mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
206 lines
6.6 KiB
206 lines
6.6 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// (3-clause BSD License) |
|
// |
|
// Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistributions of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistributions in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * Neither the names of the copyright holders nor the names of the contributors |
|
// may be used to endorse or promote products derived from this software |
|
// without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall copyright holders or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
CV_ENUM(Method, RANSAC, LMEDS) |
|
typedef TestWithParam<Method> EstimateAffinePartial2D; |
|
|
|
static float rngIn(float from, float to) { return from + (to-from) * (float)theRNG(); } |
|
|
|
// get random matrix of affine transformation limited to combinations of translation, |
|
// rotation, and uniform scaling |
|
static Mat rngPartialAffMat() { |
|
double theta = rngIn(0, (float)CV_PI*2.f); |
|
double scale = rngIn(0, 3); |
|
double tx = rngIn(-2, 2); |
|
double ty = rngIn(-2, 2); |
|
double aff[2*3] = { std::cos(theta) * scale, -std::sin(theta) * scale, tx, |
|
std::sin(theta) * scale, std::cos(theta) * scale, ty }; |
|
return Mat(2, 3, CV_64F, aff).clone(); |
|
} |
|
|
|
TEST_P(EstimateAffinePartial2D, test2Points) |
|
{ |
|
// try more transformations |
|
for (size_t i = 0; i < 500; ++i) |
|
{ |
|
Mat aff = rngPartialAffMat(); |
|
|
|
// setting points that are no in the same line |
|
Mat fpts(1, 2, CV_32FC2); |
|
Mat tpts(1, 2, CV_32FC2); |
|
|
|
fpts.at<Point2f>(0) = Point2f( rngIn(1,2), rngIn(5,6) ); |
|
fpts.at<Point2f>(1) = Point2f( rngIn(3,4), rngIn(3,4) ); |
|
|
|
transform(fpts, tpts, aff); |
|
|
|
vector<uchar> inliers; |
|
Mat aff_est = estimateAffinePartial2D(fpts, tpts, inliers, GetParam() /* method */); |
|
|
|
EXPECT_NEAR(0., cvtest::norm(aff_est, aff, NORM_INF), 1e-3); |
|
|
|
// all must be inliers |
|
EXPECT_EQ(countNonZero(inliers), 2); |
|
} |
|
} |
|
|
|
TEST_P(EstimateAffinePartial2D, testNPoints) |
|
{ |
|
// try more transformations |
|
for (size_t i = 0; i < 500; ++i) |
|
{ |
|
Mat aff = rngPartialAffMat(); |
|
|
|
const int method = GetParam(); |
|
const int n = 100; |
|
int m; |
|
// LMEDS can't handle more than 50% outliers (by design) |
|
if (method == LMEDS) |
|
m = 3*n/5; |
|
else |
|
m = 2*n/5; |
|
const float shift_outl = 15.f; |
|
const float noise_level = 20.f; |
|
|
|
Mat fpts(1, n, CV_32FC2); |
|
Mat tpts(1, n, CV_32FC2); |
|
|
|
randu(fpts, 0., 100.); |
|
transform(fpts, tpts, aff); |
|
|
|
/* adding noise to some points */ |
|
Mat outliers = tpts.colRange(m, n); |
|
outliers.reshape(1) += shift_outl; |
|
|
|
Mat noise (outliers.size(), outliers.type()); |
|
randu(noise, 0., noise_level); |
|
outliers += noise; |
|
|
|
vector<uchar> inliers; |
|
Mat aff_est = estimateAffinePartial2D(fpts, tpts, inliers, method); |
|
|
|
EXPECT_FALSE(aff_est.empty()); |
|
|
|
EXPECT_NEAR(0., cvtest::norm(aff_est, aff, NORM_INF), 1e-4); |
|
|
|
bool inliers_good = count(inliers.begin(), inliers.end(), 1) == m && |
|
m == accumulate(inliers.begin(), inliers.begin() + m, 0); |
|
|
|
EXPECT_TRUE(inliers_good); |
|
} |
|
} |
|
|
|
// test conversion from other datatypes than float |
|
TEST_P(EstimateAffinePartial2D, testConversion) |
|
{ |
|
Mat aff = rngPartialAffMat(); |
|
aff.convertTo(aff, CV_32S); // convert to int to transform ints properly |
|
|
|
std::vector<Point> fpts(3); |
|
std::vector<Point> tpts(3); |
|
|
|
fpts[0] = Point2f( rngIn(1,2), rngIn(5,6) ); |
|
fpts[1] = Point2f( rngIn(3,4), rngIn(3,4) ); |
|
fpts[2] = Point2f( rngIn(1,2), rngIn(3,4) ); |
|
|
|
transform(fpts, tpts, aff); |
|
|
|
vector<uchar> inliers; |
|
Mat aff_est = estimateAffinePartial2D(fpts, tpts, inliers, GetParam() /* method */); |
|
|
|
ASSERT_FALSE(aff_est.empty()); |
|
|
|
aff.convertTo(aff, CV_64F); // need to convert back before compare |
|
EXPECT_NEAR(0., cvtest::norm(aff_est, aff, NORM_INF), 1e-3); |
|
|
|
// all must be inliers |
|
EXPECT_EQ(countNonZero(inliers), 3); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Calib3d, EstimateAffinePartial2D, Method::all()); |
|
|
|
|
|
// https://github.com/opencv/opencv/issues/14259 |
|
TEST(EstimateAffinePartial2D, issue_14259_dont_change_inputs) |
|
{ |
|
/*const static*/ float pts0_[10] = { |
|
0.0f, 0.0f, |
|
0.0f, 8.0f, |
|
4.0f, 0.0f, // outlier |
|
8.0f, 8.0f, |
|
8.0f, 0.0f |
|
}; |
|
/*const static*/ float pts1_[10] = { |
|
0.1f, 0.1f, |
|
0.1f, 8.1f, |
|
0.0f, 4.0f, // outlier |
|
8.1f, 8.1f, |
|
8.1f, 0.1f |
|
}; |
|
|
|
Mat pts0(Size(1, 5), CV_32FC2, (void*)pts0_); |
|
Mat pts1(Size(1, 5), CV_32FC2, (void*)pts1_); |
|
|
|
Mat pts0_copy = pts0.clone(); |
|
Mat pts1_copy = pts1.clone(); |
|
|
|
Mat inliers; |
|
|
|
cv::Mat A = cv::estimateAffinePartial2D(pts0, pts1, inliers); |
|
|
|
for(int i = 0; i < pts0.rows; ++i) |
|
{ |
|
EXPECT_EQ(pts0_copy.at<Vec2f>(i), pts0.at<Vec2f>(i)) << "pts0: i=" << i; |
|
} |
|
|
|
for(int i = 0; i < pts1.rows; ++i) |
|
{ |
|
EXPECT_EQ(pts1_copy.at<Vec2f>(i), pts1.at<Vec2f>(i)) << "pts1: i=" << i; |
|
} |
|
|
|
EXPECT_EQ(0, (int)inliers.at<uchar>(2)); |
|
} |
|
|
|
}} // namespace
|
|
|