Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
237 lines
8.8 KiB
237 lines
8.8 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_GPU_UTILITY_HPP__ |
|
#define __OPENCV_GPU_UTILITY_HPP__ |
|
|
|
#include "saturate_cast.hpp" |
|
#include "datamov_utils.hpp" |
|
#include "detail/reduction_detail.hpp" |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
#define OPENCV_GPU_LOG_WARP_SIZE (5) |
|
#define OPENCV_GPU_WARP_SIZE (1 << OPENCV_GPU_LOG_WARP_SIZE) |
|
#define OPENCV_GPU_LOG_MEM_BANKS ((__CUDA_ARCH__ >= 200) ? 5 : 4) // 32 banks on fermi, 16 on tesla |
|
#define OPENCV_GPU_MEM_BANKS (1 << OPENCV_GPU_LOG_MEM_BANKS) |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// swap |
|
|
|
template <typename T> void __device__ __host__ __forceinline__ swap(T& a, T& b) |
|
{ |
|
const T temp = a; |
|
a = b; |
|
b = temp; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// Mask Reader |
|
|
|
struct SingleMask |
|
{ |
|
explicit __host__ __device__ __forceinline__ SingleMask(PtrStepb mask_) : mask(mask_) {} |
|
__host__ __device__ __forceinline__ SingleMask(const SingleMask& mask_): mask(mask_.mask){} |
|
|
|
__device__ __forceinline__ bool operator()(int y, int x) const |
|
{ |
|
return mask.ptr(y)[x] != 0; |
|
} |
|
|
|
PtrStepb mask; |
|
}; |
|
|
|
struct SingleMaskChannels |
|
{ |
|
__host__ __device__ __forceinline__ SingleMaskChannels(PtrStepb mask_, int channels_) |
|
: mask(mask_), channels(channels_) {} |
|
__host__ __device__ __forceinline__ SingleMaskChannels(const SingleMaskChannels& mask_) |
|
:mask(mask_.mask), channels(mask_.channels){} |
|
|
|
__device__ __forceinline__ bool operator()(int y, int x) const |
|
{ |
|
return mask.ptr(y)[x / channels] != 0; |
|
} |
|
|
|
PtrStepb mask; |
|
int channels; |
|
}; |
|
|
|
struct MaskCollection |
|
{ |
|
explicit __host__ __device__ __forceinline__ MaskCollection(PtrStepb* maskCollection_) |
|
: maskCollection(maskCollection_) {} |
|
|
|
__device__ __forceinline__ MaskCollection(const MaskCollection& masks_) |
|
: maskCollection(masks_.maskCollection), curMask(masks_.curMask){} |
|
|
|
__device__ __forceinline__ void next() |
|
{ |
|
curMask = *maskCollection++; |
|
} |
|
__device__ __forceinline__ void setMask(int z) |
|
{ |
|
curMask = maskCollection[z]; |
|
} |
|
|
|
__device__ __forceinline__ bool operator()(int y, int x) const |
|
{ |
|
uchar val; |
|
return curMask.data == 0 || (ForceGlob<uchar>::Load(curMask.ptr(y), x, val), (val != 0)); |
|
} |
|
|
|
const PtrStepb* maskCollection; |
|
PtrStepb curMask; |
|
}; |
|
|
|
struct WithOutMask |
|
{ |
|
__device__ __forceinline__ WithOutMask(){} |
|
__device__ __forceinline__ WithOutMask(const WithOutMask& mask){} |
|
|
|
__device__ __forceinline__ void next() const |
|
{ |
|
} |
|
__device__ __forceinline__ void setMask(int) const |
|
{ |
|
} |
|
|
|
__device__ __forceinline__ bool operator()(int, int) const |
|
{ |
|
return true; |
|
} |
|
|
|
__device__ __forceinline__ bool operator()(int, int, int) const |
|
{ |
|
return true; |
|
} |
|
|
|
static __device__ __forceinline__ bool check(int, int) |
|
{ |
|
return true; |
|
} |
|
|
|
static __device__ __forceinline__ bool check(int, int, int) |
|
{ |
|
return true; |
|
} |
|
}; |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// Reduction |
|
|
|
template <int n, typename T, typename Op> __device__ __forceinline__ void reduce(volatile T* data, T& partial_reduction, int tid, const Op& op) |
|
{ |
|
StaticAssert<n >= 8 && n <= 512>::check(); |
|
utility_detail::ReductionDispatcher<n <= 64>::reduce<n>(data, partial_reduction, tid, op); |
|
} |
|
|
|
template <int n, typename T, typename V, typename Pred> |
|
__device__ __forceinline__ void reducePredVal(volatile T* sdata, T& myData, V* sval, V& myVal, int tid, const Pred& pred) |
|
{ |
|
StaticAssert<n >= 8 && n <= 512>::check(); |
|
utility_detail::PredValReductionDispatcher<n <= 64>::reduce<n>(myData, myVal, sdata, sval, tid, pred); |
|
} |
|
|
|
template <int n, typename T, typename V1, typename V2, typename Pred> |
|
__device__ __forceinline__ void reducePredVal2(volatile T* sdata, T& myData, V1* sval1, V1& myVal1, V2* sval2, V2& myVal2, int tid, const Pred& pred) |
|
{ |
|
StaticAssert<n >= 8 && n <= 512>::check(); |
|
utility_detail::PredVal2ReductionDispatcher<n <= 64>::reduce<n>(myData, myVal1, myVal2, sdata, sval1, sval2, tid, pred); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// Solve linear system |
|
|
|
// solve 2x2 linear system Ax=b |
|
template <typename T> __device__ __forceinline__ bool solve2x2(const T A[2][2], const T b[2], T x[2]) |
|
{ |
|
T det = A[0][0] * A[1][1] - A[1][0] * A[0][1]; |
|
|
|
if (det != 0) |
|
{ |
|
double invdet = 1.0 / det; |
|
|
|
x[0] = saturate_cast<T>(invdet * (b[0] * A[1][1] - b[1] * A[0][1])); |
|
|
|
x[1] = saturate_cast<T>(invdet * (A[0][0] * b[1] - A[1][0] * b[0])); |
|
|
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
// solve 3x3 linear system Ax=b |
|
template <typename T> __device__ __forceinline__ bool solve3x3(const T A[3][3], const T b[3], T x[3]) |
|
{ |
|
T det = A[0][0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1]) |
|
- A[0][1] * (A[1][0] * A[2][2] - A[1][2] * A[2][0]) |
|
+ A[0][2] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]); |
|
|
|
if (det != 0) |
|
{ |
|
double invdet = 1.0 / det; |
|
|
|
x[0] = saturate_cast<T>(invdet * |
|
(b[0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1]) - |
|
A[0][1] * (b[1] * A[2][2] - A[1][2] * b[2] ) + |
|
A[0][2] * (b[1] * A[2][1] - A[1][1] * b[2] ))); |
|
|
|
x[1] = saturate_cast<T>(invdet * |
|
(A[0][0] * (b[1] * A[2][2] - A[1][2] * b[2] ) - |
|
b[0] * (A[1][0] * A[2][2] - A[1][2] * A[2][0]) + |
|
A[0][2] * (A[1][0] * b[2] - b[1] * A[2][0]))); |
|
|
|
x[2] = saturate_cast<T>(invdet * |
|
(A[0][0] * (A[1][1] * b[2] - b[1] * A[2][1]) - |
|
A[0][1] * (A[1][0] * b[2] - b[1] * A[2][0]) + |
|
b[0] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]))); |
|
|
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
}}} // namespace cv { namespace gpu { namespace device |
|
|
|
#endif // __OPENCV_GPU_UTILITY_HPP__
|
|
|