mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
345 lines
8.2 KiB
345 lines
8.2 KiB
/* strmv.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Subroutine */ int strmv_(char *uplo, char *trans, char *diag, integer *n, |
|
real *a, integer *lda, real *x, integer *incx) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, i__1, i__2; |
|
|
|
/* Local variables */ |
|
integer i__, j, ix, jx, kx, info; |
|
real temp; |
|
extern logical lsame_(char *, char *); |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
logical nounit; |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* STRMV performs one of the matrix-vector operations */ |
|
|
|
/* x := A*x, or x := A'*x, */ |
|
|
|
/* where x is an n element vector and A is an n by n unit, or non-unit, */ |
|
/* upper or lower triangular matrix. */ |
|
|
|
/* Arguments */ |
|
/* ========== */ |
|
|
|
/* UPLO - CHARACTER*1. */ |
|
/* On entry, UPLO specifies whether the matrix is an upper or */ |
|
/* lower triangular matrix as follows: */ |
|
|
|
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */ |
|
|
|
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */ |
|
|
|
/* Unchanged on exit. */ |
|
|
|
/* TRANS - CHARACTER*1. */ |
|
/* On entry, TRANS specifies the operation to be performed as */ |
|
/* follows: */ |
|
|
|
/* TRANS = 'N' or 'n' x := A*x. */ |
|
|
|
/* TRANS = 'T' or 't' x := A'*x. */ |
|
|
|
/* TRANS = 'C' or 'c' x := A'*x. */ |
|
|
|
/* Unchanged on exit. */ |
|
|
|
/* DIAG - CHARACTER*1. */ |
|
/* On entry, DIAG specifies whether or not A is unit */ |
|
/* triangular as follows: */ |
|
|
|
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */ |
|
|
|
/* DIAG = 'N' or 'n' A is not assumed to be unit */ |
|
/* triangular. */ |
|
|
|
/* Unchanged on exit. */ |
|
|
|
/* N - INTEGER. */ |
|
/* On entry, N specifies the order of the matrix A. */ |
|
/* N must be at least zero. */ |
|
/* Unchanged on exit. */ |
|
|
|
/* A - REAL array of DIMENSION ( LDA, n ). */ |
|
/* Before entry with UPLO = 'U' or 'u', the leading n by n */ |
|
/* upper triangular part of the array A must contain the upper */ |
|
/* triangular matrix and the strictly lower triangular part of */ |
|
/* A is not referenced. */ |
|
/* Before entry with UPLO = 'L' or 'l', the leading n by n */ |
|
/* lower triangular part of the array A must contain the lower */ |
|
/* triangular matrix and the strictly upper triangular part of */ |
|
/* A is not referenced. */ |
|
/* Note that when DIAG = 'U' or 'u', the diagonal elements of */ |
|
/* A are not referenced either, but are assumed to be unity. */ |
|
/* Unchanged on exit. */ |
|
|
|
/* LDA - INTEGER. */ |
|
/* On entry, LDA specifies the first dimension of A as declared */ |
|
/* in the calling (sub) program. LDA must be at least */ |
|
/* max( 1, n ). */ |
|
/* Unchanged on exit. */ |
|
|
|
/* X - REAL array of dimension at least */ |
|
/* ( 1 + ( n - 1 )*abs( INCX ) ). */ |
|
/* Before entry, the incremented array X must contain the n */ |
|
/* element vector x. On exit, X is overwritten with the */ |
|
/* tranformed vector x. */ |
|
|
|
/* INCX - INTEGER. */ |
|
/* On entry, INCX specifies the increment for the elements of */ |
|
/* X. INCX must not be zero. */ |
|
/* Unchanged on exit. */ |
|
|
|
|
|
/* Level 2 Blas routine. */ |
|
|
|
/* -- Written on 22-October-1986. */ |
|
/* Jack Dongarra, Argonne National Lab. */ |
|
/* Jeremy Du Croz, Nag Central Office. */ |
|
/* Sven Hammarling, Nag Central Office. */ |
|
/* Richard Hanson, Sandia National Labs. */ |
|
|
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
--x; |
|
|
|
/* Function Body */ |
|
info = 0; |
|
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { |
|
info = 1; |
|
} else if (! lsame_(trans, "N") && ! lsame_(trans, |
|
"T") && ! lsame_(trans, "C")) { |
|
info = 2; |
|
} else if (! lsame_(diag, "U") && ! lsame_(diag, |
|
"N")) { |
|
info = 3; |
|
} else if (*n < 0) { |
|
info = 4; |
|
} else if (*lda < max(1,*n)) { |
|
info = 6; |
|
} else if (*incx == 0) { |
|
info = 8; |
|
} |
|
if (info != 0) { |
|
xerbla_("STRMV ", &info); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible. */ |
|
|
|
if (*n == 0) { |
|
return 0; |
|
} |
|
|
|
nounit = lsame_(diag, "N"); |
|
|
|
/* Set up the start point in X if the increment is not unity. This */ |
|
/* will be ( N - 1 )*INCX too small for descending loops. */ |
|
|
|
if (*incx <= 0) { |
|
kx = 1 - (*n - 1) * *incx; |
|
} else if (*incx != 1) { |
|
kx = 1; |
|
} |
|
|
|
/* Start the operations. In this version the elements of A are */ |
|
/* accessed sequentially with one pass through A. */ |
|
|
|
if (lsame_(trans, "N")) { |
|
|
|
/* Form x := A*x. */ |
|
|
|
if (lsame_(uplo, "U")) { |
|
if (*incx == 1) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
if (x[j] != 0.f) { |
|
temp = x[j]; |
|
i__2 = j - 1; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
x[i__] += temp * a[i__ + j * a_dim1]; |
|
/* L10: */ |
|
} |
|
if (nounit) { |
|
x[j] *= a[j + j * a_dim1]; |
|
} |
|
} |
|
/* L20: */ |
|
} |
|
} else { |
|
jx = kx; |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
if (x[jx] != 0.f) { |
|
temp = x[jx]; |
|
ix = kx; |
|
i__2 = j - 1; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
x[ix] += temp * a[i__ + j * a_dim1]; |
|
ix += *incx; |
|
/* L30: */ |
|
} |
|
if (nounit) { |
|
x[jx] *= a[j + j * a_dim1]; |
|
} |
|
} |
|
jx += *incx; |
|
/* L40: */ |
|
} |
|
} |
|
} else { |
|
if (*incx == 1) { |
|
for (j = *n; j >= 1; --j) { |
|
if (x[j] != 0.f) { |
|
temp = x[j]; |
|
i__1 = j + 1; |
|
for (i__ = *n; i__ >= i__1; --i__) { |
|
x[i__] += temp * a[i__ + j * a_dim1]; |
|
/* L50: */ |
|
} |
|
if (nounit) { |
|
x[j] *= a[j + j * a_dim1]; |
|
} |
|
} |
|
/* L60: */ |
|
} |
|
} else { |
|
kx += (*n - 1) * *incx; |
|
jx = kx; |
|
for (j = *n; j >= 1; --j) { |
|
if (x[jx] != 0.f) { |
|
temp = x[jx]; |
|
ix = kx; |
|
i__1 = j + 1; |
|
for (i__ = *n; i__ >= i__1; --i__) { |
|
x[ix] += temp * a[i__ + j * a_dim1]; |
|
ix -= *incx; |
|
/* L70: */ |
|
} |
|
if (nounit) { |
|
x[jx] *= a[j + j * a_dim1]; |
|
} |
|
} |
|
jx -= *incx; |
|
/* L80: */ |
|
} |
|
} |
|
} |
|
} else { |
|
|
|
/* Form x := A'*x. */ |
|
|
|
if (lsame_(uplo, "U")) { |
|
if (*incx == 1) { |
|
for (j = *n; j >= 1; --j) { |
|
temp = x[j]; |
|
if (nounit) { |
|
temp *= a[j + j * a_dim1]; |
|
} |
|
for (i__ = j - 1; i__ >= 1; --i__) { |
|
temp += a[i__ + j * a_dim1] * x[i__]; |
|
/* L90: */ |
|
} |
|
x[j] = temp; |
|
/* L100: */ |
|
} |
|
} else { |
|
jx = kx + (*n - 1) * *incx; |
|
for (j = *n; j >= 1; --j) { |
|
temp = x[jx]; |
|
ix = jx; |
|
if (nounit) { |
|
temp *= a[j + j * a_dim1]; |
|
} |
|
for (i__ = j - 1; i__ >= 1; --i__) { |
|
ix -= *incx; |
|
temp += a[i__ + j * a_dim1] * x[ix]; |
|
/* L110: */ |
|
} |
|
x[jx] = temp; |
|
jx -= *incx; |
|
/* L120: */ |
|
} |
|
} |
|
} else { |
|
if (*incx == 1) { |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
temp = x[j]; |
|
if (nounit) { |
|
temp *= a[j + j * a_dim1]; |
|
} |
|
i__2 = *n; |
|
for (i__ = j + 1; i__ <= i__2; ++i__) { |
|
temp += a[i__ + j * a_dim1] * x[i__]; |
|
/* L130: */ |
|
} |
|
x[j] = temp; |
|
/* L140: */ |
|
} |
|
} else { |
|
jx = kx; |
|
i__1 = *n; |
|
for (j = 1; j <= i__1; ++j) { |
|
temp = x[jx]; |
|
ix = jx; |
|
if (nounit) { |
|
temp *= a[j + j * a_dim1]; |
|
} |
|
i__2 = *n; |
|
for (i__ = j + 1; i__ <= i__2; ++i__) { |
|
ix += *incx; |
|
temp += a[i__ + j * a_dim1] * x[ix]; |
|
/* L150: */ |
|
} |
|
x[jx] = temp; |
|
jx += *incx; |
|
/* L160: */ |
|
} |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
|
|
/* End of STRMV . */ |
|
|
|
} /* strmv_ */
|
|
|