Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
719 lines
22 KiB
719 lines
22 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include <iostream> |
|
#include <cmath> |
|
#include <limits> |
|
#include "gputest.hpp" |
|
|
|
using namespace cv; |
|
using namespace std; |
|
using namespace gpu; |
|
|
|
class CV_GpuArithmTest : public CvTest |
|
{ |
|
public: |
|
CV_GpuArithmTest(const char* test_name, const char* test_funcs) : CvTest(test_name, test_funcs) {} |
|
virtual ~CV_GpuArithmTest() {} |
|
|
|
protected: |
|
void run(int); |
|
|
|
int test(int type); |
|
|
|
virtual int test(const Mat& mat1, const Mat& mat2) = 0; |
|
|
|
int CheckNorm(const Mat& m1, const Mat& m2); |
|
int CheckNorm(const Scalar& s1, const Scalar& s2); |
|
int CheckNorm(double d1, double d2); |
|
}; |
|
|
|
int CV_GpuArithmTest::test(int type) |
|
{ |
|
cv::Size sz(200, 200); |
|
cv::Mat mat1(sz, type), mat2(sz, type); |
|
cv::RNG rng(*ts->get_rng()); |
|
rng.fill(mat1, cv::RNG::UNIFORM, cv::Scalar::all(1), cv::Scalar::all(20)); |
|
rng.fill(mat2, cv::RNG::UNIFORM, cv::Scalar::all(1), cv::Scalar::all(20)); |
|
|
|
return test(mat1, mat2); |
|
} |
|
|
|
int CV_GpuArithmTest::CheckNorm(const Mat& m1, const Mat& m2) |
|
{ |
|
double ret = norm(m1, m2, NORM_INF); |
|
|
|
if (ret < 1e-5) |
|
return CvTS::OK; |
|
|
|
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret); |
|
return CvTS::FAIL_GENERIC; |
|
} |
|
|
|
int CV_GpuArithmTest::CheckNorm(const Scalar& s1, const Scalar& s2) |
|
{ |
|
double ret0 = CheckNorm(s1[0], s2[0]), ret1 = CheckNorm(s1[1], s2[1]), ret2 = CheckNorm(s1[2], s2[2]), ret3 = CheckNorm(s1[3], s2[3]); |
|
|
|
return (ret0 == CvTS::OK && ret1 == CvTS::OK && ret2 == CvTS::OK && ret3 == CvTS::OK) ? CvTS::OK : CvTS::FAIL_GENERIC; |
|
} |
|
|
|
int CV_GpuArithmTest::CheckNorm(double d1, double d2) |
|
{ |
|
double ret = ::fabs(d1 - d2); |
|
|
|
if (ret < 1e-5) |
|
return CvTS::OK; |
|
|
|
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret); |
|
return CvTS::FAIL_GENERIC; |
|
} |
|
|
|
void CV_GpuArithmTest::run( int ) |
|
{ |
|
int testResult = CvTS::OK; |
|
try |
|
{ |
|
const int types[] = {CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32FC1}; |
|
const char* type_names[] = {"CV_8UC1", "CV_8UC3", "CV_8UC4", "CV_32SC1", "CV_32FC1"}; |
|
const int type_count = sizeof(types)/sizeof(types[0]); |
|
|
|
//run tests |
|
for (int t = 0; t < type_count; ++t) |
|
{ |
|
ts->printf(CvTS::LOG, "========Start test %s========\n", type_names[t]); |
|
|
|
if (CvTS::OK == test(types[t])) |
|
ts->printf(CvTS::LOG, "SUCCESS\n"); |
|
else |
|
{ |
|
ts->printf(CvTS::LOG, "FAIL\n"); |
|
testResult = CvTS::FAIL_MISMATCH; |
|
} |
|
} |
|
} |
|
catch(const cv::Exception& e) |
|
{ |
|
if (!check_and_treat_gpu_exception(e, ts)) |
|
throw; |
|
return; |
|
} |
|
|
|
ts->set_failed_test_info(testResult); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Add |
|
|
|
struct CV_GpuNppImageAddTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageAddTest() : CV_GpuArithmTest( "GPU-NppImageAdd", "add" ) {} |
|
|
|
virtual int test(const Mat& mat1, const Mat& mat2) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32SC1 && mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::add(mat1, mat2, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::add(gpu1, gpu2, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Sub |
|
struct CV_GpuNppImageSubtractTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageSubtractTest() : CV_GpuArithmTest( "GPU-NppImageSubtract", "subtract" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32SC1 && mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::subtract(mat1, mat2, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::subtract(gpu1, gpu2, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// multiply |
|
struct CV_GpuNppImageMultiplyTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageMultiplyTest() : CV_GpuArithmTest( "GPU-NppImageMultiply", "multiply" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32SC1 && mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::multiply(mat1, mat2, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::multiply(gpu1, gpu2, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// divide |
|
struct CV_GpuNppImageDivideTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageDivideTest() : CV_GpuArithmTest( "GPU-NppImageDivide", "divide" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32SC1 && mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::divide(mat1, mat2, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::divide(gpu1, gpu2, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// transpose |
|
struct CV_GpuNppImageTransposeTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageTransposeTest() : CV_GpuArithmTest( "GPU-NppImageTranspose", "transpose" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_8UC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::transpose(mat1, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpuRes; |
|
cv::gpu::transpose(gpu1, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// absdiff |
|
struct CV_GpuNppImageAbsdiffTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageAbsdiffTest() : CV_GpuArithmTest( "GPU-NppImageAbsdiff", "absdiff" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32SC1 && mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::absdiff(mat1, mat2, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::absdiff(gpu1, gpu2, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// compare |
|
struct CV_GpuNppImageCompareTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageCompareTest() : CV_GpuArithmTest( "GPU-NppImageCompare", "compare" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
int cmp_codes[] = {CMP_EQ, CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE}; |
|
const char* cmp_str[] = {"CMP_EQ", "CMP_GT", "CMP_GE", "CMP_LT", "CMP_LE", "CMP_NE"}; |
|
int cmp_num = sizeof(cmp_codes) / sizeof(int); |
|
|
|
int test_res = CvTS::OK; |
|
|
|
for (int i = 0; i < cmp_num; ++i) |
|
{ |
|
ts->printf(CvTS::LOG, "\nCompare operation: %s\n", cmp_str[i]); |
|
|
|
cv::Mat cpuRes; |
|
cv::compare(mat1, mat2, cpuRes, cmp_codes[i]); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::compare(gpu1, gpu2, gpuRes, cmp_codes[i]); |
|
|
|
if (CheckNorm(cpuRes, gpuRes) != CvTS::OK) |
|
test_res = CvTS::FAIL_GENERIC; |
|
} |
|
|
|
return test_res; |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// meanStdDev |
|
struct CV_GpuNppImageMeanStdDevTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageMeanStdDevTest() : CV_GpuArithmTest( "GPU-NppImageMeanStdDev", "meanStdDev" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_8UC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
Scalar cpumean; |
|
Scalar cpustddev; |
|
cv::meanStdDev(mat1, cpumean, cpustddev); |
|
|
|
GpuMat gpu1(mat1); |
|
Scalar gpumean; |
|
Scalar gpustddev; |
|
cv::gpu::meanStdDev(gpu1, gpumean, gpustddev); |
|
|
|
int test_res = CvTS::OK; |
|
|
|
if (CheckNorm(cpumean, gpumean) != CvTS::OK) |
|
{ |
|
ts->printf(CvTS::LOG, "\nMean FAILED\n"); |
|
test_res = CvTS::FAIL_GENERIC; |
|
} |
|
|
|
if (CheckNorm(cpustddev, gpustddev) != CvTS::OK) |
|
{ |
|
ts->printf(CvTS::LOG, "\nStdDev FAILED\n"); |
|
test_res = CvTS::FAIL_GENERIC; |
|
} |
|
|
|
return test_res; |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// norm |
|
struct CV_GpuNppImageNormTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageNormTest() : CV_GpuArithmTest( "GPU-NppImageNorm", "norm" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_8UC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
int norms[] = {NORM_INF, NORM_L1, NORM_L2}; |
|
const char* norms_str[] = {"NORM_INF", "NORM_L1", "NORM_L2"}; |
|
int norms_num = sizeof(norms) / sizeof(int); |
|
|
|
int test_res = CvTS::OK; |
|
|
|
for (int i = 0; i < norms_num; ++i) |
|
{ |
|
ts->printf(CvTS::LOG, "\nNorm type: %s\n", norms_str[i]); |
|
|
|
double cpu_norm = cv::norm(mat1, mat2, norms[i]); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
double gpu_norm = cv::gpu::norm(gpu1, gpu2, norms[i]); |
|
|
|
if (CheckNorm(cpu_norm, gpu_norm) != CvTS::OK) |
|
test_res = CvTS::FAIL_GENERIC; |
|
} |
|
|
|
return test_res; |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// flip |
|
struct CV_GpuNppImageFlipTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageFlipTest() : CV_GpuArithmTest( "GPU-NppImageFlip", "flip" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
int flip_codes[] = {0, 1, -1}; |
|
const char* flip_axis[] = {"X", "Y", "Both"}; |
|
int flip_codes_num = sizeof(flip_codes) / sizeof(int); |
|
|
|
int test_res = CvTS::OK; |
|
|
|
for (int i = 0; i < flip_codes_num; ++i) |
|
{ |
|
ts->printf(CvTS::LOG, "\nFlip Axis: %s\n", flip_axis[i]); |
|
|
|
Mat cpu_res; |
|
cv::flip(mat1, cpu_res, flip_codes[i]); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu_res; |
|
cv::gpu::flip(gpu1, gpu_res, flip_codes[i]); |
|
|
|
if (CheckNorm(cpu_res, gpu_res) != CvTS::OK) |
|
test_res = CvTS::FAIL_GENERIC; |
|
} |
|
|
|
return test_res; |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// sum |
|
struct CV_GpuNppImageSumTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageSumTest() : CV_GpuArithmTest( "GPU-NppImageSum", "sum" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
Scalar cpures = cv::sum(mat1); |
|
|
|
GpuMat gpu1(mat1); |
|
Scalar gpures = cv::gpu::sum(gpu1); |
|
|
|
return CheckNorm(cpures, gpures); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// minNax |
|
struct CV_GpuNppImageMinNaxTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageMinNaxTest() : CV_GpuArithmTest( "GPU-NppImageMinNax", "minNax" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_8UC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
double cpumin, cpumax; |
|
cv::minMaxLoc(mat1, &cpumin, &cpumax); |
|
|
|
GpuMat gpu1(mat1); |
|
double gpumin, gpumax; |
|
cv::gpu::minMax(gpu1, &gpumin, &gpumax); |
|
|
|
return (CheckNorm(cpumin, gpumin) == CvTS::OK && CheckNorm(cpumax, gpumax) == CvTS::OK) ? CvTS::OK : CvTS::FAIL_GENERIC; |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// LUT |
|
struct CV_GpuNppImageLUTTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageLUTTest() : CV_GpuArithmTest( "GPU-NppImageLUT", "LUT" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC3) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat lut(1, 256, CV_8UC1); |
|
cv::RNG rng(*ts->get_rng()); |
|
rng.fill(lut, cv::RNG::UNIFORM, cv::Scalar::all(100), cv::Scalar::all(200)); |
|
|
|
cv::Mat cpuRes; |
|
cv::LUT(mat1, lut, cpuRes); |
|
|
|
cv::gpu::GpuMat gpuRes; |
|
cv::gpu::LUT(GpuMat(mat1), lut, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// exp |
|
struct CV_GpuNppImageExpTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageExpTest() : CV_GpuArithmTest( "GPU-NppImageExp", "exp" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::exp(mat1, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpuRes; |
|
cv::gpu::exp(gpu1, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// log |
|
struct CV_GpuNppImageLogTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageLogTest() : CV_GpuArithmTest( "GPU-NppImageLog", "log" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::log(mat1, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpuRes; |
|
cv::gpu::log(gpu1, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// magnitude |
|
struct CV_GpuNppImageMagnitudeTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageMagnitudeTest() : CV_GpuArithmTest( "GPU-NppImageMagnitude", "magnitude" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::magnitude(mat1, mat2, cpuRes); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::magnitude(gpu1, gpu2, gpuRes); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// phase |
|
struct CV_GpuNppImagePhaseTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImagePhaseTest() : CV_GpuArithmTest( "GPU-NppImagePhase", "phase" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat cpuRes; |
|
cv::phase(mat1, mat2, cpuRes, true); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuRes; |
|
cv::gpu::phase(gpu1, gpu2, gpuRes, true); |
|
|
|
return CheckNorm(cpuRes, gpuRes); |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// cartToPolar |
|
struct CV_GpuNppImageCartToPolarTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImageCartToPolarTest() : CV_GpuArithmTest( "GPU-NppImageCartToPolar", "cartToPolar" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat cpuMag, cpuAngle; |
|
cv::cartToPolar(mat1, mat2, cpuMag, cpuAngle); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuMag, gpuAngle; |
|
cv::gpu::cartToPolar(gpu1, gpu2, gpuMag, gpuAngle); |
|
|
|
int magRes = CheckNorm(cpuMag, gpuMag); |
|
int angleRes = CheckNorm(cpuAngle, gpuAngle); |
|
|
|
return magRes == CvTS::OK && angleRes == CvTS::OK ? CvTS::OK : CvTS::FAIL_GENERIC; |
|
} |
|
}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// polarToCart |
|
struct CV_GpuNppImagePolarToCartTest : public CV_GpuArithmTest |
|
{ |
|
CV_GpuNppImagePolarToCartTest() : CV_GpuArithmTest( "GPU-NppImagePolarToCart", "polarToCart" ) {} |
|
|
|
int test( const Mat& mat1, const Mat& mat2 ) |
|
{ |
|
if (mat1.type() != CV_32FC1) |
|
{ |
|
ts->printf(CvTS::LOG, "\nUnsupported type\n"); |
|
return CvTS::OK; |
|
} |
|
|
|
cv::Mat cpuX, cpuY; |
|
cv::polarToCart(mat1, mat2, cpuX, cpuY); |
|
|
|
GpuMat gpu1(mat1); |
|
GpuMat gpu2(mat2); |
|
GpuMat gpuX, gpuY; |
|
cv::gpu::polarToCart(gpu1, gpu2, gpuX, gpuY); |
|
|
|
int xRes = CheckNorm(cpuX, gpuX); |
|
int yRes = CheckNorm(cpuY, gpuY); |
|
|
|
return xRes == CvTS::OK && yRes == CvTS::OK ? CvTS::OK : CvTS::FAIL_GENERIC; |
|
} |
|
}; |
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////// |
|
/////////////////// tests registration ///////////////////////////////////// |
|
///////////////////////////////////////////////////////////////////////////// |
|
|
|
// If we comment some tests, we may foget/miss to uncomment it after. |
|
// Placing all test definitions in one place |
|
// makes us know about what tests are commented. |
|
|
|
CV_GpuNppImageAddTest CV_GpuNppImageAdd_test; |
|
CV_GpuNppImageSubtractTest CV_GpuNppImageSubtract_test; |
|
CV_GpuNppImageMultiplyTest CV_GpuNppImageMultiply_test; |
|
CV_GpuNppImageDivideTest CV_GpuNppImageDivide_test; |
|
CV_GpuNppImageTransposeTest CV_GpuNppImageTranspose_test; |
|
CV_GpuNppImageAbsdiffTest CV_GpuNppImageAbsdiff_test; |
|
CV_GpuNppImageCompareTest CV_GpuNppImageCompare_test; |
|
CV_GpuNppImageMeanStdDevTest CV_GpuNppImageMeanStdDev_test; |
|
CV_GpuNppImageNormTest CV_GpuNppImageNorm_test; |
|
CV_GpuNppImageFlipTest CV_GpuNppImageFlip_test; |
|
CV_GpuNppImageSumTest CV_GpuNppImageSum_test; |
|
CV_GpuNppImageMinNaxTest CV_GpuNppImageMinNax_test; |
|
CV_GpuNppImageLUTTest CV_GpuNppImageLUT_test; |
|
CV_GpuNppImageExpTest CV_GpuNppImageExp_test; |
|
CV_GpuNppImageLogTest CV_GpuNppImageLog_test; |
|
CV_GpuNppImageMagnitudeTest CV_GpuNppImageMagnitude_test; |
|
CV_GpuNppImagePhaseTest CV_GpuNppImagePhase_test; |
|
CV_GpuNppImageCartToPolarTest CV_GpuNppImageCartToPolar_test; |
|
CV_GpuNppImagePolarToCartTest CV_GpuNppImagePolarToCart_test;
|
|
|