Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
384 lines
12 KiB
384 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/videostab/global_motion.hpp" |
|
#include "opencv2/videostab/ring_buffer.hpp" |
|
|
|
using namespace std; |
|
|
|
namespace cv |
|
{ |
|
namespace videostab |
|
{ |
|
|
|
static Mat estimateGlobMotionLeastSquaresTranslation( |
|
int npoints, const Point2f *points0, const Point2f *points1, float *rmse) |
|
{ |
|
Mat_<float> M = Mat::eye(3, 3, CV_32F); |
|
for (int i = 0; i < npoints; ++i) |
|
{ |
|
M(0,2) += points1[i].x - points0[i].x; |
|
M(1,2) += points1[i].y - points0[i].y; |
|
} |
|
M(0,2) /= npoints; |
|
M(1,2) /= npoints; |
|
if (rmse) |
|
{ |
|
*rmse = 0; |
|
for (int i = 0; i < npoints; ++i) |
|
*rmse += sqr(points1[i].x - points0[i].x - M(0,2)) + |
|
sqr(points1[i].y - points0[i].y - M(1,2)); |
|
*rmse = sqrt(*rmse / npoints); |
|
} |
|
return M; |
|
} |
|
|
|
|
|
static Mat estimateGlobMotionLeastSquaresTranslationAndScale( |
|
int npoints, const Point2f *points0, const Point2f *points1, float *rmse) |
|
{ |
|
Mat_<float> A(2*npoints, 3), b(2*npoints, 1); |
|
float *a0, *a1; |
|
Point2f p0, p1; |
|
|
|
for (int i = 0; i < npoints; ++i) |
|
{ |
|
a0 = A[2*i]; |
|
a1 = A[2*i+1]; |
|
p0 = points0[i]; |
|
p1 = points1[i]; |
|
a0[0] = p0.x; a0[1] = 1; a0[2] = 0; |
|
a1[0] = p0.y; a1[1] = 0; a1[2] = 1; |
|
b(2*i,0) = p1.x; |
|
b(2*i+1,0) = p1.y; |
|
} |
|
|
|
Mat_<float> sol; |
|
solve(A, b, sol, DECOMP_SVD); |
|
|
|
if (rmse) |
|
*rmse = static_cast<float>(norm(A*sol, b, NORM_L2) / sqrt(static_cast<double>(npoints))); |
|
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F); |
|
M(0,0) = M(1,1) = sol(0,0); |
|
M(0,2) = sol(1,0); |
|
M(1,2) = sol(2,0); |
|
return M; |
|
} |
|
|
|
|
|
static Mat estimateGlobMotionLeastSquaresLinearSimilarity( |
|
int npoints, const Point2f *points0, const Point2f *points1, float *rmse) |
|
{ |
|
Mat_<float> A(2*npoints, 4), b(2*npoints, 1); |
|
float *a0, *a1; |
|
Point2f p0, p1; |
|
|
|
for (int i = 0; i < npoints; ++i) |
|
{ |
|
a0 = A[2*i]; |
|
a1 = A[2*i+1]; |
|
p0 = points0[i]; |
|
p1 = points1[i]; |
|
a0[0] = p0.x; a0[1] = p0.y; a0[2] = 1; a0[3] = 0; |
|
a1[0] = p0.y; a1[1] = -p0.x; a1[2] = 0; a1[3] = 1; |
|
b(2*i,0) = p1.x; |
|
b(2*i+1,0) = p1.y; |
|
} |
|
|
|
Mat_<float> sol; |
|
solve(A, b, sol, DECOMP_SVD); |
|
|
|
if (rmse) |
|
*rmse = static_cast<float>(norm(A*sol, b, NORM_L2) / sqrt(static_cast<double>(npoints))); |
|
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F); |
|
M(0,0) = M(1,1) = sol(0,0); |
|
M(0,1) = sol(1,0); |
|
M(1,0) = -sol(1,0); |
|
M(0,2) = sol(2,0); |
|
M(1,2) = sol(3,0); |
|
return M; |
|
} |
|
|
|
|
|
static Mat estimateGlobMotionLeastSquaresAffine( |
|
int npoints, const Point2f *points0, const Point2f *points1, float *rmse) |
|
{ |
|
Mat_<float> A(2*npoints, 6), b(2*npoints, 1); |
|
float *a0, *a1; |
|
Point2f p0, p1; |
|
|
|
for (int i = 0; i < npoints; ++i) |
|
{ |
|
a0 = A[2*i]; |
|
a1 = A[2*i+1]; |
|
p0 = points0[i]; |
|
p1 = points1[i]; |
|
a0[0] = p0.x; a0[1] = p0.y; a0[2] = 1; a0[3] = a0[4] = a0[5] = 0; |
|
a1[0] = a1[1] = a1[2] = 0; a1[3] = p0.x; a1[4] = p0.y; a1[5] = 1; |
|
b(2*i,0) = p1.x; |
|
b(2*i+1,0) = p1.y; |
|
} |
|
|
|
Mat_<float> sol; |
|
solve(A, b, sol, DECOMP_SVD); |
|
|
|
if (rmse) |
|
*rmse = static_cast<float>(norm(A*sol, b, NORM_L2) / sqrt(static_cast<double>(npoints))); |
|
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F); |
|
for (int i = 0, k = 0; i < 2; ++i) |
|
for (int j = 0; j < 3; ++j, ++k) |
|
M(i,j) = sol(k,0); |
|
|
|
return M; |
|
} |
|
|
|
|
|
Mat estimateGlobalMotionLeastSquares( |
|
const vector<Point2f> &points0, const vector<Point2f> &points1, int model, float *rmse) |
|
{ |
|
CV_Assert(points0.size() == points1.size()); |
|
|
|
typedef Mat (*Impl)(int, const Point2f*, const Point2f*, float*); |
|
static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation, |
|
estimateGlobMotionLeastSquaresTranslationAndScale, |
|
estimateGlobMotionLeastSquaresLinearSimilarity, |
|
estimateGlobMotionLeastSquaresAffine }; |
|
|
|
int npoints = static_cast<int>(points0.size()); |
|
return impls[model](npoints, &points0[0], &points1[0], rmse); |
|
} |
|
|
|
|
|
Mat estimateGlobalMotionRobust( |
|
const vector<Point2f> &points0, const vector<Point2f> &points1, int model, |
|
const RansacParams ¶ms, float *rmse, int *ninliers) |
|
{ |
|
CV_Assert(points0.size() == points1.size()); |
|
|
|
typedef Mat (*Impl)(int, const Point2f*, const Point2f*, float*); |
|
static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation, |
|
estimateGlobMotionLeastSquaresTranslationAndScale, |
|
estimateGlobMotionLeastSquaresLinearSimilarity, |
|
estimateGlobMotionLeastSquaresAffine }; |
|
|
|
const int npoints = static_cast<int>(points0.size()); |
|
const int niters = static_cast<int>(ceil(log(1 - params.prob) / |
|
log(1 - pow(1 - params.eps, params.size)))); |
|
|
|
RNG rng(0); |
|
vector<int> indices(params.size); |
|
vector<Point2f> subset0(params.size), subset1(params.size); |
|
vector<Point2f> subset0best(params.size), subset1best(params.size); |
|
Mat_<float> bestM; |
|
int ninliersMax = -1; |
|
Point2f p0, p1; |
|
float x, y; |
|
|
|
for (int iter = 0; iter < niters; ++iter) |
|
{ |
|
for (int i = 0; i < params.size; ++i) |
|
{ |
|
bool ok = false; |
|
while (!ok) |
|
{ |
|
ok = true; |
|
indices[i] = static_cast<unsigned>(rng) % npoints; |
|
for (int j = 0; j < i; ++j) |
|
if (indices[i] == indices[j]) |
|
{ ok = false; break; } |
|
} |
|
} |
|
for (int i = 0; i < params.size; ++i) |
|
{ |
|
subset0[i] = points0[indices[i]]; |
|
subset1[i] = points1[indices[i]]; |
|
} |
|
|
|
Mat_<float> M = impls[model](params.size, &subset0[0], &subset1[0], 0); |
|
|
|
int ninliers = 0; |
|
for (int i = 0; i < npoints; ++i) |
|
{ |
|
p0 = points0[i]; p1 = points1[i]; |
|
x = M(0,0)*p0.x + M(0,1)*p0.y + M(0,2); |
|
y = M(1,0)*p0.x + M(1,1)*p0.y + M(1,2); |
|
if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh) |
|
ninliers++; |
|
} |
|
if (ninliers >= ninliersMax) |
|
{ |
|
bestM = M; |
|
ninliersMax = ninliers; |
|
subset0best.swap(subset0); |
|
subset1best.swap(subset1); |
|
} |
|
} |
|
|
|
if (ninliersMax < params.size) |
|
// compute rmse |
|
bestM = impls[model](params.size, &subset0best[0], &subset1best[0], rmse); |
|
else |
|
{ |
|
subset0.resize(ninliersMax); |
|
subset1.resize(ninliersMax); |
|
for (int i = 0, j = 0; i < npoints; ++i) |
|
{ |
|
p0 = points0[i]; p1 = points1[i]; |
|
x = bestM(0,0)*p0.x + bestM(0,1)*p0.y + bestM(0,2); |
|
y = bestM(1,0)*p0.x + bestM(1,1)*p0.y + bestM(1,2); |
|
if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh) |
|
{ |
|
subset0[j] = p0; |
|
subset1[j] = p1; |
|
j++; |
|
} |
|
} |
|
bestM = impls[model](ninliersMax, &subset0[0], &subset1[0], rmse); |
|
} |
|
|
|
if (ninliers) |
|
*ninliers = ninliersMax; |
|
|
|
return bestM; |
|
} |
|
|
|
|
|
PyrLkRobustMotionEstimator::PyrLkRobustMotionEstimator() |
|
: ransacParams_(RansacParams::affine2dMotionStd()) |
|
{ |
|
setDetector(new GoodFeaturesToTrackDetector()); |
|
setOptFlowEstimator(new SparsePyrLkOptFlowEstimator()); |
|
setMotionModel(AFFINE); |
|
setMaxRmse(0.5f); |
|
setMinInlierRatio(0.1f); |
|
} |
|
|
|
|
|
Mat PyrLkRobustMotionEstimator::estimate(const Mat &frame0, const Mat &frame1) |
|
{ |
|
detector_->detect(frame0, keypointsPrev_); |
|
|
|
pointsPrev_.resize(keypointsPrev_.size()); |
|
for (size_t i = 0; i < keypointsPrev_.size(); ++i) |
|
pointsPrev_[i] = keypointsPrev_[i].pt; |
|
|
|
optFlowEstimator_->run(frame0, frame1, pointsPrev_, points_, status_, noArray()); |
|
|
|
size_t npoints = points_.size(); |
|
pointsPrevGood_.clear(); |
|
pointsPrevGood_.reserve(npoints); |
|
pointsGood_.clear(); |
|
pointsGood_.reserve(npoints); |
|
for (size_t i = 0; i < npoints; ++i) |
|
{ |
|
if (status_[i]) |
|
{ |
|
pointsPrevGood_.push_back(pointsPrev_[i]); |
|
pointsGood_.push_back(points_[i]); |
|
} |
|
} |
|
|
|
float rmse; |
|
int ninliers; |
|
Mat_<float> M; |
|
|
|
if (motionModel_ != HOMOGRAPHY) |
|
M = estimateGlobalMotionRobust( |
|
pointsPrevGood_, pointsGood_, motionModel_, ransacParams_, &rmse, &ninliers); |
|
else |
|
{ |
|
vector<uchar> mask; |
|
M = findHomography(pointsPrevGood_, pointsGood_, CV_RANSAC, ransacParams_.thresh, mask); |
|
|
|
ninliers = 0; |
|
rmse = 0; |
|
|
|
Point2d p0, p1; |
|
float x, y, z; |
|
|
|
for (size_t i = 0; i < pointsGood_.size(); ++i) |
|
{ |
|
if (mask[i]) |
|
{ |
|
p0 = pointsPrevGood_[i]; p1 = pointsGood_[i]; |
|
x = M(0,0)*p0.x + M(0,1)*p0.y + M(0,2); |
|
y = M(1,0)*p0.x + M(1,1)*p0.y + M(1,2); |
|
z = M(2,0)*p0.x + M(2,1)*p0.y + M(2,2); |
|
x /= z; y /= z; |
|
rmse += sqr(x - p1.x) + sqr(y - p1.y); |
|
ninliers++; |
|
} |
|
} |
|
|
|
rmse = sqrt(rmse / static_cast<float>(ninliers)); |
|
} |
|
|
|
if (rmse > maxRmse_ || static_cast<float>(ninliers) / pointsGood_.size() < minInlierRatio_) |
|
M = Mat::eye(3, 3, CV_32F); |
|
|
|
return M; |
|
} |
|
|
|
|
|
Mat getMotion(int from, int to, const vector<Mat> &motions) |
|
{ |
|
Mat M = Mat::eye(3, 3, CV_32F); |
|
if (to > from) |
|
{ |
|
for (int i = from; i < to; ++i) |
|
M = at(i, motions) * M; |
|
} |
|
else if (from > to) |
|
{ |
|
for (int i = to; i < from; ++i) |
|
M = at(i, motions) * M; |
|
M = M.inv(); |
|
} |
|
return M; |
|
} |
|
|
|
} // namespace videostab |
|
} // namespace cv
|
|
|