++ ) |
|
{ |
|
sizes[k] = rng.uniform(1, 30); |
|
p *= sizes[k]; |
|
} |
|
int j, nz = rng.uniform(0, (p+2)/2), nz0 = 0; |
|
SparseMat_<int> v(dims,sizes); |
|
|
|
CV_Assert( (int)v.nzcount() == 0 ); |
|
|
|
SparseMatIterator_<int> it = v.begin(); |
|
SparseMatIterator_<int> it_end = v.end(); |
|
|
|
for( k = 0; it != it_end; ++it, ++k ) |
|
; |
|
CV_Assert( k == 0 ); |
|
|
|
int sum0 = 0, sum = 0; |
|
for( j = 0; j < nz; j++ ) |
|
{ |
|
int val = rng.uniform(1, 100); |
|
for( k = 0; k < dims; k++ ) |
|
idx[k] = rng.uniform(0, sizes[k]); |
|
if( dims == 1 ) |
|
{ |
|
CV_Assert( v.ref(idx[0]) == v(idx[0]) ); |
|
} |
|
else if( dims == 2 ) |
|
{ |
|
CV_Assert( v.ref(idx[0], idx[1]) == v(idx[0], idx[1]) ); |
|
} |
|
else if( dims == 3 ) |
|
{ |
|
CV_Assert( v.ref(idx[0], idx[1], idx[2]) == v(idx[0], idx[1], idx[2]) ); |
|
} |
|
CV_Assert( v.ref(idx) == v(idx) ); |
|
v.ref(idx) += val; |
|
if( v(idx) == val ) |
|
nz0++; |
|
sum0 += val; |
|
} |
|
|
|
CV_Assert( (int)v.nzcount() == nz0 ); |
|
|
|
it = v.begin(); |
|
it_end = v.end(); |
|
|
|
for( k = 0; it != it_end; ++it, ++k ) |
|
sum += *it; |
|
CV_Assert( k == nz0 && sum == sum0 ); |
|
|
|
v.clear(); |
|
CV_Assert( (int)v.nzcount() == 0 ); |
|
|
|
it = v.begin(); |
|
it_end = v.end(); |
|
|
|
for( k = 0; it != it_end; ++it, ++k ) |
|
; |
|
CV_Assert( k == 0 ); |
|
} |
|
} |
|
catch(...) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
} |
|
} |
|
}; |
|
|
|
TEST(Core_SparseMat, iterations) { CV_SparseMatTest test; test.safe_run(); } |
|
|
|
TEST(MatTestRoi, adjustRoiOverflow) |
|
{ |
|
Mat m(15, 10, CV_32S); |
|
Mat roi(m, cv::Range(2, 10), cv::Range(3,6)); |
|
int rowsInROI = roi.rows; |
|
roi.adjustROI(1, 0, 0, 0); |
|
|
|
ASSERT_EQ(roi.rows, rowsInROI + 1); |
|
|
|
roi.adjustROI(-m.rows, -m.rows, 0, 0); |
|
|
|
ASSERT_EQ(roi.rows, m.rows); |
|
} |
|
|
|
TEST(MatTestRoi, adjustRoiUndefinedBehavior) |
|
{ |
|
Mat m(6, 6, CV_8U); |
|
Mat roi(m, cv::Range(2, 4), cv::Range(2, 4)); |
|
// This could trigger a (negative int)*size_t when updating data, |
|
// which is undefined behavior. |
|
roi.adjustROI(2, 2, 2, 2); |
|
EXPECT_EQ(m.data, roi.data); |
|
} |
|
|
|
CV_ENUM(SortRowCol, SORT_EVERY_COLUMN, SORT_EVERY_ROW) |
|
CV_ENUM(SortOrder, SORT_ASCENDING, SORT_DESCENDING) |
|
|
|
PARAM_TEST_CASE(sortIdx, MatDepth, SortRowCol, SortOrder, Size, bool) |
|
{ |
|
int type; |
|
Size size; |
|
int flags; |
|
bool use_roi; |
|
|
|
Mat src, src_roi; |
|
Mat dst, dst_roi; |
|
|
|
virtual void SetUp() |
|
{ |
|
int depth = GET_PARAM(0); |
|
int rowFlags = GET_PARAM(1); |
|
int orderFlags = GET_PARAM(2); |
|
size = GET_PARAM(3); |
|
use_roi = GET_PARAM(4); |
|
|
|
type = CV_MAKE_TYPE(depth, 1); |
|
|
|
flags = rowFlags | orderFlags; |
|
} |
|
|
|
void generateTestData() |
|
{ |
|
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0); |
|
randomSubMat(src, src_roi, size, srcBorder, type, -100, 100); |
|
|
|
Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0); |
|
randomSubMat(dst, dst_roi, size, dstBorder, CV_32S, 5, 16); |
|
} |
|
|
|
template<typename T> |
|
void check_(const cv::Mat& values_, const cv::Mat_<int>& idx_) |
|
{ |
|
cv::Mat_<T>& values = (cv::Mat_<T>&)values_; |
|
cv::Mat_<int>& idx = (cv::Mat_<int>&)idx_; |
|
size_t N = values.total(); |
|
std::vector<bool> processed(N, false); |
|
int prevIdx = idx(0); |
|
T prevValue = values(prevIdx); |
|
processed[prevIdx] = true; |
|
for (size_t i = 1; i < N; i++) |
|
{ |
|
int nextIdx = idx((int)i); |
|
T value = values(nextIdx); |
|
ASSERT_EQ(false, processed[nextIdx]) << "Indexes must be unique. i=" << i << " idx=" << nextIdx << std::endl << idx; |
|
processed[nextIdx] = true; |
|
if ((flags & SORT_DESCENDING) == SORT_DESCENDING) |
|
ASSERT_GE(prevValue, value) << "i=" << i << " prevIdx=" << prevIdx << " idx=" << nextIdx; |
|
else |
|
ASSERT_LE(prevValue, value) << "i=" << i << " prevIdx=" << prevIdx << " idx=" << nextIdx; |
|
prevValue = value; |
|
prevIdx = nextIdx; |
|
} |
|
} |
|
|
|
void validate() |
|
{ |
|
ASSERT_EQ(CV_32SC1, dst_roi.type()); |
|
ASSERT_EQ(size, dst_roi.size()); |
|
bool isColumn = (flags & SORT_EVERY_COLUMN) == SORT_EVERY_COLUMN; |
|
size_t N = isColumn ? src_roi.cols : src_roi.rows; |
|
Mat values_row((int)N, 1, type), idx_row((int)N, 1, CV_32S); |
|
for (size_t i = 0; i < N; i++) |
|
{ |
|
SCOPED_TRACE(cv::format("row/col=%d", (int)i)); |
|
if (isColumn) |
|
{ |
|
src_roi.col((int)i).copyTo(values_row); |
|
dst_roi.col((int)i).copyTo(idx_row); |
|
} |
|
else |
|
{ |
|
src_roi.row((int)i).copyTo(values_row); |
|
dst_roi.row((int)i).copyTo(idx_row); |
|
} |
|
switch(type) |
|
{ |
|
case CV_8U: check_<uchar>(values_row, idx_row); break; |
|
case CV_8S: check_<char>(values_row, idx_row); break; |
|
case CV_16S: check_<short>(values_row, idx_row); break; |
|
case CV_32S: check_<int>(values_row, idx_row); break; |
|
case CV_32F: check_<float>(values_row, idx_row); break; |
|
case CV_64F: check_<double>(values_row, idx_row); break; |
|
default: ASSERT_FALSE(true) << "Unsupported type: " << type; |
|
} |
|
} |
|
} |
|
}; |
|
|
|
TEST_P(sortIdx, simple) |
|
{ |
|
for (int j = 0; j < 5; j++) |
|
{ |
|
generateTestData(); |
|
|
|
cv::sortIdx(src_roi, dst_roi, flags); |
|
validate(); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Core, sortIdx, Combine( |
|
Values(CV_8U, CV_8S, CV_16S, CV_32S, CV_32F, CV_64F), // depth |
|
Values(SORT_EVERY_COLUMN, SORT_EVERY_ROW), |
|
Values(SORT_ASCENDING, SORT_DESCENDING), |
|
Values(Size(3, 3), Size(16, 8)), |
|
::testing::Bool() |
|
)); |
|
|
|
|
|
TEST(Core_sortIdx, regression_8941) |
|
{ |
|
cv::Mat src = (cv::Mat_<int>(3, 3) << |
|
1, 2, 3, |
|
0, 9, 5, |
|
8, 1, 6 |
|
); |
|
cv::Mat expected = (cv::Mat_<int>(3, 1) << |
|
1, |
|
0, |
|
2 |
|
); |
|
|
|
cv::Mat result; |
|
cv::sortIdx(src.col(0), result, CV_SORT_EVERY_COLUMN | CV_SORT_ASCENDING); |
|
#if 0 |
|
std::cout << src.col(0) << std::endl; |
|
std::cout << result << std::endl; |
|
#endif |
|
ASSERT_EQ(expected.size(), result.size()); |
|
EXPECT_EQ(0, cvtest::norm(expected, result, NORM_INF)) << |
|
"result=" << std::endl << result << std::endl << |
|
"expected=" << std::endl << expected; |
|
} |
|
|
|
TEST(Core_Mat, augmentation_operations_9688) |
|
{ |
|
{ |
|
Mat x(1, 1, CV_64FC1, 1.0f); |
|
Mat p(1, 4, CV_64FC1, 5.0f); |
|
EXPECT_ANY_THROW( |
|
x += p; |
|
) << x; |
|
} |
|
{ |
|
Mat x(1, 1, CV_64FC1, 1.0f); |
|
Mat p(1, 4, CV_64FC1, 5.0f); |
|
EXPECT_ANY_THROW( |
|
x -= p; |
|
) << x; |
|
} |
|
} |
|
|
|
//These tests guard regressions against running MatExpr |
|
//operations on empty operands and giving bogus |
|
//results. |
|
TEST(Core_MatExpr, empty_check_15760) |
|
{ |
|
EXPECT_THROW(Mat c = min(Mat(), Mat()), cv::Exception); |
|
EXPECT_THROW(Mat c = abs(Mat()), cv::Exception); |
|
EXPECT_THROW(Mat c = min(Mat(), Mat()), cv::Exception); |
|
EXPECT_THROW(Mat c = Mat() | Mat(), cv::Exception); |
|
EXPECT_THROW(Mat c = Mat() + Mat(), cv::Exception); |
|
EXPECT_THROW(Mat c = Mat().t(), cv::Exception); |
|
EXPECT_THROW(Mat c = Mat().cross(Mat()), cv::Exception); |
|
} |
|
|
|
TEST(Core_Arithm, scalar_handling_19599) // https://github.com/opencv/opencv/issues/19599 (OpenCV 4.x+ only) |
|
{ |
|
Mat a(1, 1, CV_32F, Scalar::all(1)); |
|
Mat b(4, 1, CV_64F, Scalar::all(1)); // MatExpr may convert Scalar to Mat |
|
Mat c; |
|
EXPECT_NO_THROW(cv::multiply(a, b, c)); |
|
EXPECT_EQ(1, c.cols); |
|
EXPECT_EQ(1, c.rows); |
|
} |
|
|
|
// https://github.com/opencv/opencv/issues/24163 |
|
typedef tuple<perf::MatDepth,int,int,int> Arith_Regression24163Param; |
|
typedef testing::TestWithParam<Arith_Regression24163Param> Core_Arith_Regression24163; |
|
|
|
#if defined __riscv |
|
TEST_P(Core_Arith_Regression24163, DISABLED_test_for_ties_to_even) |
|
#else |
|
TEST_P(Core_Arith_Regression24163, test_for_ties_to_even) |
|
#endif |
|
{ |
|
const int matDepth = get<0>(GetParam()); |
|
const int matHeight= get<1>(GetParam()); |
|
const int matWidth = 3; // Fixed |
|
const int alpha = get<2>(GetParam()); |
|
const int beta = get<3>(GetParam()); |
|
|
|
// If alpha and/or beta are negative, and matDepth is unsigned, test is passed. |
|
if( ( (alpha < 0) || (beta < 0) ) |
|
&& |
|
( (matDepth != CV_8S) && (matDepth != CV_16S) && (matDepth != CV_32S) ) ) |
|
{ |
|
throw SkipTestException( cv::format("Test is skipped(matDepth is not signed, alpha = %d, beta = %d)", alpha, beta) ); |
|
} |
|
|
|
const int matType = CV_MAKE_TYPE(matDepth, 1); |
|
const Size matSize(matWidth, matHeight); |
|
const Mat src1(matSize, matType, Scalar(alpha,alpha,alpha,alpha)); |
|
const Mat src2(matSize, matType, Scalar(beta, beta, beta, beta)); |
|
const Mat result = ( src1 + src2 ) / 2; |
|
|
|
// Expected that default is FE_TONEAREST(Ties to Even). |
|
const int mean = lrint( static_cast<double>(alpha + beta) / 2.0 ); |
|
const Mat expected(matSize, matType, Scalar(mean,mean,mean,mean)); |
|
|
|
// Compare result and extected. |
|
ASSERT_EQ(expected.size(), result.size()); |
|
EXPECT_EQ(0, cvtest::norm(expected, result, NORM_INF)) << |
|
"result=" << std::endl << result << std::endl << |
|
"expected=" << std::endl << expected; |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/* */, Core_Arith_Regression24163, |
|
testing::Combine( |
|
testing::Values(perf::MatDepth(CV_8U), CV_8S, CV_16U, CV_16S, CV_32S), // MatType |
|
testing::Values( 3, 4, 5, 6), // MatHeight |
|
testing::Values(-2,-1, 0, 1, 2), // src1 |
|
testing::Values( -1, 0, 1 ) // src2 |
|
) |
|
); |
|
|
|
}} // namespace
|
|
|