mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
375 lines
9.4 KiB
375 lines
9.4 KiB
#include "opencv2/core.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/ml.hpp" |
|
|
|
#include <algorithm> |
|
#include <iostream> |
|
#include <vector> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
const int SZ = 20; // size of each digit is SZ x SZ |
|
const int CLASS_N = 10; |
|
const char* DIGITS_FN = "digits.png"; |
|
|
|
static void help() |
|
{ |
|
cout << |
|
"\n" |
|
"SVM and KNearest digit recognition.\n" |
|
"\n" |
|
"Sample loads a dataset of handwritten digits from 'digits.png'.\n" |
|
"Then it trains a SVM and KNearest classifiers on it and evaluates\n" |
|
"their accuracy.\n" |
|
"\n" |
|
"Following preprocessing is applied to the dataset:\n" |
|
" - Moment-based image deskew (see deskew())\n" |
|
" - Digit images are split into 4 10x10 cells and 16-bin\n" |
|
" histogram of oriented gradients is computed for each\n" |
|
" cell\n" |
|
" - Transform histograms to space with Hellinger metric (see [1] (RootSIFT))\n" |
|
"\n" |
|
"\n" |
|
"[1] R. Arandjelovic, A. Zisserman\n" |
|
" \"Three things everyone should know to improve object retrieval\"\n" |
|
" http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf\n" |
|
"\n" |
|
"Usage:\n" |
|
" ./digits\n" << endl; |
|
} |
|
|
|
static void split2d(const Mat& image, const Size cell_size, vector<Mat>& cells) |
|
{ |
|
int height = image.rows; |
|
int width = image.cols; |
|
|
|
int sx = cell_size.width; |
|
int sy = cell_size.height; |
|
|
|
cells.clear(); |
|
|
|
for (int i = 0; i < height; i += sy) |
|
{ |
|
for (int j = 0; j < width; j += sx) |
|
{ |
|
cells.push_back(image(Rect(j, i, sx, sy))); |
|
} |
|
} |
|
} |
|
|
|
static void load_digits(const char* fn, vector<Mat>& digits, vector<int>& labels) |
|
{ |
|
digits.clear(); |
|
labels.clear(); |
|
|
|
String filename = samples::findFile(fn); |
|
|
|
cout << "Loading " << filename << " ..." << endl; |
|
|
|
Mat digits_img = imread(filename, IMREAD_GRAYSCALE); |
|
split2d(digits_img, Size(SZ, SZ), digits); |
|
|
|
for (int i = 0; i < CLASS_N; i++) |
|
{ |
|
for (size_t j = 0; j < digits.size() / CLASS_N; j++) |
|
{ |
|
labels.push_back(i); |
|
} |
|
} |
|
} |
|
|
|
static void deskew(const Mat& img, Mat& deskewed_img) |
|
{ |
|
Moments m = moments(img); |
|
|
|
if (abs(m.mu02) < 0.01) |
|
{ |
|
deskewed_img = img.clone(); |
|
return; |
|
} |
|
|
|
float skew = (float)(m.mu11 / m.mu02); |
|
float M_vals[2][3] = {{1, skew, -0.5f * SZ * skew}, {0, 1, 0}}; |
|
Mat M(Size(3, 2), CV_32F); |
|
|
|
for (int i = 0; i < M.rows; i++) |
|
{ |
|
for (int j = 0; j < M.cols; j++) |
|
{ |
|
M.at<float>(i, j) = M_vals[i][j]; |
|
} |
|
} |
|
|
|
warpAffine(img, deskewed_img, M, Size(SZ, SZ), WARP_INVERSE_MAP | INTER_LINEAR); |
|
} |
|
|
|
static void mosaic(const int width, const vector<Mat>& images, Mat& grid) |
|
{ |
|
int mat_width = SZ * width; |
|
int mat_height = SZ * (int)ceil((double)images.size() / width); |
|
|
|
if (!images.empty()) |
|
{ |
|
grid = Mat(Size(mat_width, mat_height), images[0].type()); |
|
|
|
for (size_t i = 0; i < images.size(); i++) |
|
{ |
|
Mat location_on_grid = grid(Rect(SZ * ((int)i % width), SZ * ((int)i / width), SZ, SZ)); |
|
images[i].copyTo(location_on_grid); |
|
} |
|
} |
|
} |
|
|
|
static void evaluate_model(const vector<float>& predictions, const vector<Mat>& digits, const vector<int>& labels, Mat& mos) |
|
{ |
|
double err = 0; |
|
|
|
for (size_t i = 0; i < predictions.size(); i++) |
|
{ |
|
if ((int)predictions[i] != labels[i]) |
|
{ |
|
err++; |
|
} |
|
} |
|
|
|
err /= predictions.size(); |
|
|
|
cout << format("error: %.2f %%", err * 100) << endl; |
|
|
|
int confusion[10][10] = {}; |
|
|
|
for (size_t i = 0; i < labels.size(); i++) |
|
{ |
|
confusion[labels[i]][(int)predictions[i]]++; |
|
} |
|
|
|
cout << "confusion matrix:" << endl; |
|
for (int i = 0; i < 10; i++) |
|
{ |
|
for (int j = 0; j < 10; j++) |
|
{ |
|
cout << format("%2d ", confusion[i][j]); |
|
} |
|
cout << endl; |
|
} |
|
|
|
cout << endl; |
|
|
|
vector<Mat> vis; |
|
|
|
for (size_t i = 0; i < digits.size(); i++) |
|
{ |
|
Mat img; |
|
cvtColor(digits[i], img, COLOR_GRAY2BGR); |
|
|
|
if ((int)predictions[i] != labels[i]) |
|
{ |
|
for (int j = 0; j < img.rows; j++) |
|
{ |
|
for (int k = 0; k < img.cols; k++) |
|
{ |
|
img.at<Vec3b>(j, k)[0] = 0; |
|
img.at<Vec3b>(j, k)[1] = 0; |
|
} |
|
} |
|
} |
|
|
|
vis.push_back(img); |
|
} |
|
|
|
mosaic(25, vis, mos); |
|
} |
|
|
|
static void bincount(const Mat& x, const Mat& weights, const int min_length, vector<double>& bins) |
|
{ |
|
double max_x_val = 0; |
|
minMaxLoc(x, NULL, &max_x_val); |
|
|
|
bins = vector<double>(max((int)max_x_val, min_length)); |
|
|
|
for (int i = 0; i < x.rows; i++) |
|
{ |
|
for (int j = 0; j < x.cols; j++) |
|
{ |
|
bins[x.at<int>(i, j)] += weights.at<float>(i, j); |
|
} |
|
} |
|
} |
|
|
|
static void preprocess_hog(const vector<Mat>& digits, Mat& hog) |
|
{ |
|
int bin_n = 16; |
|
int half_cell = SZ / 2; |
|
double eps = 1e-7; |
|
|
|
hog = Mat(Size(4 * bin_n, (int)digits.size()), CV_32F); |
|
|
|
for (size_t img_index = 0; img_index < digits.size(); img_index++) |
|
{ |
|
Mat gx; |
|
Sobel(digits[img_index], gx, CV_32F, 1, 0); |
|
|
|
Mat gy; |
|
Sobel(digits[img_index], gy, CV_32F, 0, 1); |
|
|
|
Mat mag; |
|
Mat ang; |
|
cartToPolar(gx, gy, mag, ang); |
|
|
|
Mat bin(ang.size(), CV_32S); |
|
|
|
for (int i = 0; i < ang.rows; i++) |
|
{ |
|
for (int j = 0; j < ang.cols; j++) |
|
{ |
|
bin.at<int>(i, j) = (int)(bin_n * ang.at<float>(i, j) / (2 * CV_PI)); |
|
} |
|
} |
|
|
|
Mat bin_cells[] = { |
|
bin(Rect(0, 0, half_cell, half_cell)), |
|
bin(Rect(half_cell, 0, half_cell, half_cell)), |
|
bin(Rect(0, half_cell, half_cell, half_cell)), |
|
bin(Rect(half_cell, half_cell, half_cell, half_cell)) |
|
}; |
|
Mat mag_cells[] = { |
|
mag(Rect(0, 0, half_cell, half_cell)), |
|
mag(Rect(half_cell, 0, half_cell, half_cell)), |
|
mag(Rect(0, half_cell, half_cell, half_cell)), |
|
mag(Rect(half_cell, half_cell, half_cell, half_cell)) |
|
}; |
|
|
|
vector<double> hist; |
|
hist.reserve(4 * bin_n); |
|
|
|
for (int i = 0; i < 4; i++) |
|
{ |
|
vector<double> partial_hist; |
|
bincount(bin_cells[i], mag_cells[i], bin_n, partial_hist); |
|
hist.insert(hist.end(), partial_hist.begin(), partial_hist.end()); |
|
} |
|
|
|
// transform to Hellinger kernel |
|
double sum = 0; |
|
|
|
for (size_t i = 0; i < hist.size(); i++) |
|
{ |
|
sum += hist[i]; |
|
} |
|
|
|
for (size_t i = 0; i < hist.size(); i++) |
|
{ |
|
hist[i] /= sum + eps; |
|
hist[i] = sqrt(hist[i]); |
|
} |
|
|
|
double hist_norm = norm(hist); |
|
|
|
for (size_t i = 0; i < hist.size(); i++) |
|
{ |
|
hog.at<float>((int)img_index, (int)i) = (float)(hist[i] / (hist_norm + eps)); |
|
} |
|
} |
|
} |
|
|
|
static void shuffle(vector<Mat>& digits, vector<int>& labels) |
|
{ |
|
vector<int> shuffled_indexes(digits.size()); |
|
|
|
for (size_t i = 0; i < digits.size(); i++) |
|
{ |
|
shuffled_indexes[i] = (int)i; |
|
} |
|
|
|
randShuffle(shuffled_indexes); |
|
|
|
vector<Mat> shuffled_digits(digits.size()); |
|
vector<int> shuffled_labels(labels.size()); |
|
|
|
for (size_t i = 0; i < shuffled_indexes.size(); i++) |
|
{ |
|
shuffled_digits[shuffled_indexes[i]] = digits[i]; |
|
shuffled_labels[shuffled_indexes[i]] = labels[i]; |
|
} |
|
|
|
digits = shuffled_digits; |
|
labels = shuffled_labels; |
|
} |
|
|
|
int main() |
|
{ |
|
help(); |
|
|
|
vector<Mat> digits; |
|
vector<int> labels; |
|
|
|
load_digits(DIGITS_FN, digits, labels); |
|
|
|
cout << "preprocessing..." << endl; |
|
|
|
// shuffle digits |
|
shuffle(digits, labels); |
|
|
|
vector<Mat> digits2; |
|
|
|
for (size_t i = 0; i < digits.size(); i++) |
|
{ |
|
Mat deskewed_digit; |
|
deskew(digits[i], deskewed_digit); |
|
digits2.push_back(deskewed_digit); |
|
} |
|
|
|
Mat samples; |
|
|
|
preprocess_hog(digits2, samples); |
|
|
|
int train_n = (int)(0.9 * samples.rows); |
|
Mat test_set; |
|
|
|
vector<Mat> digits_test(digits2.begin() + train_n, digits2.end()); |
|
mosaic(25, digits_test, test_set); |
|
imshow("test set", test_set); |
|
|
|
Mat samples_train = samples(Rect(0, 0, samples.cols, train_n)); |
|
Mat samples_test = samples(Rect(0, train_n, samples.cols, samples.rows - train_n)); |
|
vector<int> labels_train(labels.begin(), labels.begin() + train_n); |
|
vector<int> labels_test(labels.begin() + train_n, labels.end()); |
|
|
|
Ptr<ml::KNearest> k_nearest; |
|
Ptr<ml::SVM> svm; |
|
vector<float> predictions; |
|
Mat vis; |
|
|
|
cout << "training KNearest..." << endl; |
|
k_nearest = ml::KNearest::create(); |
|
k_nearest->train(samples_train, ml::ROW_SAMPLE, labels_train); |
|
|
|
// predict digits with KNearest |
|
k_nearest->findNearest(samples_test, 4, predictions); |
|
evaluate_model(predictions, digits_test, labels_test, vis); |
|
imshow("KNearest test", vis); |
|
k_nearest.release(); |
|
|
|
cout << "training SVM..." << endl; |
|
svm = ml::SVM::create(); |
|
svm->setGamma(5.383); |
|
svm->setC(2.67); |
|
svm->setKernel(ml::SVM::RBF); |
|
svm->setType(ml::SVM::C_SVC); |
|
svm->train(samples_train, ml::ROW_SAMPLE, labels_train); |
|
|
|
// predict digits with SVM |
|
svm->predict(samples_test, predictions); |
|
evaluate_model(predictions, digits_test, labels_test, vis); |
|
imshow("SVM test", vis); |
|
cout << "Saving SVM as \"digits_svm.yml\"..." << endl; |
|
svm->save("digits_svm.yml"); |
|
svm.release(); |
|
|
|
waitKey(); |
|
|
|
return 0; |
|
}
|
|
|