Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1.6 KiB

YOLO DNNs

Introduction

In this text you will learn how to use opencv_dnn module using yolo_object_detection (Sample of using OpenCV dnn module in real time with device capture, video and image).

We will demonstrate results of this example on the following picture. Picture example

Examples

VIDEO DEMO: @youtube{NHtRlndE2cg}

Source Code

The latest version of sample source code can be downloaded here.

@include dnn/yolo_object_detection.cpp

How to compile in command line with pkg-config

@code{.bash}

g++ pkg-config --cflags opencv pkg-config --libs opencv yolo_object_detection.cpp -o yolo_object_detection

@endcode

Execute in webcam:

@code{.bash}

$ yolo_object_detection -camera_device=0 -cfg=[PATH-TO-DARKNET]/cfg/yolo.cfg -model=[PATH-TO-DARKNET]/yolo.weights -class_names=[PATH-TO-DARKNET]/data/coco.names

@endcode

Execute with image:

@code{.bash}

$ yolo_object_detection -source=[PATH-IMAGE] -cfg=[PATH-TO-DARKNET]/cfg/yolo.cfg -model=[PATH-TO-DARKNET]/yolo.weights -class_names=[PATH-TO-DARKNET]/data/coco.names

@endcode

Execute in video file:

@code{.bash}

$ yolo_object_detection -source=[PATH-TO-VIDEO] -cfg=[PATH-TO-DARKNET]/cfg/yolo.cfg -model=[PATH-TO-DARKNET]/yolo.weights -class_names=[PATH-TO-DARKNET]/data/coco.names

@endcode

Questions and suggestions email to: Alessandro de Oliveira Faria cabelo@opensuse.org or OpenCV Team.