mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
4.7 KiB
154 lines
4.7 KiB
#include <opencv2/dnn.hpp> |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
#include <fstream> |
|
#include <iostream> |
|
#include <cstdlib> |
|
using namespace std; |
|
|
|
const size_t width = 300; |
|
const size_t height = 300; |
|
|
|
Mat getMean(const size_t& imageHeight, const size_t& imageWidth) |
|
{ |
|
Mat mean; |
|
|
|
const int meanValues[3] = {104, 117, 123}; |
|
vector<Mat> meanChannels; |
|
for(size_t i = 0; i < 3; i++) |
|
{ |
|
Mat channel(imageHeight, imageWidth, CV_32F, Scalar(meanValues[i])); |
|
meanChannels.push_back(channel); |
|
} |
|
cv::merge(meanChannels, mean); |
|
return mean; |
|
} |
|
|
|
Mat preprocess(const Mat& frame) |
|
{ |
|
Mat preprocessed; |
|
frame.convertTo(preprocessed, CV_32F); |
|
resize(preprocessed, preprocessed, Size(width, height)); //SSD accepts 300x300 RGB-images |
|
|
|
Mat mean = getMean(width, height); |
|
cv::subtract(preprocessed, mean, preprocessed); |
|
|
|
return preprocessed; |
|
} |
|
|
|
const char* about = "This sample uses Single-Shot Detector " |
|
"(https://arxiv.org/abs/1512.02325)" |
|
"to detect objects on image\n"; // TODO: link |
|
|
|
const char* params |
|
= "{ help | false | print usage }" |
|
"{ proto | | model configuration }" |
|
"{ model | | model weights }" |
|
"{ image | | image for detection }" |
|
"{ min_confidence | 0.5 | min confidence }"; |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
cv::CommandLineParser parser(argc, argv, params); |
|
|
|
if (parser.get<bool>("help")) |
|
{ |
|
std::cout << about << std::endl; |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
cv::dnn::initModule(); //Required if OpenCV is built as static libs |
|
|
|
String modelConfiguration = parser.get<string>("proto"); |
|
String modelBinary = parser.get<string>("model"); |
|
|
|
//! [Create the importer of Caffe model] |
|
Ptr<dnn::Importer> importer; |
|
|
|
// Import Caffe SSD model |
|
try |
|
{ |
|
importer = dnn::createCaffeImporter(modelConfiguration, modelBinary); |
|
} |
|
catch (const cv::Exception &err) //Importer can throw errors, we will catch them |
|
{ |
|
cerr << err.msg << endl; |
|
} |
|
//! [Create the importer of Caffe model] |
|
|
|
if (!importer) |
|
{ |
|
cerr << "Can't load network by using the following files: " << endl; |
|
cerr << "prototxt: " << modelConfiguration << endl; |
|
cerr << "caffemodel: " << modelBinary << endl; |
|
cerr << "Models can be downloaded here:" << endl; |
|
cerr << "https://github.com/weiliu89/caffe/tree/ssd#models" << endl; |
|
exit(-1); |
|
} |
|
|
|
//! [Initialize network] |
|
dnn::Net net; |
|
importer->populateNet(net); |
|
importer.release(); //We don't need importer anymore |
|
//! [Initialize network] |
|
|
|
cv::Mat frame = cv::imread(parser.get<string>("image"), -1); |
|
|
|
if (frame.channels() == 4) |
|
cvtColor(frame, frame, COLOR_BGRA2BGR); |
|
//! [Prepare blob] |
|
Mat preprocessedFrame = preprocess(frame); |
|
|
|
Mat inputBlob = blobFromImage(preprocessedFrame); //Convert Mat to batch of images |
|
//! [Prepare blob] |
|
|
|
//! [Set input blob] |
|
net.setInput(inputBlob, "data"); //set the network input |
|
//! [Set input blob] |
|
|
|
//! [Make forward pass] |
|
Mat detection = net.forward("detection_out"); //compute output |
|
//! [Make forward pass] |
|
|
|
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); |
|
|
|
float confidenceThreshold = parser.get<float>("min_confidence"); |
|
for(int i = 0; i < detectionMat.rows; i++) |
|
{ |
|
float confidence = detectionMat.at<float>(i, 2); |
|
|
|
if(confidence > confidenceThreshold) |
|
{ |
|
size_t objectClass = detectionMat.at<float>(i, 1); |
|
|
|
float xLeftBottom = detectionMat.at<float>(i, 3) * frame.cols; |
|
float yLeftBottom = detectionMat.at<float>(i, 4) * frame.rows; |
|
float xRightTop = detectionMat.at<float>(i, 5) * frame.cols; |
|
float yRightTop = detectionMat.at<float>(i, 6) * frame.rows; |
|
|
|
std::cout << "Class: " << objectClass << std::endl; |
|
std::cout << "Confidence: " << confidence << std::endl; |
|
|
|
std::cout << " " << xLeftBottom |
|
<< " " << yLeftBottom |
|
<< " " << xRightTop |
|
<< " " << yRightTop << std::endl; |
|
|
|
Rect object(xLeftBottom, yLeftBottom, |
|
xRightTop - xLeftBottom, |
|
yRightTop - yLeftBottom); |
|
|
|
rectangle(frame, object, Scalar(0, 255, 0)); |
|
} |
|
} |
|
|
|
imshow("detections", frame); |
|
waitKey(); |
|
|
|
return 0; |
|
} // main
|
|
|