mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
6.8 KiB
227 lines
6.8 KiB
#!/usr/bin/env python |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
import os |
|
import sys |
|
import unittest |
|
|
|
from tests_common import NewOpenCVTests |
|
|
|
|
|
try: |
|
|
|
if sys.version_info[:2] < (3, 0): |
|
raise unittest.SkipTest('Python 2.x is not supported') |
|
|
|
|
|
class test_gapi_streaming(NewOpenCVTests): |
|
|
|
def test_image_input(self): |
|
sz = (1280, 720) |
|
in_mat = np.random.randint(0, 100, sz).astype(np.uint8) |
|
|
|
# OpenCV |
|
expected = cv.medianBlur(in_mat, 3) |
|
|
|
# G-API |
|
g_in = cv.GMat() |
|
g_out = cv.gapi.medianBlur(g_in, 3) |
|
c = cv.GComputation(g_in, g_out) |
|
ccomp = c.compileStreaming(cv.descr_of(in_mat)) |
|
ccomp.setSource(cv.gin(in_mat)) |
|
ccomp.start() |
|
|
|
_, actual = ccomp.pull() |
|
|
|
# Assert |
|
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) |
|
|
|
|
|
def test_video_input(self): |
|
ksize = 3 |
|
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']]) |
|
|
|
# OpenCV |
|
cap = cv.VideoCapture(path) |
|
|
|
# G-API |
|
g_in = cv.GMat() |
|
g_out = cv.gapi.medianBlur(g_in, ksize) |
|
c = cv.GComputation(g_in, g_out) |
|
|
|
ccomp = c.compileStreaming() |
|
source = cv.gapi.wip.make_capture_src(path) |
|
ccomp.setSource(source) |
|
ccomp.start() |
|
|
|
# Assert |
|
max_num_frames = 10 |
|
proc_num_frames = 0 |
|
while cap.isOpened(): |
|
has_expected, expected = cap.read() |
|
has_actual, actual = ccomp.pull() |
|
|
|
self.assertEqual(has_expected, has_actual) |
|
|
|
if not has_actual: |
|
break |
|
|
|
self.assertEqual(0.0, cv.norm(cv.medianBlur(expected, ksize), actual, cv.NORM_INF)) |
|
|
|
proc_num_frames += 1 |
|
if proc_num_frames == max_num_frames: |
|
break |
|
|
|
|
|
def test_video_split3(self): |
|
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']]) |
|
|
|
# OpenCV |
|
cap = cv.VideoCapture(path) |
|
|
|
# G-API |
|
g_in = cv.GMat() |
|
b, g, r = cv.gapi.split3(g_in) |
|
c = cv.GComputation(cv.GIn(g_in), cv.GOut(b, g, r)) |
|
|
|
ccomp = c.compileStreaming() |
|
source = cv.gapi.wip.make_capture_src(path) |
|
ccomp.setSource(source) |
|
ccomp.start() |
|
|
|
# Assert |
|
max_num_frames = 10 |
|
proc_num_frames = 0 |
|
while cap.isOpened(): |
|
has_expected, frame = cap.read() |
|
has_actual, actual = ccomp.pull() |
|
|
|
self.assertEqual(has_expected, has_actual) |
|
|
|
if not has_actual: |
|
break |
|
|
|
expected = cv.split(frame) |
|
for e, a in zip(expected, actual): |
|
self.assertEqual(0.0, cv.norm(e, a, cv.NORM_INF)) |
|
|
|
proc_num_frames += 1 |
|
if proc_num_frames == max_num_frames: |
|
break |
|
|
|
|
|
def test_video_add(self): |
|
sz = (576, 768, 3) |
|
in_mat = np.random.randint(0, 100, sz).astype(np.uint8) |
|
|
|
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']]) |
|
|
|
# OpenCV |
|
cap = cv.VideoCapture(path) |
|
|
|
# G-API |
|
g_in1 = cv.GMat() |
|
g_in2 = cv.GMat() |
|
out = cv.gapi.add(g_in1, g_in2) |
|
c = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(out)) |
|
|
|
ccomp = c.compileStreaming() |
|
source = cv.gapi.wip.make_capture_src(path) |
|
ccomp.setSource(cv.gin(source, in_mat)) |
|
ccomp.start() |
|
|
|
# Assert |
|
max_num_frames = 10 |
|
proc_num_frames = 0 |
|
while cap.isOpened(): |
|
has_expected, frame = cap.read() |
|
has_actual, actual = ccomp.pull() |
|
|
|
self.assertEqual(has_expected, has_actual) |
|
|
|
if not has_actual: |
|
break |
|
|
|
expected = cv.add(frame, in_mat) |
|
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) |
|
|
|
proc_num_frames += 1 |
|
if proc_num_frames == max_num_frames: |
|
break; |
|
|
|
|
|
def test_video_good_features_to_track(self): |
|
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']]) |
|
|
|
# NB: goodFeaturesToTrack configuration |
|
max_corners = 50 |
|
quality_lvl = 0.01 |
|
min_distance = 10 |
|
block_sz = 3 |
|
use_harris_detector = True |
|
k = 0.04 |
|
mask = None |
|
|
|
# OpenCV |
|
cap = cv.VideoCapture(path) |
|
|
|
# G-API |
|
g_in = cv.GMat() |
|
g_gray = cv.gapi.RGB2Gray(g_in) |
|
g_out = cv.gapi.goodFeaturesToTrack(g_gray, max_corners, quality_lvl, |
|
min_distance, mask, block_sz, use_harris_detector, k) |
|
|
|
c = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out)) |
|
|
|
ccomp = c.compileStreaming() |
|
source = cv.gapi.wip.make_capture_src(path) |
|
ccomp.setSource(source) |
|
ccomp.start() |
|
|
|
# Assert |
|
max_num_frames = 10 |
|
proc_num_frames = 0 |
|
while cap.isOpened(): |
|
has_expected, frame = cap.read() |
|
has_actual, actual = ccomp.pull() |
|
|
|
self.assertEqual(has_expected, has_actual) |
|
|
|
if not has_actual: |
|
break |
|
|
|
# OpenCV |
|
frame = cv.cvtColor(frame, cv.COLOR_RGB2GRAY) |
|
expected = cv.goodFeaturesToTrack(frame, max_corners, quality_lvl, |
|
min_distance, mask=mask, |
|
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k) |
|
for e, a in zip(expected, actual): |
|
# NB: OpenCV & G-API have different output shapes: |
|
# OpenCV - (num_points, 1, 2) |
|
# G-API - (num_points, 2) |
|
self.assertEqual(0.0, cv.norm(e.flatten(), |
|
np.array(a, np.float32).flatten(), |
|
cv.NORM_INF)) |
|
|
|
proc_num_frames += 1 |
|
if proc_num_frames == max_num_frames: |
|
break |
|
|
|
|
|
except unittest.SkipTest as e: |
|
|
|
message = str(e) |
|
|
|
class TestSkip(unittest.TestCase): |
|
def setUp(self): |
|
self.skipTest('Skip tests: ' + message) |
|
|
|
def test_skip(): |
|
pass |
|
|
|
pass |
|
|
|
|
|
if __name__ == '__main__': |
|
NewOpenCVTests.bootstrap()
|
|
|